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It is generally accepted that the bioavailability of metals in sediments is influenced by 

the presence of acid volatile sulfides (AVS). The pore water hypothesis predicts that, if 

the molar concentration of simultaneously extracted metals (SEM) in a sediment is 

smaller than the molar concentration of AVS, the free metal ion activity in the pore 

water is very small and that consequently no metal toxicity in short-term toxicity tests is 

observed. In this study we examined (1) if this concept can be extended to predict the 

absence of chronic Ni toxicity to the oligochaete deposit-feeding worm Lumbriculus 

variegatus and (2) if the organic carbon normalized excess SEM; i.e. [SEM-AVS]/fOC 

predicts the magnitude of Ni toxicity to L. variegatus. A 28-day toxicity experiment was 

performed in which biomass production of L. variegatus was determined in two natural 

sediments with different [AVS] and fOC, spiked at different Ni concentrations. The 

absence of toxicity is predicted correctly by the [SEM-AVS] < 0 criterion when only the 

0-1 cm surface layer of the sediment is considered, but not when the whole bulk 

sediment is considered (0-3 cm). In both sediments, the same [SEM-AVS]/fOC at the 

surface corresponds with a similar decrease in L. variegatus biomass. Thus, [SEM-

AVS]/fOC in the surface layer accurately predicts the magnitude of toxicity. This 

measure is therefore a good estimator of toxicologically available Ni. On the other hand, 

the free Ni2+ ion activity in the overlying water appeared to be an equally good predictor 

of the magnitude of toxicity. Consequently, it was not possible to determine the relative 

importance of the overlying water and pore water exposure route with the semi-static 

laboratory experiments.
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It has been demonstrated that the simultaneously extracted metals – acid volatile sulfide 

(SEM-AVS) method is an effective tool in predicting the absence of metal toxicity in 

sediments in short-term toxicity tests when [SEM-AVS] < 0 (Di Toro et al., 1990; Di 

Toro et al., 1992; Casas and Crecelius, 1994; Pesch et al., 1995; Hansen et al., 1996). 

The underlying principle is that except for pyrite, all other iron and manganese mono 

sulfides that may be present in sediments have higher solubility products than other 

metal sulfides. Thus, Fe and Mn can be displaced by other divalent metals (Cu, Cd, Ni, 

Pb, Zn) on a mole-to-mole basis. Because these metal sulfides exhibit very low 

solubility, sediments with an excess of reactive sulfide will exhibit very low dissolved 

metal concentrations in pore waters and will not cause toxicity (Ankley et al., 1996).  

 

Sediments with excess SEM do not always exhibit toxicity to invertebrate sediment 

organisms. Organic matter can bind non-sulfide bound trace metals, thus preventing 

them to enter the dissolved phase (Mahony et al., 1996). Based on this, [SEM-AVS]/fOC 

has been proposed as a measure of bioavailable metal (Di Toro et al., 2005; Hansen et 

al., 2005). In a recently proposed biotic ligand model for sediments, it has been shown 

that [SEM-AVS]/fOC determines the free metal activity in the pore water(Di Toro et al., 

2005). If this value is greater than a critical threshold, sediments are predicted to be 

toxic.  

 

The [SEM-AVS]/fOC concept assumes that there is no metal toxicity caused by 

transformations of the sulfide and organic matter bound metal in the gut of sediment-

ingesting organisms or via exposure to contaminated food (Meyer et al., 2005). Some 

authors (Lee B.G., Griscom S.B. et al., 2000; Lee B.G., Lee J.S. et al., 2000) have 
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observed that benthic organisms can assimilate metals that are associated with sulfides 

via dietborne exposure. They demonstrated significant bioaccumulation of metals at 

concentrations where [SEM-AVS] < 0. However, these authors did not measure toxic 

effects; they assume that dietary exposure as measured by accumulation is related to 

chronic toxicity (Lee B.G., Griscom S.B. et al., 2000). However, they also note that 

generic relationships between metal bioaccumulation and toxicity are not well 

understood. Animal species differ in their abilities to detoxify bioaccumulated metals 

(e.g. via metallothionein or granule induction) or develop tolerance (Adams et al., 2000; 

Lee B.G., Lee J.S. et al., 2000). An increase in bioaccumulation may be a sign of active 

metal uptake and not toxicity in the case of metal deficiency (Muyssen and Janssen, 

2002; Bossuyt and Janssen, 2003). Thus, bioaccumulated metals may not always reflect 

toxic effects (McGeer et al., 2003).  

