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Abstract

This paper presents a numerical method for modelling the dynamic thermal behaviour of microelectronic structures in the frequency

domain. A boundary element method (BEM) based on a Green’s function solution is proposed for solving the 3D heat equation in

phasor notation. The method is capable of calculating the AC temperature and heat flux distributions and complex thermal impedance

for packages composed of an arbitrary number of bar-shaped components. Various types of boundary conditions, including thermal

contact resistance and convective cooling, can be taken into account. A simple benchmark case is investigated and a good convergence

towards the analytical solution is obtained. Simulation results for a thin plate under convective cooling are compared with a theoretical

model and an excellent agreement is observed. In a second example a more complicated three-layer structure is investigated. The BEM is

used to analyse the thermal behaviour if delamination of the package occurs, and a physical explanation for the results is given.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

For thermal steady-state characterization of electronic
packages, the thermal resistance Rth is commonly used. By
definition this is nothing else than the junction temperature
divided by the power dissipated in the same junction. It is
hereby assumed that the ambient air is at a zero reference
temperature, in other words the temperature difference
between junction and ambient has to be used.

Recently, the dynamic (time-dependent) characterization
of electronic packages is receiving more and more
attention. Due to the small device dimensions, thermal
phenomena are relatively fast, in contrast to most other
practical heat transfer applications. The dynamic char-
acterization is particularly interesting with respect to the
reliability of the electronic devices [1,2].

In some text books on heat transfer, a part of the chapter
‘‘conduction’’ is devoted to time dependent problems [3,4].
The transient behaviour of a circuit can be described in
e front matter r 2006 Elsevier Ltd. All rights reserved.
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terms of its thermal step or impulse response. This models
usually require a lot of data, and various attempts have
been made to make them more compact with sufficient
accuracy [5,6]. In many electronic devices (e.g. digital
circuits) however, electrical signals and hence the power
dissipation is periodical. This suggests a thermal character-
ization in the frequency domain rather than in the time
domain. The concept of thermal resistance can be easily
extended for dynamic characterization when using phasor
notation ðq=qt! joÞ. Assuming from now on that the
ambient air is at zero reference temperature, we have

ZthðjoÞ ¼
TðjoÞ
PðjoÞ

, (1)

where Zth is the thermal impedance (in K/W), T and P the
temperature and power phasor, respectively, and o ¼ 2pf

the angular frequency of the heat source (in rad/s). While
phasor notation (AC analysis) is quite common in electric
and electronic circuits, the application in the field of
thermal analysis seems rather exceptional. Book sections
tackling thermal AC behaviour are unexisting, and only a
limited number of papers is devoted to it [7–9].
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Fig. 1. Structure consisting of four bar-shaped components.
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Although the transient behaviour (e.g. the response to a
heat power step) can still be obtained if necessary using
Fourier techniques, it should be stressed here that we are
focussing on a thermal characterization directly in the
frequency domain. The main reason is that the complex
thermal impedance ZthðjoÞ is showing some interesting and
powerful properties which are not revealed in the time
domain, as will be explained in a moment. In addition, Zth

can be easily measured experimentally for microelectronic
devices.

Several BEM techniques for transient thermal analysis
have been published in the literature [10–15], however these
are using time-stepping schemes and the results are
obviously represented in the time domain. In some of the
papers [11,13] the governing boundary integral is solved in
the Laplace domain. However, the results are transformed
back to the time domain with a numerical method for
Laplace inversion using real values for the Laplace variable
s. Only one paper specifically dedicated to electronic
packages was found [12]. Again the analysis was carried
out in the time domain, for a two-dimensional instead of
three-dimensional geometry.

The thermal impedance is a complex function of the
frequency. For a graphical representation, a Nyquist plot
(i.e Im½ZthðjoÞ� versus Re½ZthðjoÞ� with o as a parameter) is
used. Such an impedance curve provides a complete
dynamic description and can hence be seen as a thermal
blueprint of the structure. Recently it has been observed
both experimentally and theoretically that the Nyquist
curve of the thermal impedance is in most cases composed
of a small number (2–5) of circular arcs [16–19]. Because of
this remarkable geometrical property only a very limited
number of parameters is necessary to describe the
impedance function with high accuracy [19]. Hence
ZthðjoÞ provides a model which is both compact and
complete, making it an interesting tool for dynamic
thermal characterization of electronic devices.

