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Abstract

A parameter study is performed for the case of two-dimensional sound propagation from a
(source) city canyon to a nearby, identical (receiver) city canyon. Focus was on sound pressure levels,
relative to the free field, in the shielded canyon. An accurate and efficient coupled FDTD-PE model
was applied, exploiting symmetry of the source and receiver canyon. With the proposed calculation
method, simulations were necessary in only half the sound propagation domain. The shielding in the
receiver canyon in case of a coherent line source was compared to the shielding by an incoherent line
source, by means of sound propagation calculations in a number of 2D cross-sections through source
and receiver. It was found that the shielding is rather insensitive to the width-height ratio of the can-
yons. The presence of diffusely reflecting façades and balconies lead to an important increase in
shielding compared to flat façades. Rigid façades yield significantly lower shielding compared to
partly reflecting façades. Effects of a moving atmosphere were modeled in detail. Shielding decreases
significantly in case of downwind sound propagation when comparing to sound propagation in a
non-moving atmosphere. Refraction is the most important effect in the latter. In case of upwind
sound propagation, turbulent scattering plays an important role and the shielding is similar to the
one of a non-moving atmosphere for the parameters used in this paper. The combination of effects,
as is shown by some examples, is in general not a simple addition of the separate effects.
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1. Introduction

Noise annoyance in urban areas is a major issue. In a city, there is a combination of a
large number of sound sources and a large number of inhabitants. Traffic noise is generally
accepted to be the major noise source. Commonly used noise reducing measures for the
latter like noise barriers are often not applicable in city centers. Well informed city plan-
ning, with knowledge of the factors that influence sound propagation in urban environ-
ments, is therefore of major importance.

Sound propagation calculations in urban areas focus mainly on sound propagation
along streets (and into side streets). Applications of ray-tracing techniques (and
improved variants thereof) are numerous. Simulations for various street geometries were
performed in [1], in order to produce look-up tables. In [2], interference effects are
included in ray-tracing calculations. The understanding of the importance of diffuse
reflection on building façades led to the development of models based on the principle
of radiosity [3,4] and models based on the linear transport equation and diffusion equa-
tion [5,6].

Based on noise annoyance surveys, it was found that easy access to a quiet place in a
noisy area reduces the percentage highly annoyed residents [7]. The preservation of silent
places in a city (like backyards) can therefore help to reduce the city noise problem [8].

The centers of large urban areas consist of a number of confined spaces, enclosed by tall
buildings. These are often called ‘‘city canyons’’. Accurate calculations of sound propaga-
tion from a source canyon (e.g. a street) towards a shielded, receiver canyon is of interest
from the viewpoint of the quiet sides. Such calculations are rather difficult, and there is a
trend to overestimate the shielding with present models [9]. Recently, the equivalent
sources method (ESM) [10] was applied with success to model sound propagation between
city canyons.

Formulations like the ESM (and the boundary element method), based essentially on
the Green�s function, fail however when the sound propagation medium is moving and/
or inhomogeneous. The applicability of these methods is limited since the effects of refrac-
tion are often important. With the ESM method it is possible to model a turbulent atmo-
sphere by accounting for the loss in coherence between the different sound paths to a single
receiver, however in a non-refracting atmosphere [11].

At present, the finite-difference time-domain method (FDTD), solving the moving-med-
ium sound propagation equations [12–14], can be considered as a complete model, taking
into account the combined effect of multiple reflections, multiple diffractions, (inhomoge-
neous) absorbing and (partly) diffusely reflecting surfaces, in combination with a moving,
non-homogeneous and turbulent atmosphere.

Scale modeling of sound propagation in a city street canyon in [15] revealed that the
combination of various noise abatement approaches is complex and cannot be predicted
by a simple addition of the individual effects. Numerical simulations with a model like
FDTD are therefore useful.

The computational resources needed for FDTD simulations are however large. In this
paper, this is (partly) overcome by using a coupled FDTD-PE (PE = parabolic equation)
model [16], which has shown to drastically reduce computing times and memory use [16].
Simulations in 3D can only be performed for (very) low frequencies because of the lack of
sufficient computational resources. It seemed therefore more interesting to use a 2D grid,
while considering all relevant frequencies present in traffic noise. The source canyon and
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receiver canyon are assumed to be geometrical identical in this paper. Calculations times
are further reduced by exploiting this symmetry.