 

To our knowledge, the applicability of the SEM-AVS concept to predict the absence of 

chronic, sub-lethal toxicity of nickel to a benthic organism exposed in single-species 

laboratory toxicity tests has not been demonstrated. In this study, the hypothesis tested 

is that Ni2+ in the pore water determines chronic toxicity to L. variegatus. In other 

words, we  examined (1) if [SEM-AVS] < 0 predicts the absence of chronic Ni toxicity 

and (2) if [SEM-AVS]/fOC predicts the presence and magnitude of Ni toxicity to L. 

variegatus, independent of sediment characteristics. The vertical profiles of [SEM-

AVS] and pore water concentrations were considered, since vertical distributions of 

AVS and SEM can affect metal toxicity in sediments and pore water metal 

concentrations (Boothman et al., 2001). Two natural sediments with different 

characteristics were chosen to test the hypothesis, so that at comparable [SEM], 

different [AVS] accounted for differences in [SEM-AVS]. Finally, the applicability of 

 5



86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

the mentioned sediment-biotic ligand model (sBLM) (Di Toro et al., 2005) will be 

tested with the data on biomass of Lumbriculus in Ni spiked sediments. In this way, the 

possible use of the sBLM for chronic single-species toxicity tests with Ni will be 

evaluated. 

 

Materials and Methods 

 

Sediment sampling, spiking and analysis 

 

Two natural sediments were sampled. Brakel sediments were taken by scoop sampling 

from the banks of a small stream (near the source) in a nature reserve in Brakel, 

Belgium (50°45’ N, 3°46’ E). Water depth at the sampling time was about 50 cm. Ijzer 

sediments were taken by grab sampling with a Van Veen grab from the Ijzer river, 

Belgium (about 50°58’N, 2°48’E). This river is situated in a low density farming zone 

and has a water depth of about one meter. Plastic buckets were filled with 50-70% 

sediment, after which overlying water was added to the top of the bucket, which was 

subsequently closed with a plastic lid. After sampling, sediments were frozen at -20 °C 

for two days to kill indigenous organisms and subsequently stored at 4 °C until use. 

Brakel and Ijzer have a moderate and a high AVS content, respectively, and a low to 

moderate organic carbon content. Sediment characteristics are provided in Table 1.  

 

Before spiking, the sediments were cleaned by press sieving with a 0.5 cm sieve in 

deaerated (<0.2 mg O2/L) overlying water from the site of origin. Cleaned sediments 

were stored at 4°C for 48h sedimentation, after which the overlying water was carefully 

poured-off and spiking was started. Ni was added as a NiCl2-solution (Merck) in 
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deaerated (< 0.2 mg/L O2) deionised water, which was thoroughly manually mixed with 

the sediments in airtight sealed plastic bags. Mean measured test concentrations of Ni in 

the spiked sediments ranged from 127 to 1458 mg/kg dry sediment (Brakel) and from 

514 to 3847 mg/kg dry sediment (Ijzer) (Table2). After spiking with Ni, sediments were 

placed into glass test vessels and were stabilized/equilibrated for 70 days before test 

initiation (Simpson et al., 2004). According to Simpson et al. (2004), equilibration of 

Ni-spiked sediments occurs within 30-70 days. In natural sediments, AVS consists 

largely of iron sulfides (Lee J.S. et al., 2000). When the spiked Ni
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2+ binds with AVS, 

Fe2+ is released from the Fe(II)S phase. Fe(II) can be lost by diffusion to the oxic layers, 

where it can be oxidized to solid Fe-hydroxide precipitates. After 43 days for the Brakel 

sediments and after 58 days for the Ijzer sediments, precipitated Fe(OOH) was removed 

by manually scraping it off the top layer. This was done to prevent toxicity due to 

elevated dissolved Fe in the pore water and overlying water (Gonzalez, 1996) and to 

prevent artefacts during the determination of SEM and AVS (Simpson et al., 1998). 