In this contribution, a method for the numerical
calculation of the thermal impedance in the frequency

domain is proposed. The electronic devices are modelled by
a number of bar shaped layers which can be placed next to
and on top of each other. Because most microelectronic
devices are produced using planar technologies (integrated
circuits, thin film resistors, . . .) the heat sources are
essentially two-dimensional. Hence the heat dissipation
can be taken into account by injecting a certain heat flux
either at the surface of one material layer or in the interface
between two layers. For the calculation of the thermal
impedance only the temperature inside the heat source is
needed. Since the source is located at a material surface the
knowledge of the temperature distribution inside the layers
is not necessary. This explains why the boundary element
method is highly attractive for this application. Both
running time and computer storage will be considerably
smaller as compared to a finite element method.

The rest of the paper is organized in the following way.
First a boundary integral for the heat conduction equation
in phasor notation is obtained (Section 2). In the next
section it is shown in detail how this equation can be solved
numerically. First a method for a single bar-shaped layer is
presented. The method is then extended for multi-layered
structures. A good agreement between numerical data and
analytic results is observed. Next, simulation results for
various package configurations are presented and discussed
(Section 4). A summary, given in Section 5, concludes the
paper.

2. Basic theory

Let us consider a structure composed of a finite number
of bar-shaped components. The different parts can be
stacked on top of each other as layers but can be in
sidealong contact as well. No proportional or structural
limitations are imposed: each component can have
different dimensions and may represent a different
material. The only assumption made is that each bar-
shaped piece is oriented along the x, y and z directions. An
example is shown in Fig. 1.
The structures just described will be used as a model for

microelectronic devices. In Fig. 1 the layers 1, 2 and 4 could
e.g. represent a semiconductor, bonding material and
ceramic substrate, respectively. Each component is de-
scribed by means of two thermal parameters, namely its
thermal conductivity k (in W/mK) and heat capacity per
volume unit Cv (in J/m3K). It is assumed that the materials
used in the structure are isotropic. In other words, k and Cv

are scalar values which are constant throughout the entire
volume of each bar-shaped layer. Since for non-linear
systems strictly speaking a thermal impedance cannot be
defined, non-linear effects such as the temperature depen-
dence of the thermal conductivity are not taken into
account.
Let us now focus on a single bar-shaped piece of

material, which e.g. may be one of the components in a
multi-layered structure. In phasor notation, the tempera-
ture distribution T (in K) is given by

kr2Tð~rÞ � joCvTð~rÞ ¼ �p, (2)

where p is the power density phasor (in W/m3) and j ¼ffiffiffiffiffiffiffi
�1
p

the imaginary unit. As mentioned before, the heat
sources in microelectronic applications can be assumed to
be located at the surface of one or more materials, hence
p � 0. Two-dimensional surface heat sources can be easily
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Fig. 2. Division of a bar-shaped component into discrete boundary

segments.
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taken into account by the boundary conditions, as will be
shown in Section 3.1. The fundamental solution of Eq. (2)
for a Dirac impulse excitation, i.e. the so-called Green’s
function, is found to be [20]:

Gð~rj~r0Þ ¼
1

4pkj~r�~r0j
exp �

ffiffiffiffiffiffiffiffiffiffiffi
joCv

k

r
j~r�~r0j

 !
, (3)

where ~r and ~r0 are the field and source point, respectively.
Using the divergence theorem (Gauss), the following
boundary integral equation is obtained:

Tð~r0Þ ¼ k

Z Z
S

Gð~rj~r0Þ
qTð~rÞ

qn
� Tð~r0Þ

qGð~rj~r0Þ

qn

� �
dS, (4)

where S is the surface of the material, i.e. the union of the
six sides of the bar. q:=qn denotes the normal derivative
with respect to a unit vector ~n perpendicular to the surface
and which is, by convention, pointing out of the material.
Due to the bar-shaped geometry and its particular
orientation, the normal vector ~n is for each of the six sides
directed either along or opposite to one of the coordinate
axes. The derivatives of the Green’s function with respect
to these directions can be calculated analytically and are
given by

dGð~rj~r0Þ

du
¼ �

u� u0

4pkj~r�~r0j3
exp �

ffiffiffiffiffiffiffiffiffiffiffi
joCv

k

r
j~r�~r0j

 !

� 1þ

ffiffiffiffiffiffiffiffiffiffiffi
joCv

k

r
j~r�~r0j

" #
. ð5Þ

The normal derivative is easily obtained by replacing uð0Þ

with xð0Þ, yð0Þ or zð0Þ and adding the appropriate sign:
qGð~rj~r0Þ=qn ¼ �dGð~rj~r0Þ=du.

3. Boundary element method

In this section an algebraic set for Eq. (4) is obtained
numerically by discretizing the boundary S of the
structure. From the set the temperature can be derived,
which eventually leads to the thermal impedance Zth.
For practical reasons and sake of simplicity, a shorter
notation for the normal derivative of the temperature will
be used:

Yð~rÞ �
qTð~rÞ

qn
. (6)

3.1. Single layer structures

First the procedure for a single bar-shaped component is
explained. The method can be further extended for
structures containing two or more layers, as described
later on in Section 3.2.

As mentioned before, the structure is oriented along the
x, y and z directions. The according dimensions of the
component are noted as size X , size Y and size Z,
respectively. The discretization of the boundary S is
presented in Fig. 2. The six sides of the bar are divided
by a grid with spacing grid X , grid Y and grid Z, leading to
a number (N in total) of rectangular segments. It is
clear that the dimensions of the component and the
heat source(s) must be integer multiples of the grid

parameters, and alignment of the source(s) with the grid
is necessary.
The centre points of the segments are noted as ~ri, with i

the segment number satisfying 1pipN, and will be
referred to as ‘‘nodes’’. It is now assumed that for each
segment the temperature T and the normal heat flux qn ¼

�kY is uniform, and equals the value obtained in the node.
Under these assumptions the evaluation of Eq. (4) in the
jth node (i.e. ~r ¼~rj) can be written as:

Tð~rjÞ ¼ Tj ¼ k
XN

i¼1

Yi � Fi;j � k
XN

i¼1

Ti �Ci;j ; j ¼ 1 . . .N,

(7)

where F and C have been introduced as short integral
notations, namely

Fi;j ¼

Z Z
Si

Gð~rj~r0jÞdS (8)

and

Ci;j ¼

Z Z
Si

qGð~rj~r0jÞ

qn
dS (9)

with Si the ith segment. The F and C integrals are, due
to the complicated form of the Green’s function and
its normal derivative, not available in closed form but
must be calculated numerically. For this purpose each
segment is split into a uniform rectangular grid, as shown
in Fig. 3.
Both horizontally and vertically K divisions are applied,

leading to K2 subsegments. It is recommended to choose
an odd value for K. This ensures that one of the
subsegments is centred around the node of the segment
which it belongs to. The latter can be important for
convergence issues and for taking the contribution of a
node to its own segment correctly into account, as will be
explained further. The integrals (8) and (9) can now be
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Fig. 3. Division of a segment into K2 subsegments for numerical

calculation of the F and C integrals (in this example K ¼ 5).
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approximated as

Fi;j �
grid U � grid V

K2

XK2

k¼1

Gð~rj;kj~r
0
iÞ, ð10Þ

Ci;j �
grid U � grid V

K2

XK2

k¼1

qGð~rj~r0Þ

qn

����
ð~rj;kj~r

0
iÞ

ð11Þ

in which~rj;k denotes the centre point of the kth subsegment
in the jth segment. U and V must be substituted by two out
of three choices ðX ;Y ;ZÞ according to the coordinates
varying over the jth segment, as illustrated in Fig. 3.