This paper is outlined as follows. In a first part, the computational methods are dis-
cussed briefly. It is indicated how the geometrical symmetry of the source and receiver can-
yons is exploited. In a second part, a parameter study is performed. A standard
configuration is defined for comparison. The approach to reduce computing times and
memory use in this paper is checked with FDTD calculations applied to the full compu-
tational domain. Focus is on sound pressure levels, relative to the free field (indicated by
relative sound pressure levels), in the shielded canyon. The shielding of a coherent line
source is compared to the shielding of an incoherent line source. The influence of the
width–height ratio of the canyons and the degree of reflection near the walls is investi-
gated. Calculations with completely flat façades are compared to calculations with partly
diffusely reflecting façades. The influence of different forms of balconies, as well as the
influence of a moving atmosphere, is studied both in downwind and upwind conditions.
In a next section, the relative effect of some parameters in case of symmetric and asymmet-
ric source–receiver locations is compared. In a last part, some simulations are performed
with combinations of parameters.

2. Calculation method

2.1. General

For the parameter study, the two-dimensional idealized configuration as shown in Fig. 1
is used. The FDTD-PE model [16] is well suited for the calculations in the present configu-
ration. In the complex source region (source canyon), FDTD is applied. PE is used to sim-
ulate sound propagation above the roofs, where the requirements for this model are fulfilled:
we can assume one-way sound propagation, and the wind is directed mainly horizontally.

The approach that was followed for the calculations in this paper is illustrated in Fig. 1.
When using a broadband source, only a single FDTD calculation is needed in the source
canyon (grey area). At a short distance from the canyon edge, time signals are recorded on
D

D/2

W W

H

zr

xs
zs

xr

FDTD PE

Symmetry plane
starting field

PML

damping layer

a b

c

Z

X

Fig. 1. Set-up of the coupled FDTD-PE model, exploiting symmetry. The FDTD and PE region are shown, with
the starting field, close to the canyon edge. The canyon height is indicated with H, the canyon width with W and
the distance between the source and receiver canyon with D. The source is located at point a, the receiver at point
b. Point c is located at limited height on the symmetry plane.
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a vertical array to generate starting functions for the PE method, using a transition from
the time domain to the frequency domain by means of FFT. Finally, PE calculations are
performed up to a receiver at the symmetry plane, for the frequencies of interest. Details of
the FDTD-PE coupling can be found in [16].

The transfer function from location a (source) to location b (receiver) is approximately
equal to the sum of the transfer function from a to c (intermediate receiver on the symmetry
plane above the roofs) and the transfer function from c to b. The argument for this approx-
imate equality is simply that the transfer function from a to c involves one edge diffraction,
while the transfer function from a to b involves two edge diffractions. Since the transfer
functions between a and c and between c and b are equal (by the symmetry in Fig. 1 and
by reciprocity), the transfer function from a to b is approximately equal to twice the transfer
function from a to c. An important condition is that xs must equal xr and zs must equal zr.

This simple approach ignores, however, that the reflection on the roof is counted twice
when doubling the transfer function from a to c. This must be compensated for, as
described in Section 3.3. This approach is similar to the one used in [17].

Full FDTD calculations (i.e., FDTD applied completely from source to receiver) are
possible as well, but at a larger computational cost. When the conditions to exploit sym-
metry are not met, e.g., when investigating asymmetric source–receiver locations (see Sec-
tion 3.5.7), full FDTD calculations will be performed.
2.2. FDTD and PE

The FDTD method (in 2D) is used to evaluate the moving-medium sound propagation
equations in the source region. Perfectly matched layers are applied at the left and right
boundaries (above the buildings), as well as at the upper boundary of the FDTD compu-
tational domain, to simulate an unbounded atmosphere [13].

In absence of flow, the efficient staggered spatial and staggered temporal grid is used
[18]. In a moving medium, a stationary flow field is simulated with the CFD software Flu-
ent [19]. Next, sound propagation calculations in a so-called background flow are per-
formed. Staggered-in-space calculations are combined with the prediction-step staggered
in time (PSIT) approach. The flow velocities used in this paper are sufficiently low to per-
form accurate calculations with the PSIT scheme. Details on this numerical scheme can be
found in [20,21]. The impedance modeling approach proposed in [18] is used to simulate
partly reflecting surfaces.