 

At test initiation and termination, samples were taken for determination of dry wt, 

%OC, total Ni concentration (NiT), AVS and SEMNi. Overlying water was sampled 

about 1 cm above the sediment surface to assess dissolved Ni, pH, ammonia, hardness, 

conductivity and dissolved organic carbon (DOC) (Table 3). Pore water was collected at 

each cm depth by means of inert passive pore water samplers with polyether sulfon 

membranes, so called mini-peepers (Doig and Liber, 2000). In each chamber, dissolved 

Ni, DOC, pH and redox potential were measured. Sediment dry weight is defined as the 

difference between wet and dry sediment (dried 72h at 60°C). Organic carbon content 

was determined by loss on ignition (Egeler et al., 2005). AVS and SEMNi were 

determined according to the modified diffusion method (Leonard et al., 1996) (5 g 
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sediment extracted for 1 hour in 60 mL of 1N HCl). Samples were taken with a core (2 

cm diameter) and divided into 1 cm sediment layers. Cores were taken from a replicate 

test vessel with overlying water present and subsections of 1 cm were immediately 

(within 5 seconds) inserted into the diffusion systems, to prevent oxidation and loss of 

AVS. Sediment destruction for total metal content was done by acid microwave 

digestion. Ni was analyzed using flame AAS (Spectra AA 100-Varian) and/or a graphite 

furnace AAS (Zeeman, SpectrAA300-Varian). The detection limit of the former is 8.7 

µg Ni/L. For the lower nickel concentrations, the furnace was used with a detection 

limit which ranged between 2 and 3.4 µg Ni/L.  

 

Test designs 

 

Lumbriculus variegatus is an ecologically relevant oligochaete, occurring throughout 

Europe and the United States (Spencer, 1980). It is an epibenthic/benthic organism 

subject to contaminant exposure via all routes of concern, including ingestion of 

sediment particles (Phipps et al., 1993). The test was based on a proposed draft OECD 

test guideline (Egeler et al., 2005). Organisms were from an in-house culture, with 

parental organisms provided by Blades Biological LTD (United Kingdom). Biomass per 

replicate of ten organisms was evaluated as a chronic endpoint integrating growth and 

survival. L. variegatus reproduces parthenogenetically by fragmentation. Therefore 

survival sensu stricto cannot be measured by counting the number of organisms at the 

end of the test. Overlying water was a medium hard reconstituted water composed of 

the following salts diluted in deionised water: 4 mg/L KCl, 123 mg/L MgSO4.7H2O, 96 

mg/L NaHCO3 and 6 g/L CaSO4 (USEPA, 1985). Sixty to 70 % of the overlying water 

was renewed twice a week. The temperature was 23+/- 2 °C and a 16:8 hours light:dark 
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regime was applied. Ten adult organisms with complete regeneration of tail or head were 

added per replicate jar with 400 g wet sediment and 250 mL overlying water. 

Organisms were fed ground Tetramin
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TM fish flakes (200 µg per organism per day). Five 

replicates per concentration were used for biological endpoints, whereas two replicates 

were used to determine physico-chemical sediment properties. Tests were terminated 

after 28 days. 

 

Data treatment 

 

Concentration - effect curves and EC50s were obtained using the logistic model. 

Parameter estimates were found by fitting the model to the observed data with a non-

linear least squares estimation according to the Levenberg-Marquardt algorithm 

(Levenberg, 1944; Marquardt, 1963). Lowest observed effect concentrations (LOECs) 

were based on significant differences (p< 0.05) of mean biomass between Ni treatments 

and control treatments, determined using the Mann-Whitney U test, adjusted for ties. 

All calculations are based on measured Ni concentrations. T-tests were performed on 

the residuals of fitted data for comparison of relationships between biomass and 

concentration after checking for normality with Kolmogorov-Smirnov goodness-of-fit 

test and for homogeneity of variances with Levene’s test. All significance levels were 

set at p = 0.05. Statistics were performed using Statistica 6.0 software (Statsoft, Tulsa, 

OK, USA). Speciation calculations were performed with the Windermere Humic 

Aqueous Model (WHAM) VI version 6.0.8 (Natural Environment Research Council, 

UK) (Tipping, 1998) or with the Biotic Ligand Model (BLM) version 2.1.2 (Hydroqual, 

Mahwah, New Jersey), which incorporates WHAM V and with which BLM 

calculations were performed. 
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Results and discussion 

In comparison with AVS concentrations in different natural sediments reported in 

literature (van den Hoop et al., 1997; van den Berg et al., 1998; van den Berg et al., 

2001), the sediments tested in this study can be regarded as having a medium and high 

AVS content. The increase in [AVS] at t0 from the top cm to the 2-3 cm sediment 

section, i.e. from 3.5 µmol/g dry sediment to 13.5 µmol/g dry sediment in Brakel and 

from 42.1 µmol/g dry sediment to 118.2 µmol/g dry sediment in Ijzer, can be 

considered as representative for the AVS stratification observed in situ (van den Berg et 

al., 1998; van den Berg et al., 2001). 