Some precautions should be taken while using Eqs. (10)
and (11), namely where i ¼ j. For those cases, a singularity
occurs in the Green’s function (3) as well as in its normal
derivative (5) for the subsegment with number
k� ¼ ðK2

þ 1Þ=2. It was hereby assumed that K is odd,
as recommended. Taking the value Gð~ri;k� j~r

0
iÞ (and

similar for qG=qn) has no mathematical nor physical
meaning; a more profound analysis is needed for integra-
tion over this particular subsegment. The method consists
of separating the Green’s function into a singular
and a regular part. For the former the integration
can be carried out analytically [21]. Further details will
be omitted here as the singular term is essentially the same
as found for electrostatic potential problems [22].
The result is that the following substitution in (10) must
be made:

grid U � grid V

K2
Gð~ri;k� j~r

0
iÞ ! ðI1 þI2Þ (12)

in which

I1 ¼ �
l

pk
ln tan

p
4
�

1

2
arctan

b

l

� �� �

�
b

pk
ln tan

p
4
�

1

2
arctan

l

b

� �� �
ð13Þ
and

I2 �
joCv

12pk2
bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

b

l

� �2
s

þ l3 arcsinh
b

l

� �0
@

1
A

þ
joCv

12pk2
lb2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

l

b

� �2
s

þ b3 arcsinh
l

b

� �0
@

1
A

� ð1þ jÞ

ffiffiffiffiffiffiffiffiffi
oCv

2k

r
bl

pk
, ð14Þ

where l and b are half of the length and width of the
subsegment:

l ¼
grid U

2K
; b ¼

grid V

2K
(15)

and arcsinhðaÞ ¼ lnðaþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

Þ. The result for the
integration of the normal derivative does not depend on
the dimensions or orientation of the (sub)segment:

Ci;i ¼ �
1

2k
; 1pipN. (16)

Let us now return to the base equation (7). This set of
equations contains only temperatures and normal deriva-
tives evaluated at the surface of material, in the form of N

node values for both T and Y. Some of these quantities,
however, are known a priori or related with each other, by
means of the boundary conditions. The values following
directly from the boundary specifications will be noted with
a ‘‘^’’. For a segment covered by a heat source for example,
we have

Ŷi ¼
pS

k
(17)

with pS the surface power density (in W/m2) of the heat
source. The total power phasor, needed in Eq. (1), is then
obviously P ¼ AS � pS with AS the total area of the heat
source. For thermal impedance calculations, the bottom of
the structure is perfectly cooled (perfect heat sink at
ambient temperature):

T̂ i ¼ 0. (18)

The remaining part of the surface is commonly assumed to
be thermally isolated (adiabatic boundary condition):

Ŷi ¼ 0. (19)

Convective cooling will not be considered at this moment,
but can be taken into account as well, as shown in Section
3.2. Any possible combination of the three types of
boundary conditions (17), (18) and (19) leads to the
conclusion that for each segment either the temperature
or its normal derivative is known a priori. Let us
now organize the numeration of the segments, which is
arbitrary anyhow, in such a way that the segments
for which Y is known are assigned the lowest segment
numbers, 1pipM. The remaining N �M segments
where T is known receive numbers M þ 1 . . .N. Eq. (7)
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Fig. 4. Cross-section of two contacting segments in a material interface.
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can now be written as

Tj ¼ k
XM
i¼1

ŶiFi;j þ k
XN

i¼Mþ1

YiFi;j � k
XM
i¼1

TiCi;j

� k
XN

i¼Mþ1

T̂ iCi;j ; j ¼ 1 . . .N. ð20Þ

This is nothing else than a linear set of N equations with N

unknowns. In matrix form:

¯̄A � X̄ ¼ B̄ with X̄ ¼ ½T1T2 . . .TMYMþ1YMþ2 . . .YN �
T

(21)

in which the superscript T denotes transposition. The
elements for the ¯̄A and B̄ matrix can be easily identified in
terms of the F and C integrals and the boundary
conditions T̂ and Ŷ. The set (21) is solved using standard
procedures such as Gaussian elimination, after which the
unknown temperatures and heat fluxes are obtained. The
thermal impedance is then derived from the temperatures
in the heat source, which however are normally not
uniform. Typically, the average source temperature is used,
as this is more representative for experimental measure-
ments [23]. By repeating the entire procedure for various
frequencies over a wide range, a Nyquist plot of the
thermal impedance is obtained.