The Green�s function PE model is applied (GF-PE) [22–24]. Two-dimensional calcula-
tions are performed.
3. Parameter study

3.1. Standard configuration

Sound propagation between two-dimensional city canyons is simulated. A two-dimen-
sional simulation space implies an infinitely long source canyon and receiver canyon. An
infinitely long, coherent line source is present in the source canyon.

The standard configuration is defined as follows. All buildings have a height (H) of 10 m.
The canyon width (W) is 10 m. The distance between the canyons (D) is chosen to be 100 m.
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All vertical planes (façades) are flat (specularly reflecting), and have a locally reacting nor-
malized, real, frequency-independent surface impedance of 10. Horizontal planes like the
street coverage and roofs are rigid. We are interested in traffic noise immission, after prop-
agation towards a shielded canyon. Therefore, calculations up to the 1/3 octave band of
1250 Hz seemed sufficient. Due to these rather low frequencies and limited propagation dis-
tances, atmospheric attenuation is not accounted for, all the more since we are interested in
sound pressure levels relative to the free field. The atmosphere is homogeneous and non-
moving in the standard configuration. The source and receiver are somewhat displaced
from the center of the canyons. The distances xs and xr, as defined in Fig. 1, equal 4 m, while
the heights above the ground zs and zr are chosen to be 1 m. Only the parameters that are
different from the standard configuration are mentioned in the remainder of this paper.

Sound waves that travel back from the receiver canyon to the source canyon and then
propagate again from the source canyon to the receiver canyon can be neglected for the
chosen set of parameters. The geometric attenuation caused by the large distance between
the canyons (D) would result in very small contributions relative to the first propagation
from the source canyon to the receiver canyon.
3.2. Computational parameters

The origin of the xz coordinate system is placed in the center of the source canyon, at
street level. The FDTD computational domain extended from�7 m < x < 11 m in horizon-
tal direction, and from 0 m < z < 51 m in vertical direction. The lowest frequency of interest
is the lower boundary of the 50 Hz 1/3 octave band namely 44 Hz. The highest frequency of
interest is the upper boundary of the 1250 Hz 1/3 octave band namely 1405 Hz. A spatial
discretization step of 0.025 m resulted in about 10 computational cells per wavelength for
the latter. The temporal discretization step was 5.19 ls. This results in a 2D-CFL number
(for square cells) near 1, which is most efficient for numerical accuracy and computing time
[18]. The perfectly matched layers at the boundaries of the domain consisted of 40 compu-
tational cells, and absorption parameters were optimized such that a sound wave is reduced
by 120 dB upon reflection at normal incidence. A broadband asymmetric Gaussian pulse is
emitted at the source position. The center frequency was 730 Hz, the 3 dB-bandwidth
equaled 500 Hz. The simulation times were chosen long enough to capture all significant
reflections in the source canyon. After 15,000 time steps, sound pressure levels did not
change anymore in the standard configuration as described in Section 3.1.

The starting function for PE is located at 4 m from the edge of the middle building
(x = 9 m in the standard configuration).

20 frequencies per 1/3 octave band were calculated with PE. The vertical grid spacing
was one tenth of the wavelength. For the horizontal grid spacing we used 5 times the wave-
length. For all frequencies, the height of the PE grid was 4096 grid spacings, including an
absorbing top layer of 1500 grid spacings.
3.3. Accuracy

In this section, we show that the approach followed in this paper is accurate. FDTD
calculations from the source to the receiver canyon (=reference calculations) were com-
pared to calculations following the approach described in Section 2.1.
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At sufficient distance from the source, sound pressure levels were quite independent of
height above the roof top (at limited heights). The intermediate receiver is taken at a height
of 2 m above the roof.

Very good agreement between the reference calculation and the solution obtained by
doubling coupled FDTD-PE calculations at the symmetry plane is found. A correction
needs to be applied since reflection on the roof is counted twice in our approach [25].
When propagating directly from the source to the receiver, the diffracted wave will only
reflect once on the roof. Since we are simulating a rigid roof, 6 dB needs to be subtracted
from the doubled relative sound pressure levels at the symmetry plane. This correction is
independent of frequency and of the geometry of the source/receiver canyon.