 

The LOECs expressed as [SEM-AVS] in the different sediment layers are given in 

Table 4. In the bulk (whole) core of the IJzer sediment [SEM-AVS]LOEC,bulk is < 0. This 

means that a significant toxic effect was observed, although the concept predicts that no 

toxicity is expected at [SEM-AVS] < 0. [SEM-AVS] < 0 measured on the bulk sediment 

basis does not predict the absence of chronic toxicity. However, when the surface layer 

of the sediments is considered (0-1 cm), [SEM-AVS]LOEC,surface > 0, confirming the 

concept. Following the SEM-AVS concept, this may suggest that the surface layer of 

the sediment contributes more to the observed toxicity than the deeper sediment layers 

when [SEM-AVS] < 0 in the deeper layers. Due to oxidation of AVS, more non-sulfide 

bound Ni will be present at the surface, resulting in the positive [SEM-AVS] values, as 

observed for other metals by other authors (DeWitt et al., 1996; Liber et al., 1996). 

Negative values for [SEM-AVS]surface were only found at lower Ni concentrations in 

both sediments, where no significant toxic effect was observed. The use of the SEM-

AVS concept for risk assessment procedures or for determining sediment quality criteria 
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should preferentially consider surface layer-based analyses as an alternative to bulk 

sample analyses (e.g. 10 cm, (van den Hoop et al., 1997)). Obviously, the potential 

contribution to toxicity from nickel in the overlying water should not be disregarded 

either in risk assessment (see also further). 

 

In this study, no effect was observed at [SEM-AVS]surface < 0. Lee et al.(Lee B.G., 

Griscom S.B. et al., 2000; Lee B.G., Lee J.S. et al., 2000) did observe accumulation of 

metals in clams and marine polychaetes at [SEM-AVS] < 0, explaining this by dietary 

metal uptake from ingested sediments being the dominant exposure route. These authors 

assumed, but did not demonstrate, that dietary exposure as measured by 

bioaccumulation is at least generally related to chronic toxicity (Lee B.G., Griscom S.B. 

et al., 2000; Lee B.G., Lee J.S. et al., 2000). Possibly, bioaccumulation from the dietary 

route at [SEM-AVS] < 0 in our study was small enough not to cause significant toxicity.  

 

To investigate the utility of [SEM-AVS]/fOC as a measure of toxicologically available 

Ni, the biomass data of both Brakel and Ijzer sediments were pooled and their 

relationship with [SEM-AVS]/fOC was analyzed. Negative values of [SEM-AVS]/fOC 

were omitted, following the concept that no toxicity occurs when [SEM-AVS] < 0, as 

demonstrated with the positive [SEM-AVS]LOEC,surface. The effect on biomass of L. 

variegatus as a function of [SEM-AVS]/fOC in the surface layer, [SEM-AVS]/fOC, surface, 

showed a similar trend in Brakel and Ijzer sediments. Using the positive values of 

[SEM-AVS]/fOC in the surface layer (0–1 cm) of the sediments, one concentration-effect 

curve can be fit to the pooled data of both sediments (Fig. 1a), with the mean of the 

residuals of both sediments not significantly differing (t-test, p = 0.14). This indicates 

that [SEM-AVS]/fOC, or the equivalent (Ni2+) in the pore water, is indeed a good 
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measure for the toxicologically available Ni. However, using the positive values of 

[SEM-AVS]/f
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OC in the deeper layers (1-2 cm and 2-3 cm), also one concentration-effect 

curve can be fit to the pooled data of both sediments, although only one positive value 

of [SEM-AVS]/fOC remains for Ijzer (data not shown). This raises the question whether 

all layers contribute equally to Ni toxicity when there is a positive [SEM-AVS]/fOC. If 

this is the case, the organisms would be exposed to an average [SEM-AVS]/fOC over the 

entire sediment depth. Those averages were calculated for both sediments, with negative 

values set to zero, following the concept that this cannot elicit a toxic effect. One 

concentration-effect curve can be fitted to the pooled data (Fig. 1b), also with the means 

of the residuals for both sediments not significantly differing (t-test, p = 0.89). The fit is 

similar (R² = 0.453) to the fit in Fig. 1a in which surface layer data only are represented 

(R² = 0.402), indicating that L. variegatus may also be exposed to the deeper layers with 

lower [SEM-AVS]/fOC. During the test, the organisms were observed to be mainly 

burrowed in the sediment, down to varying depths of maximum 3 cm.  