3.2. Multilayer structures

Let us now consider a more general package, consisting of
NLX2 rectangular layers. These components must be
properly orientated along the x, y and z directions as
illustrated in Fig. 1. Each component is divided into a
number of boundary elements, as described before. How-
ever, the grid parameters should be kept constant through-
out the entire structure, and the components must be aligned
with respect to the chosen grid as well. Both conditions are
needed to make sure that the segments in the material
interfaces are well in contact and overlap completely.

The surface temperature distribution can be obtained in
the following way. Eq. (7) is obviously still holding, and
can be applied for each component separately:

T
ðnLÞ

j ¼ kðnLÞ
XN ðnL Þ

i¼1

YðnLÞ

i � FðnLÞ

i;j � kðnLÞ
XN ðnL Þ

i¼1

T
ðnLÞ

i �CðnLÞ

i;j ,

j ¼ 1 . . .N ðnLÞ ð22Þ

in which the superscript ðnLÞ denotes ‘‘evaluated in the nLth
component’’, with 1pnLpNL. It should be noted that the
simple rule obtained for single-component structures (for
each segment either T or Y follows from the boundary
conditions) is no longer valid. Namely, for the segments in
the material interfaces, both temperature and normal
derivative are unknown. Hence the total number of
unknowns in Eq. (22) exceeds N ðnLÞ. In addition, the NL

systems (22) are not independent but coupled with each
other due to the material interfaces. The extra equations
which are needed for a solution of the heat equation are
provided by the boundary equations in the interfaces, as
will be demonstrated shortly. As a convention for segments
which are in thermal contact, T and Y will, respectively, be
taken as the ‘‘primary’’ and ‘‘extra’’ unknown. For regions
where a convective cooling is applied, the temperature and
heat flux are not independent as well, but are related
through the heat transfer coefficient h:

hT þ kY ¼ 0. (23)

For such segments clearly both T and Y are unknowns,
hence the convection zones can be treated in the same way
as the material interfaces.
Compared to the simple situation of Section 3.1, an

interface segment gives rise to an extra unknown. A couple
of contacting segments is symbolically represented in
Fig. 4. Due to the convention for the normal vector ~n,
the heat fluxes qn ¼ �kY are pointing out of the material.
Each such couple of contacting segments introduces two
extra unknown Y variables into the system, hence two
additional equations per couple are needed in order to
obtain a solution for the thermal distribution. These
equations are provided by the boundary conditions in the
interface, one for the temperature and one for the heat flux.
The most common situations will now be discussed.

Perfect thermal contact: Obviously, in this case the
temperature must be continuous:

TA � TB ¼ 0 (24)

while the principle of conservation of energy leads to

kAYA þ kBYB ¼ 0. (25)

Imperfect thermal contact: Due to material impurities,
roughness of the surfaces, etc., material interfaces are in
general not thermally perfect. The small gap between the
two materials will induce a temperature drop . An accurate
description of this phenomenon is an entire study on its
own [24] and will not be done here. The simplest way to
model an imperfect thermal contact is using a thermal
contact resistance rc (in Wm2/K). It relates the temperature
drop and the heat flux passing through the interface as a
proportional factor:

TA � TB þ kA � rc �YA ¼ 0. (26)

As no energy can be stored in the interface, the Y variables
are still related by Eq. (25). Interpretation of the thermal
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contact resistance is simplified by considering its reciprocal
form r�1c , which can be easily identified as the thermal
conductance per area unit of the interface.