In Fig. 2, the full spectrum of sound pressure levels, relative to free field calculations, is
shown. PE calculations are performed with a resolution on the frequency axis of 1 Hz. The
standard configuration as described in Section 3.1 is used. The very resonant behavior of
the configuration under study becomes clear. Deviations between full-FDTD calculations
and the proposed, simplified approach can only be observed near the deep, destructive
inferences. In Fig. 3, the same comparison is presented in 1/3 octave bands.

3.4. Incoherent line source

Noise from a traffic stream is commonly modeled as an incoherent line source. A point
source in a 2D simulation space however is equivalent to a coherent line source in 3D. The
difference between a coherent and incoherent line source in the standard configuration is
therefore examined. By expressing results in 1/3 octave bands, interference effects from a
coherent line source will already be partly averaged out.

To examine the influence of source coherence, the following pseudo-3D approach is
used. The incoherent line source in the street canyon is discretized in a number of point
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Fig. 2. Relative sound pressure levels in the receiver canyon, calculated with FDTD completely from source to
receiver, and with the FDTD-PE approach exploiting symmetry.
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Fig. 3. Relative sound pressure levels in the receiver canyon, expressed in 1/3 octave bands (indicated by their
center frequency fc), calculated with FDTD completely from source to receiver, and with the FDTD-PE approach
exploiting symmetry.
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sources (see Fig. 4). For each point source, a calculation is performed in a vertical plane
through the source and receiver. This approach uses the excess attenuation equivalence
between a coherent line source (point source in 2D) and a point source in 3D, as shown
in [16]. In the next step, the relative sound pressure levels from the different sources are
averaged out energetically. This means that a 3D incoherent line source is modeled by per-
forming a number of 2D simulations, with different canyon widths.

In this approach, it is implicitly assumed that all buildings façades are oriented orthog-
onal to the different cross-sections where a calculation is done. The ‘‘turning’’ of the faç-
ades is an approximation.

Relative sound pressure levels in case of a coherent and an incoherent line source are
compared in Fig. 5. The standard configuration as described in Section 3.1 is used. The
line source is represented by 11 equidistant point sources. Due to symmetry, sound prop-
agation calculations for only 6 different canyon widths were necessary. The angle / (see
Fig. 4) ranged from 0� to 70�, corresponding to canyon widths ranging from 10 to
30 m, respectively.

Sound propagation in case of different canyon widths results in a shift of the frequencies
where interference is observed. The interference minima will therefore be less pronounced
when averaging the different contributions to the receiver. As a result, the shielding will be
smaller compared to a coherent line source. This effect is clearly seen in Fig. 5, for the 1/3
octave band values.

3.5. Results

Results of sound propagation from the source canyon towards the receiver canyon in
the standard configuration were shown in Fig. 3. At very low frequencies, sound pressure
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Fig. 4. Top view of the canyon configuration, indicating how an incoherent line source is modeled in a 2D
approach.
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Fig. 5. Relative sound pressure levels in the receiver canyon, in case of a coherent and an incoherent line source.
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levels relative to free field calculations are close to zero. There are multiple reflections on
the façades and street ground, and consequently multiple diffraction paths to the receiver.
Since low frequencies are diffracted to an important degree, almost no shielding is
observed relative to free field calculations. With increasing frequency, sound is diffracted
to a lesser degree and shielding increases.
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In this section, some important parameters are investigated.

3.5.1. Canyon width–height ratio

Width–height ratios (W/H) of 0.5, 1, 1.5 and 2 are simulated. The canyon height is in
each case 10 m. Results are shown in Fig. 6. The source and receiver are located in hori-
zontal direction at 1 m from the canyon center, towards the middle building. The source
height and receiver height are in each case 1 m. The distance between the canyons D is
fixed.

The shielding of the narrow canyon (W/H = 0.5) is large. With increasing W/H ratio
the relative sound pressure levels in the receiver canyon increase. When the width of the
canyon exceeds its height, the sound pressure levels become more or less constant.

The angles of the first diffractions (those that did not interact with the façades) on the
edge of the middle building are larger for narrow canyons than in case of a wider canyon,
which is beneficial as regards shielding. On the other hand, there is less geometrical spread-
ing in between multiple reflections between the façades in a narrow canyon. So reflected
waves that arrive later on have larger amplitudes when reaching the building edge. The
first mechanism dominates in the narrow canyon. For wider canyons, both effects seem
to cancel out.