 

The difference between the EC50s for biomass in both sediments is reduced from a 

factor 2.9 when expressed as total Ni in the bulk sediment (µg/ g dry sediment) to a 

factor 1.6 when expressed as [SEM-AVS]/fOC in the surface layer. According to a t-test 

comparing the EC50s in both sediments, the factor 2.9 difference is highly significant (p 

= 0.00001), while the factor 1.6 difference is not significant (p = 0.51). Thus, the same 

intensity of toxic effect (50% reduction of growth) is observed at not significantly 

differing concentrations of [SEM-AVS]/fOC in two different sediments. This suggests 

again that toxicity to L. variegatus relates to [SEM-AVS]/fOC or free Ni2+ in the pore 

water. These results support the use of [SEM-AVS]/fOC as a predictor of sediment 

toxicity.  
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The concentration of [SEM-AVS]/fOC determines the free [Ni2+] in the pore water (Di 

Toro et al., 2005). Using the dissolved [Ni] in the pore water of the surface layer of the 

sediments, one concentration-response curve can be fitted to the pooled data of the 

Brakel and Ijzer sediments (Fig. 1c). However, this fit was not as good as the one 

obtained with [SEM-AVS]/fOC: there was a significant difference between the residuals 

of both sediments (t-test, p = 0.02). This may be explained by different ratios of 

dissolved [Ni] and free (Ni2+) in the pore water in both sediments, due to different pore 

water characteristics.  

 

According to the SEM-AVS concept, due to the small solubility product constants of 

metal sulfides, sediments with an excess of AVS are expected to have very low metal 

activity in the pore water (Berry et al., 1996). However, in this study rather high Ni 

concentrations were found in the pore water of sediment layers in which [SEM – AVS] 

was smaller than zero . For instance, in the 2-3 cm horizon of Ijzer, [SEM-AVS] = -14.5 

µmol/g, while [Ni]PW = 1221 µg/L. This is consistent with Gonzalez (1996)and Doig 

and Liber (2006), who also observed high [Ni]PW at SEM/AVS ratios smaller than one. 

One possible explanation could be that small colloidal NiS particles passed through the 

0.45 µm peeper membrane and were measured as “dissolved” Ni in the pore water 

(Leonard et al., 1999). Another possibility could be that nickel polysulfide complexes or 

nickel bisulfide (NiHS+) complexes, which are soluble and do not react with solid FeS 

to form insoluble NiS, were present (Doig and Liber, 2006). A third possibility would 

be that the system is not in equilibrium yet, even after the 70 days equilibration period 

as recommended by Simpson et al. (2004). This last option seems less likely because of 

the visible FeOOH precipitate that formed during the equilibration time as described 
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above, indicating the replacement of Fe by Ni in the FeS. This precipitate did not form 

again after it was removed, suggesting that the formation of NiS has ended and 

equilibrium is achieved.  

 

The recently proposed sediment-biotic ligand model (sBLM) (Di Toro et al., 2005) 

predicts the toxicity of sediments based on [SEM-AVS]/fOC, assuming that organic 

carbon and AVS are the only relevant metal-partitioning phases in sediments. The 

LOECs expressed as [SEM-AVS]/fOC, surface are 122 µmol/g OC and 495 µmol/g OC for 

Brakel and Ijzer, respectively. These results corroborate the observation that the onset of 

toxicity occurs at [SEM-AVS]/fOC ≈ 100 µmol/g OC. This is an empirical observation 

by Di Toro et al. (2005) based on a series of sediment toxicity data from acute tests with 

different metals, mainly with marine amphipods and from chronic tests with Cd and Zn, 

where effect/no effect was considered as a measure of toxicity in colonization or long 

term single-species studies. This observation was also made by Burton et al. (2005)for 

Zn-toxicity in colonization studies with sediments in the field. 

 

Specifically for Ni, Di Toro et al. (2005) have, with the sBLM, calculated critical values 

of [SEM-AVS]/fOC for a range of water types with varying pH, based on the acute 

Daphnia critical gill-Ni accumulation. The chronic LOECs in our study, where the 

average pH(surface layer) was 7.6 and 7.1 for Brakel and Ijzer respectively, are lower than 

the critical acute Ni concentrations (LC50) of 642 - 1057 µmol/g OC, calculated with the 

sBLM, in a standard freshwater at pH 7.0 – 8.0 (Di Toro et al., 2005). Thus, our results 

do not confirm the sBLM as opposed to the studies cited by Di Toro et al. (2005) in 

which no chronic effects are observed under the lowest calculated (acute) critical value 

of [SEM-AVS]/fOC. This might be due to the fact that the chronic results from these 
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study with Ni and the freshwater organism L. variegatus are lower than the acute results 

on which Di Toro et al. based their critical values, and/or due to the fact that the 