Interface heat source: For a source between two
materials, the heat fluxes injected into the layers must in
total equal the dissipated power density, hence

kAYA þ kBYB ¼ pS. (27)

After insertion of the boundary conditions, the algebraic
set for the entire structure can be completed and solved
using a representation like Eq. (21).

3.3. Convergence check

A simple structure, for which the thermal impedance is
available in analytic form, will now be investigated. This
allows quantization of the convergence behaviour of the
BEM simulation by analysing the error for various grid
sizes. Concretely, let us consider a substrate, with thickness
H and cross-section area A, which is completely covered by
a uniform heat source. The bottom surface is perfectly
cooled, while the side surfaces are thermally isolated. Due
to the particular geometry and boundary conditions, the
temperature and heat flow are one-dimensional. The
thermal impedance can be easily calculated and is found
to be

Zth ¼ Z0
tanhð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jo=o0

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

jo=o0

p , (28)

where

Z0 ¼
H

kS
; o0 ¼

k

CvH2
. (29)

As an example we will use a silicon substrate
(k ¼ 160W=mK, Cv ¼ 1:784	 106 J=m3K) with a cubic
shape ðsize X ¼ size Y ¼ size Z ¼ 100mmÞ. It should be
noted that this particular choice does not limit the
applicability of further conclusions. According to (28) the
shape of the Nyquist plot remains unaltered for different
substrate dimensions or another material, only the
impedance and frequency scales have to be adjusted (see
Eq. (29)). The result for BEM simulation with a
discretization grid X ¼ grid Y ¼ grid Z ¼ 10mm ðN ¼
600Þ and K ¼ 25 is shown in Fig. 5.
Fig. 5. Calculated thermal impedance for silicon cube.
A good agreement with the analytical solution (28) is
observed. The largest discrepancy in absolute terms occurs
for low frequencies, however, the relative error for the
thermal resistance Rth ¼ Zthðo ¼ 0Þ only amounts to 0.9%.
In Fig. 5 three points are marked, at relatively ‘‘low’’
ðf ¼ 100HzÞ, ‘‘middle’’ ðf ¼ 4 kHzÞ and ‘‘high’’ ðf ¼
100 kHzÞ frequencies. The impedance for these frequencies
is calculated for various square discretizations ðgrid X ¼

grid Y ¼ grid ZÞ with K ¼ 5. The relative error for both
real and imaginary parts, i.e. jReðZsimÞ �ReðZanalÞ=
ReðZanalÞj and jImðZsimÞ � ImðZanalÞ=ImðZanalÞj, respec-
tively, is presented in Fig. 6.
The simulation results are clearly converging towards the

analytical values as the grid parameters decrease. As
indicated in Fig. 6 the error curves can be fitted quite well
to a straight line, i.e. a relation of the form
logðerrorÞ ¼ a � logðgridÞ þ b, where it is noted that a41.
In other words the following tendency is observed:

rel: error / grida
¼) rel: error /

1ffiffiffiffiffiffi
Na
p . (30)

With grid ¼ 5mm an error less than 2% is obtained, even
for the high frequencies.
4. Numerical experiments

4.1. Example 1: thin plate with convective cooling

Let us consider a plate with length a (z-direction), width
b (x-direction) and thickness ts5a; b (y-direction) . An
example is given in Fig. 7.
One of the sides of the plate is completely covered by a

uniform heat source dissipating a power P. The plate is
subject to a convective cooling, characterized by the heat
transfer coefficient h to the ambient air. It has been proven
earlier that if the thickness ts is sufficiently small, i.e.
h � ts=k51, the temperature is almost uniform in the y

direction [3, pp. 52–69]. For such thin plates, the convective
heat transfer at the small sides can be neglected compared
Fig. 6. Relative error for ReðZthÞ and ImðZthÞ for three frequencies as

function of the discretization grid size (double logarithmic scale).
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to the heat removed from the front and rear sides, and
adiabatic boundary condition can be used instead. Using
these approximations, the one-dimensional temperature
distribution satisfies

d2T

dz2
�

1

L2
1þ

jo
o0

� �
T ¼ 0, (31)

in which

L ¼

ffiffiffiffiffiffi
kts

2h

r
and o0 ¼

2h

Cvts

(32)

are a characteristic length and angular frequency, respec-
tively. The heat source implies

kbts

dT

dz

����
z¼a

¼ P (33)

while neglecting the convective heat transfer at the other
side leads to dT=dzjz¼0 ¼ 0. With these two boundary
conditions Eq. (31) can be solved. Finally, the thermal
impedance of the plate is then derived from the source
temperature Tðz ¼ aÞ:

Zth ¼
L

kbts

cotanhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jo=o0

p
� a=LÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jo=o0

p . (34)
Fig. 7. Heat source on thin aluminium plate with double-sided convective

cooling.

Fig. 8. Calculated thermal impedance fo
This analytical solution can now be used to check
numerical results obtained by BEM simulation. As an
example the aluminium structure shown in Fig. 7 is
analysed for various cooling conditions (h ¼ 10; 20 and
50W=m2K). The discretization of the plate for the
numerical calculations was chosen as follows:
grid X ¼ 6mm, grid Y ¼ 3mm, grid Z ¼ 2mm and
K ¼ 25. This leads to 600 segments and 510 additional
unknowns are needed for the convection zones. The
simulation results are presented in Fig. 8.
One can see clearly that the numerical data correspond

almost perfectly with the theoretical model. In addition, the
high frequency part of the three impedance curves coincide,
thus it is not influenced by the heat transfer coefficient h.
This leads to the conclusion that convective cooling is only
important for relatively slow phenomena.

4.2. Example 2: three-layer package with delamination

For the second numerical study, we investigate a typical
three-layer electronic package. A chip (semiconductor die)
is attached to a ceramic substrate by means of an adhesive
(bonding layer). An example of this configuration is shown
in Fig. 9. Due to bad chip assembly, aging processes,
thermomechanical stress etc. the adhesive layer can start to
detach from the substrate [25]. This process, often denoted
as ‘‘delamination’’, affects the heat transfer capabilities of
the structure and can increase its thermal resistance
significantly. The delamination will be modelled by
introducing a thermal contact resistance in the adhesive/
substrate interface (ASI).
Let us now assume that a thin air layer is formed

between the two materials in the delaminated zone, and
that heat can traverse this layer only by conduction. The
thermal contact resistance is then easily identified in terms
of the thickness and thermal conductivity of the air film:

rc ¼
dair

kair

. (35)

Taking a 500 nm thick layer and using kair ¼ 0:025 leads
to rc ¼ 2	 10�5 Km2=W, which is used for the BEM
r various heat transfer coefficients.
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Fig. 9. Package used for delamination simulation.

Fig. 10. Calculated thermal impedance of three-layered package for

various delamination stages. The inset shows a closer look on the high

frequency part.
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simulation of the package. Apart from the ‘‘normal’’
package (rc ¼ 0, perfect thermal contact) several delamina-
tion stages are considered. The thermal contact resistance
is applied over the entire width (y-direction) of the ASI, but
for various lengths namely 50, 150 and 250mm (see Fig. 9).
This corresponds with 13%, 50% and 83% delamination,
respectively. For the simulations, we used grid X ¼

grid Y ¼ 50mm, grid Z ¼ 50mm for silicon and Al2O3,
grid Z ¼ 25mm for the adhesive, and K ¼ 15. Different
grid Z parameters are possible here because there are no
material interfaces at the sides of the layers, only at the top
and bottom. The resulting thermal impedance curves are
presented in Fig. 10.