Linear scaling can be applied to the configuration under study. When considering other
canyon heights, but the same W/H ratios, the same relative sound pressure levels are
obtained at scaled frequencies. Note that the source position and the distance between
the canyons must be scaled as well.

3.5.2. Façade reflection

The effect of façade reflection is investigated. As an idealization of common building
materials, locally reacting materials described by a real, frequency-independent surface
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Fig. 6. Relative sound pressure levels in the receiver canyon, for different width/height ratios of the canyons.
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impedance are modeled in this section. Frequency-dependent impedances, with non-zero
imaginary parts, can be simulated in FDTD as shown in [18,26].

Normalized impedances of 5 and 10 are simulated, as well as a perfectly reflecting faç-
ade. The corresponding reflection coefficients at normal incidence are 0.67, 0.82 and 1.
These values are applied to the complete façade height. Results are shown in Fig. 7.
The shielding towards the receiver canyon in case of perfectly reflecting façades is very
poor. The effect of decreasing the degree of reflection (to Z = 10, which is typical for
bricks) is very large, because of the large number of interactions between the façades. A
difference of 20 dB is observed. Sound pressure levels in the receiver canyon decrease fur-
ther when making the walls less reflecting. The presence of large areas of glass, which is
typical of modern buildings, is therefore not beneficial in the view of quiet sides.

3.5.3. Diffuse reflection
Façades of real buildings are not flat, and consist of smooth planes broken up by pro-

trusions and recesses due to features such as windows, doors and architectural details [27].
Diffuse reflection in urban situations is important because of the large number of reflec-
tions between façades in a street canyon. A commonly used method to account for diffuse
reflection is assuming that a certain amount of energy is transferred from the specular
(coherent) field to the diffuse field with each reflection. The scattering coefficient quantifies
this transfer. The values commonly used in such models are small, and are in the range
0.1–0.3 [1,27].

It was shown by theoretical considerations that the diffuse mechanisms will tend to
dominate for all but the lowest orders of reflection [27]. The use of a scattering coefficient
assumes that façades scatter randomly from every point. In reality however, diffusers are
well-localized.
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Fig. 7. Relative sound pressure levels in the receiver canyon, for flat façades with a (uniform) normalized
impedance of 5 and 10, as well as for a completely rigid façade.
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Modeling localized diffusers is rather easy in FDTD. Diffuse reflection is explicitly mod-
eled by making surfaces irregular. This approach does not induce any difficulties in the
FDTD method that was used, and does not result in a need for extra computational
resources. In a structured, Cartesian grid, the finest roughness element near the façade
is as small as the spatial discretization step. Recesses and protrusions due to windows
and window sills are modeled near a façade, as well as a rough wall. This profile is shown
in detail in Fig. 8. The windows itself and the window sills are rigid, while the rest of the
façade has a normalized, real impedance of 10.

In Figs. 10 and 11, a number of snapshots of the sound pressure field (in dB) are shown,
in case of flat façades and in case of the profiled façade shown in Fig. 8. A broadband
pulse was excited at the source location. The progression from a coherent sound field to
a complete diffuse field is clearly visible in case a diffusely reflecting façade is present.

The effect of introducing diffuse reflection on sound pressure levels in the receiver can-
yon is presented in Fig. 12. For comparison, calculation results for a fully flat façade are
shown for Z = 10, for a rigid surface and also for a combination of these impedances (as
shown in Fig. 9).
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Fig. 8. The profiled façade that is used for the simulations. Recesses by windows (rigid) and protrusions by
window sills (rigid) are shown, together with a detail of the rough wall. The non-rigid parts of the façade have a
normalized, real impedance of 10.
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Fig. 9. The equivalent flat façade of Fig. 8 (with mixed impedances).



Fig. 10. Snapshots in the source canyon, in case of flat façades, at some selected times.
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The effect of the impedance of the façades was already discussed in Section 3.5.2. Mix-
ing rigid parts and partly reflecting parts results in sound pressure levels in between those
of a uniform absorption. Results from the diffusely reflecting façade must be compared to
the latter, in order to solely estimate the effect of non-flat walls. With increasing frequency,
shielding increases. Starting from about 500 Hz, a gain in shielding of about 10 dB is
observed. The diffusely reflecting façade that is modeled here results in a higher shielding
than when simulating a flat façade with Z = 10, although an important part of the dif-
fusely reflecting façade is rigid.