Daphnia magna BLM is not applicable to Lumbriculus variegatus due to different 

sensitivities of both organisms. However, Lumbriculidae are generally less sensitive to 

metals than Daphnia magna (Von der Ohe and Liess, 2004), and as such one would 

expect the LOEC to be higher than the sBLM-predicted critical [SEM-AVS]/f
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OC. A 

critical accumulation was calculated based on the 96 h LC50 for L. variegatus reported 

by Schubauer-Berigan et al. (1993). Using this new parameter and the average measured 

pore water chemistry, the sBLM calculated values of critical [SEM-AVS]/fOC are 2060 

µmol/g OC and 1780 µmol/g OC at a pH of 7.6 (Brakel) and 7.1 (Ijzer), respectively, 

which is indeed larger than the values based on Daphnia magna sensitivity (Di Toro et 

al., 2005). Knowing that the acute to chronic ratio for Ni is about 30 for Daphnia magna 

(Hunt et al., 2002), it is more likely that the difference between acute and chronic 

sensitivity is the major cause of the LOECs being lower than the sBLM-predicted 

critical [SEM-AVS]/fOC. The sBLM as applied by Di Toro et al. (2005), does not work 

for our chronic toxicity data of L. variegatus biomass. The acute Daphnia magna BLM 

underestimates Ni toxicity in this case and further evaluation of the sBLM for chronic 

endpoints will be necessary. It is possible, however, that elevated overlying water 

concentrations at the LOECs in our experiments have a confounding effect on the 

interpretation of [SEM-AVS]/fOC, as explained below. This can be another explanation 

for the observation of LOECs expressed as [SEM-AVS]/fOC below model predicted 

critical values. 

 

This discussion focused on the [SEM-AVS]/fOC or Ni2+ in the pore water of the 

sediments as exposure route for Ni toxicity to L. variegatus. However, it should be 
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noted that the Ni concentrations in the overlying water of the tested sediments were 

elevated in the higher treatments, e.g. mean overlying water concentrations at the LOEC 

of 248 µg/L Ni for the Brakel treatment with 544 mg Ni/kg dry wt (mean) and 1135 

µg/L Ni for the Ijzer treatment with 2234 mg Ni/kg dry wt (mean) (Table 2). Ni
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349 

350 

351 

352 

353 

354 

355 

356 

357 

358 

359 

360 

2+ 

activity in the overlying water, (Ni2+)OW, was calculated with two methods. Firstly, 

speciation was calculated with WHAM VI, with log KMA(Ni)=1.75 and assuming that 

DOC consists of 40% active fulvic acid, as the latter was shown to yield a good fit 

between observed and measured free Ni2+ in natural surface waters (Van Laer et al., 

2006). Secondly, speciation calculations were performed following Di Toro et al. 

(2005), using the BLM software, with the default pKNi-HA = 2.7 and 1.4 for humic and 

fulvic acids respectively and assuming that DOC consists of 84% humic acid and 16% 

fulvic acid. To investigate the possibility of exposure to Ni via the overlying water, a 

concentration-effect curve was fitted to the pooled data of (Ni2+)OW in the overlying 

water of Brakel and Ijzer sediments (Fig. 2). Only concentrations with a positive [SEM-

AVS]/fOC, i.e. concentrations where a significant effect was observed, were considered. 

This yields a good fit with no significant difference between the residuals of both 

sediments (t-test, p = 0.11 and 0.10 for WHAM VI and BLM speciation respectively). 

The EC50 as (Ni2+) in the overlying water is 9.6 µmol/L (95% confidence interval of 6.5 

to 14.1 µmol/L) and 4.2 µmol/L (95% confidence interval of 2.3 to 7.7 µmol/L) for the 

WHAM VI and BLM speciation calculations, respectively. 

 

The Ni activity in the overlying water is an equally good predictor of toxicity as [SEM-

AVS]/fOC
. Thus, it cannot be excluded that Ni in the overlying water is an important part 

of the toxicologically available Ni in our experiments.  

 

 16



The (Ni2+)OW as calculated with WHAM VI correlated significantly with [SEM-

AVS]/f
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384 

385 

OC in the surface layer (R = 0.96, p = 0.008), but not significantly (R = 0.84, p = 

0.08) with the averaged [SEM-AVS]/fOC over depth as described above (with negative 

[SEM-AVS]/fOC set to zero). Similar results were found for (Ni2+)OW as calculated with 

the BLM. This is not surprising, since the Ni in the overlying water originates from a 

flux from the sediment via the pore water in the surface layer to the overlying water. So 

although the results of this study do not allow to distinguish (Ni2+)OW from (Ni2+)PW 

(Ni2+ activity in the pore water) as the exposure route of Ni for L. variegatus, it can be 

concluded that in these tests, either directly (via pore water) or indirectly (via overlying 

water), (Ni2+)PW or the equivalent [SEM-AVS]/fOC determines the toxicologically 

available Ni for L. variegatus.  