The shape of the Nyquist curves is almost perfectly
circular. A closer look on the high frequency behaviour
reveals a second, much smaller circular arc. The impact of
the delamination is clearly visible: for the highly delami-
nated package the thermal resistance increased from 315 to
528K/W ðþ68%Þ. The delamination is visible throughout
the entire low frequency arc in the thermal impedance plot.
The high frequency part, however, is not influenced by the
thermal contact resistance: the small circular arc is
the same for each case. This can be explained by taking
the decay of the AC temperature distribution into account.
From Eq. (3) it can be seen that the magnitude of the
Green’s function is approximately decaying in space with a
characteristic length l0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k=oCv

p
/ o�1=2. One can

therefore expect that for sufficiently high frequencies only
the upper part of the silicon (regions closest to the source)
is considerably heated. The rest of the structure is then
almost at ambient temperature. Hence the parameters of
these parts, among which the thermal contact resistance of
the ASI, hardly play a role in the thermal behaviour.
It is also possible to monitor the heat transfer through

the delaminating interface. The magnitudes of the heat flux
and temperature are studied along the centre line x0 (see
Fig. 9). The simulation is carried out for steady-state
conditions (f ¼ 0, DC) and f ¼ 100Hz (points marked in
Fig. 10). Now grid X ¼ 12:5mm is used in order to increase
the resolution along the interface centre line. To facilitate
interpretation, the heat flux and temperature curves are
normalized, respectively, to the power density p of the
source and the DC source temperature Tsource ¼ P � Rth

where P ¼ 0:2W ðp ¼ 107W=m2Þ was used. The results
for the four different delamination stages are shown in
Figs. 11–14.
As expected the heat flux is almost uniform for the

‘‘normal’’ package (Fig. 11). Only the values at both sides
of the interface deviate from this general tendency. This is a
common observation for the spatial derivative of a
potential-like quantity (such as T) in BEM segments close
to the edges of the structure [26]. The temperature on the
other hand is slightly higher in the middle of the interface
because the heat source is centred above the interface and
has a smaller area (Fig. 9). When a thermal contact
resistance is applied, the delaminated zone can easily be
recognized: in this part of the interface the heat flux is
smaller and the temperature higher (Figs. 12–14). Particu-
larly noticeable is the extreme value for the heat flux in the
segment closest to the delaminated zone. A possible
explanation could be that the heat flux lines are bending
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Fig. 11. Normalized heat flux and temperature profiles in ASI for normal

package.

Fig. 12. Normalized heat flux and temperature profiles in ASI for package

with 17% delamination (shaded zone).

Fig. 13. Normalized heat flux and temperature profiles in ASI for package

with 50% delamination (shaded zone).

Fig. 14. Normalized heat flux and temperature profiles in ASI for package

with 83% delamination (shaded zone).

Fig. 15. Bending of heat flux lines leads to higher concentration next to

the delamination zone.

B. Vermeersch, G.De Mey / Engineering Analysis with Boundary Elements 31 (2007) 289–298 297
away from the interface gap: the badly conducting air film
acts as a heat transfer obstacle. This leads to a higher
concentration in the immediate neighbourhood of the
delamination zone as depicted in Fig. 15.
5. Conclusions

A numerical method for dynamic thermal characteriza-
tion of electronic packages has been proposed. The
importance of such dynamic thermal analysis, and the
representation in the frequency domain in particular, was
underlined. The complex thermal impedance ZthðjoÞ, and
more precise its Nyquist plot, was shown to be a useful and
powerful tool in this respect.
Based on the Green’s function, a boundary integral for

the heat equation (in phasor notation) was obtained. Next,
a boundary element method was presented to solve this
equation numerically in a bar-shaped component. The
method could easily be extended to multi-layer structures
which allows modelling of more complicated package
configurations. Various types of boundary conditions were
discussed. The accuracy of the method was investigated,
and a very good agreement with analytical results was
found.
Finally, two practical examples were presented. In the

first case study the dynamic thermal behaviour of a thin
plate was investigated for various convective cooling
situations. Again a nearly perfect match between the
numerical BEM results and a theoretical model was
observed. In the second example the thermal contact
resistance was used to model the delamination process of a
three-layered package. A physical explanation for the
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calculation results was given, both for the thermal
impedance and temperature and heat flux distribution in
the delaminating interface.
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[5] Székely V. On the representation of infinite-length distributed RC

one-ports. IEEE Trans Circuits Syst 1991;38(7):711–9.
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