The main reason for this positive effect of a non-flat façade is a change in radiation pat-
tern of the source canyon. With each reflection, part of the acoustical energy is reflected
more upwardly and downwardly than in case of a flat façade. As a result, more acoustical



Fig. 11. Snapshots in the source canyon, in case of partly diffusely reflecting façades. Pressure fields are shown at
exactly the same times as in Fig. 10.
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energy is leaving the canyon in upward direction and waves arriving at the diffraction
point on the middle building contain less energy.

3.5.4. Balconies

The presence of balconies near a façade is known to provide some acoustic protection.
In [28], the optimal placement of absorbing material near balconies was investigated.
Focus was on the protection of the façades in a source canyon. A 2D boundary element
method was used in this study. The optimal and most practical place to apply absorbing
material seemed to be the underside of the balconies.
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The influence of balcony depth and parapet inclination was studied in 3D on an 8-floor
building, both with a ray-tracing method and on a scale model [29]. Increasing balcony
width resulted in a somewhat decreased shielding at all floors, because of the increase in
reflection on the underside of the upper balcony towards the underlying façade. Extra
positive effects in the order of a few dB were obtained by inclining the parapets.

The effect of the presence of balconies in the street canyon, the inclination of the par-
apet and the placement of absorption on the underside of the balconies is modeled. In con-
trast to the cited publications in previous paragraph, we are interested in sound pressure
levels in a nearby, shielded canyon. A balcony as shown in Fig. 13 is modeled. Three such
balconies are placed near both façades in the source canyon. The undersides of the balco-
nies are located at 2.5, 5 and 7.5 m from street level. Due to the symmetrical approach, the
same balconies are present in the receiver canyon as well. The balcony width Db equals
0.5 m and the parapet height Hb is 1 m. The thickness of the balcony floor and parapet
db is 0.2 m. A simulation is performed for a vertical parapet (a = 0�) and for an inclination
angle a of 30�. For the simulation with absorption, a (thin) material with impedance Z = 5
is placed along the full width (db + Db) on the underside of the balconies.

The effect of the presence of balconies near the façades is shown in Fig. 14. Balconies
increase shielding to an important degree in the receiver canyon. Especially at very low
frequencies, the gain in shielding is remarkable. Reducing reflection on the undersides
of the balconies has a rather limited effect on sound pressure levels in the shielded canyon.

Inclining the parapet results in some extra improvement compared to a vertical parapet,
especially near 200–400 Hz. Although shielding in the current configuration is very sensi-
tive to small changes in the geometry, the positive effect of parapet inclination holds in
similar situations as well. In Fig. 15, the parapet inclination effect is checked in case of
wider balconies (Db = 1 m) and in case of shifting the balconies on the right-hand side
of the street canyon by �1.75 m in vertical direction. The difference between shielding
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Fig. 13. Balcony form, with dimensions.
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Fig. 14. Relative sound pressure levels in the receiver canyon, for a balcony with a straight parapet, an inclined
parapet and in case of reduced reflection on the underside of the balconies. For comparison, the shielding in the
standard configuration is shown as well.
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in case of vertical and inclined parapets is explicitly shown. In case of placing wider bal-
conies near both façades, the maximum effect is larger and shifted towards higher frequen-
cies. Between 600 and 1000 Hz there are some (limited) negative effects as well by inclining
parapets. When the balconies at the left and right façade do not appear at the same
heights, the behavior is more or less similar to the symmetrical situation up to the 1/3
octave band of 250 Hz. Positive effects of inclination starting from 800 Hz are observed
as well in the latter.

The effect of inclining the parapets can be attributed to a change in the complex inter-
ference patterns in the source canyons, altering the propagation towards the receiver at
specific frequencies.
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balconies that do not appear at the same heights at both façades (shifted) are simulated as well.
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3.5.5. Moving atmosphere

The refraction which is present in an open field is enhanced by the interaction of the
wind flow with buildings. This results in large gradients in the wind speed above the city
canyons near roof level. This effect is more or less similar to the screen-induced refraction
of sound by wind [13,30].