 

In historically contaminated sediments in the field, pore water concentrations are likely 

to be higher than overlying water concentrations, due to higher dilution factors than 

those occurring in the routinely used laboratory test designs: i.e. static renewal. Also, 

the proportion of nickel in the solid phase will be higher in natural sediments, as nickel 

does not ordinarily enter sediments in soluble forms, as was the case with this study. 

Therefore [SEM-AVS]/fOC is suggested as a measure of bioavailable Ni for risk 

assessment procedures, provided that overlying water (Ni2+) is measured and 

sufficiently low. More research is needed to establish the relative importance of pore 

water and overlying water as exposure routes for Ni to L. variegatus. Care should be 

taken in laboratory experiments with high Ni concentrations in sediment, if the purpose 

is to test the toxicity of nickel associated with sediment phases (i.e., particles and pore 

water) and not of the overlying water.  
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 Table 1 – Sediment characteristics of Brakel and Ijzer sediments: [AVS] in the control 
treatments at t0 (test initiation) per horizontal layer under the surface, average 
mass fraction of organic carbon in the tested sediments (fOC) and particle size 
distribution. 

 
 

[AVS] (mmol/kg dry wt) 
Sediment 

0-1 cm 1-2 cm 2-3 cm 
foc % sand % silt % clay 

Brakel 3.5 9.9 13.5 0.0221 62.9 24.5 12.7 

Ijzer 42.1 104.3 118.0 0.0395 23.9 46.4 29.6 



Table 2: Measured concentrations of total Ni in the sediment, [Ni]OW (dissolved Ni in the overlying water), [SEM-AVS] and [Ni]PW 
(dissolved Ni in the pore water) of Brakel and Ijzer sediments, at the beginning (t

550 
551 
552 
553 
554 
555 

0) and at the end (tend) of the 28 day test period, for 
the different tested concentrations, per horizontal layer when applicable and mean biomass per replicate of L. variegatus at the end 
of the test period, expressed as % of the mean biomass per replicate in the control treatments 

 
 

Brakel 
[SEM-AVS] (µmol/g dry wt) [Ni]PW (µg/L) Total Ni 

(mg/kg dry 
wt) 

[Ni]OW (µg/L) 
0-1 cm 1-2 cm 2-3 cm 0-1 cm 1-2 cm 2-3 cm 

Biomass 
(% of 

control) 
Treat-
ment 

t0 tend t0 tend t0 tend t0 tend t0 tend t0 tend t0 tend t0 tend tend

control 8 5 7 3 -3.4 -1.5 -9.9 -5.9 -13.4 -10.3 11 32 12 17 28 17 100 
C1 132 122 22 24 -2.2 -1.4 -8.3 -7.4 -12.2 -7.9 ND 128 ND 62 51 48 85.9 
C2 201 179 21 35 -4.7 -3.4 -7.9 -8.8 -8.7 -5.7 ND 385 64 100 47 126 89.1 
C3 547 540 263 233 1.8 3.6 0.9 0.9 0.9 1.0 351 1949 550 603 219 270 67.1 
C4 1075 1068 941 967 12.6 14.1 7.1 10.8 9.4 9.6 1370 ND 1542 3343 3959 ND 39.9 
C5 1544 1373 1986 2034 15.5 20.6 19.1 18.8 20.3 17.6 23000 8122 24177 7740 37474 10532 37.9 

Ijzer 

[SEM-AVS] (µmol/g dry wt) [Ni]PW (µg/L) Total Ni 
(mg/kg dry 

wt) 
[Ni]OW (µg/L) 