The wind flow above a city is highly turbulent. There is a large amount of advected tur-
bulence in the flow due to the large number of interactions with obstacles upstream. It is
possible to model a turbulent atmosphere with FDTD, as was done, e.g. in [31,32]. The
computational cost of such calculations is however very large, since a sufficient number
of simulations is necessary to obtain statistically relevant results. Therefore, turbulent scat-
tering is modeled during the PE calculations only in our simulations. More information on
this can be found in [24]. In the simulations where turbulent scattering is involved, an iso-
tropic Von Kármán turbulence spectrum is used. The assumption of isotropy is however a
simplification since increased turbulent strength can be expected near the edges of the
buildings. Measurements of the turbulent strength from [33] were used as an estimate
for the structure velocity parameter C2

v in our configuration. A value of 10 m4/3/s2 was
used in case of u* = 1 m/s. Since Cv is proportional to u* [34], a value of 2.5 m4/3/s2

was used in case of the calmer wind. The correlation length was taken to be 10 m in both
cases. Temperature turbulence is not accounted for.

The flow field in and around the canyon is calculated with CFD software Fluent [19]. A
k–e turbulence model is used to account for the large, turbulent motions. A logarithmic
inflow profile u(z) = (u*/j) ln(1 + (z � 10)/z0) is used (for z P 10 m), where u* is the fric-
tion velocity, j is the von Kármán constant (j = 0.4), and z0 is the ground roughness
length. Positive values of the friction velocity correspond to downwind sound propagation
from the source canyon to the receiver canyon, negative values to upwind sound propaga-
tion. Simulations are performed with u* = 0.5 m/s, u* = 1 m/s, u* = �0.5 m/s and
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Fig. 16. Horizontal component of the flow velocity near the source canyon, in case of downwind sound
propagation.
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u* = �1 m/s, while z0 = 0.5 m. The flow velocity profiles near the source canyon for the
standard configuration are shown in Fig. 16.

It can be seen from Fig. 17 that the wind effect is large. Downwind refraction becomes
more pronounced with increasing frequency and with increasing wind speed. A decrease in
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Fig. 17. Relative sound pressure levels in the receiver canyon, for downwind sound propagation. Two (inflow)
wind speed profiles were used during the CFD calculations. The shielding in case of refraction, and in case of
refraction combined with turbulent scattering is simulated. For comparison, the shielding in a non-moving
atmosphere is shown as well.
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shielding compared to a non-moving atmosphere near 10 dB is observed for u* = 1 m/s,
for frequency bands that are important for traffic noise. It is clear that the effect of wind
cannot be neglected in these kinds of simulations. It can be seen in Fig. 17 that the wind
effect increases some further when also accounting for a turbulent atmosphere. The main
effect of the wind in case of downwind sound propagation is nevertheless refraction.

In case of upwind sound propagation, sound shielding increases with increasing wind
speed. This is shown in Fig. 18. The very low sound pressure levels when using a friction
velocity of �1 m/s will not be observed in practice, since high wind speeds are accompa-
nied by turbulent scattering. The latter has shown to be very important. Almost no shield-
ing is observed compared to calculations in a non-moving (non-turbulent) atmosphere.
Including turbulent scattering in case of a lower wind speed leads to a somewhat decreased
shielding compared to the sound propagation calculations in a non-moving atmosphere.

3.5.6. Distance between the canyons

The results in this parameter study are expressed relative to free field sound propaga-
tion calculations. This means that the figures shown in previous sections do not change
with the distance between the canyons, unless the atmosphere is moving. Downwind
sound propagation through a homogeneous, moving, non-turbulent atmosphere is mod-
eled in Fig. 19. Simulations are performed for D = 50, 100 and 200 m. The same simula-
tion parameters as in Section 3.5.5 are used.

With increasing distance, the sound pressure levels relative to the free field increase. In
case of large values of D, more sound waves leaving the source canyon could be sufficiently
bent downwards before reaching the receiver canyon. Therefore, the amount of acoustical
energy refracted into the receiver canyon increases. When looking at absolute sound
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Fig. 18. Relative sound pressure levels in the receiver canyon, for upwind sound propagation. Two wind speed
profiles were used during the CFD calculations. The shielding in case of refraction, and in case of refraction
combined with turbulent scattering, is simulated. For comparison, the shielding in a non-moving atmosphere is
shown as well.
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pressure levels, the increase in wind effect is larger than the decrease in sound pressure level
by geometrical spreading in our example.