0-1 cm 1-2 cm 2-3 cm 0-1 cm 1-2 cm 2-3 cm 

Biomass 
(% of 

control) 
Treat-
ment 

t0 tend t0 tend t0 tend t0 tend t0 tend t0 tend t0 tend t0 tend tend

control 8 16 13 19 -42.0 -24.0 -104.2 -86.6 -118.1 -87.6 6 7 16 11 13 10 100 
C1 460 567 36 46 -39.4 -22.7 -109.7 -66.9 -111.6 -83.0 664 205 62 254 94 63 105.9 
C2 759 905 117 88 -47.1 -37.0 -109.2 -77.8 -104.2 -75.8 924 ND 146 ND 57 205 88.4 
C3 1486 1484 346 209 -13.5 3.8 -51.5 -49.6 -60.2 -48.4 985 695 1441 608 2284 499 72.1 
C4 2271 2197 1141 1128 11.9 27.1 -14.1 -16.0 -14.1 -14.5 3492 2171 4649 1124 4689 1221 54.1 
C5 3664 4031 2734 2383 31.5 49.5 9.1 27.3 20.7 23.4 10718 3412 ND 4963 ND 4847 41.8 

556  
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Table 3 – Overlying water characteristics per treatment for the Brakel and Ijzer sediment tests: pH, dissolved Ca and Mg and DOC, at the 
beginning (t

557 
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0) and at the end (tend) of the 28 day test period. 
 

Brakel 
pH [Ca] (mg/L) [Mg] (mg/L) [DOC] (mg/L) 

Treatment 
t0 tend t0 tend t0 tend t0 tend

control 8.03 7.90 36.58 39.06 11.88 14.02 1.318 1.670 

C1 7.94 7.82 33.53 32.96 9.86 13.01 1.067 4.844 

C2 8.17 7.83 33.80 34.64 10.11 12.89 1.173 1.884 

C3 7.82 7.65 27.88 26.65 8.21 11.58 1.013 2.012 

C4 7.87 7.57 29.11 25.51 8.37 11.28 1.118 2.752 

C5 7.69 7.51 30.06 24.66 8.35 11.15 1.369 1.726 

Ijzer 
pH [Ca] (mg/L) [Mg] (mg/L) [DOC] (mg/L) 

Treatment 
t0 tend t0 tend t0 tend t0 tend

control 7.70 7.99 36.29 48.29 15.952 12.877 1.067 2.403 

C1 7.89 8.03 35.95 41.59 15.23 11.776 1.228 2.032 

C2 7.63 7.77 30.85 23.13 12.631 7.899 1.226 2.547 

C3 7.40 7.63 32.84 25.26 13.91 8.343 1.539 2.471 

C4 7.43 7.42 33.33 26.33 13.586 8.37 1.345 1.934 

C5 7.40 7.37 37.70 25.26 13.479 7.965 1.424 2.23 
560 
561 
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Table 4 - LOECs for biomass/replicate of L. variegatus in Brakel and Ijzer sediments expressed as [SEM-AVS] (µmol Ni/g dry sediment) 
at different depths below the sediment surface at the beginning (t0) and at the end (tend) of the test, as well as the mean of the [SEM-
AVS]LOEC at t0 and tend 

 
 Brakel Ijzer 
 LOEC as [SEM-

AVS] at t0

LOEC as [SEM-
AVS] at tend

mean LOEC as 
[SEM-AVS]  

LOEC as [SEM-
AVS] at t0

LOEC as [SEM-
AVS] at tend

mean LOEC as 
[SEM-AVS]  

Total core, 
0-3 cm -0.4 1.5 0.6 -9.6 -7.4 -8.5 

A-horizon, 
0-1 cm 1.8 3.7 2.7 11.9 27.1 19.5 

B-horizon, 
1-2 cm 0.9 0.9 0.9 -14.1 -16.0 -15.0 

C-horizon, 
2-3 cm 0.9 1.0 0.9 -14.1 -14.5 -14.3 
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Figure 1: (a) Concentration – effect curve of biomass per replicate as a function of mean 

[SEM-AVS]/fOC in the surface layer of Brakel and Ijzer; (b) Concentration – 
effect curve of biomass per replicate as a function of mean [SEM-AVS]/fOC as 
mean of the three sediment layers (0-1, 1-2 and 2-3 cm depth) of Brakel and 
Ijzer; (c) Concentration - effect curve of biomass per replicate as a function of 
dissolved [Ni] in the pore water of the surface layer of Brakel and Ijzer at the 
end of the test 
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Figure 2: (a) Concentration-effect curve of biomass per replicate as a function of the 

mean Ni2+ activity as calculated with WHAM VI (see text) in the overlying 
water of those concentrations with positive [SEM-AVS] of Brakel and Ijzer 
sediments; (b) Concentration-effect curve of biomass per replicate as a function 
of the mean Ni2+ activity as calculated with the BLM speciation programme (see 
text) in the overlying water of those concentrations with positive [SEM-AVS] of 
Brakel and Ijzer sediments. 
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