3.5.7. Asymmetric source–receiver locations

In order to have an idea of the variation of shielding for different source–receiver
positions, a number of calculations are performed. Ten locations (xs = xr, zs = zr) were
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Fig. 20. Relative sound pressure levels in the receiver canyon, for various source/receiver locations. The mean
values at each 1/3 octave band are connected with a full line.
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considered namely (1 m,1 m), (3 m,1 m) (5 m,1 m) (7 m,1 m) (9 m,1 m), (1 m,2 m),
(3 m,2 m), (5 m,2 m), (7 m,2 m), (9 m,2 m). This lead to 10 transfer functions from the
source canyon to the receiver canyon, as shown in Fig. 20.

As can be expected, relative sound pressure levels vary significantly with source/receiver
location. Variations are especially large for the low 1/3 octave bands.

We are however mainly interested in the relative effects of the investigated parameters,
which is defined as the sound pressure level in a certain situation minus the sound pressure
level in the standard configuration, for the same source/receiver location. Positive values
indicate an increase in shielding, negative values a decrease in shielding.

In the symmetrical approach, the source location defines the receiver location, as
described in Section 3.1. The relative effects of some configurations, applying the ‘‘sym-
metrical’’ approach, are compared to the relative effects in case of ‘‘asymmetric’’ source
and receiver positions. In the latter, xs and zs must not be equal to xr and zr. Such kind
of simulations can only be performed with FDTD applied completely from the source
to the receiver. Sound propagation from every source position, as defined above, is calcu-
lated towards all receiver positions in the receiver canyon, as defined above. Ten FDTD
calculations were needed, leading to 100 transfer functions.
Fig. 21. Average relative effect of a certain case/geometry, in case of symmetrical and asymmetrical source–
receiver locations. The standard configuration is taken as a reference. The error-bars have a total length of two
times the standard deviation on the samples. In (a) the effect of Z = 5 is shown, in (b) the combined effect of a
non-flat façade and wall impedance, in (c) the balcony effect, and in (d) the effect of downwind refraction.
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Following relative effects were investigated:

� A normalized surface impedance at the façades of 5 (see Section 3.5.2).
� The profiled façade as described in Section 3.5.3.
� The balconies near the façades as described in Section 3.5.4, with an inclined parapet of
30�.

� The effect of downwind sound propagation with u* = 1 m/s (see Section 3.5.5).

Results are shown in Fig. 21. The average effect over different source/receiver locations,
relative to the standard configuration, is shown. The error-bars have a total length of 2
times the standard deviation on the samples. Asymmetric (or full) FDTD calculations
in case (d) were not done because of the lack of sufficient computational resources. Note
that the relative effect in Fig. 21(b) is a combination of non-flat façades and different wall
impedances.

The average effect of a certain measure for the asymmetric calculations is very similar to
the effects of the symmetric calculations. So the symmetric approach in this paper is suf-
ficiently adequate to consider canyon to canyon propagation.

3.5.8. Combination of effects

The FDTD method allows combining various effects. In this way, realistic simulations
are possible. As an example, the diffusely reflecting façade, as shown in Fig. 8, is combined
with downwind refraction (with the inflow profile as described in Section 3.5.5 with
u* = 1 m/s). It can be seen from Fig. 22 that diffuse reflection and downwind refraction
counteract. Diffuse reflection increases shielding, downwind refraction results in a decrease
in shielding. The resulting shielding in this particular situation is very similar to the shield-
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Fig. 22. Relative sound pressure levels in the receiver canyon, in case downwind sound propagation is combined
with the non-flat façade profile shown in Fig. 8. For comparison, the shielding in a non-moving atmosphere with
flat façades, a non-moving atmosphere with non-flat façades and a moving atmosphere with flat façade is shown
as well. The flat façades have rigid and partly reflecting parts, as shown in Fig. 9.
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ing obtained in a non-moving atmosphere, with a flat façade. Both effects are more or less
additive.

In another example, rigid façades are compared to façades with balconies with an
inclined parapet of 30�, as described in Section 3.5.4. This is shown in Fig. 23. Adding
the relative effects of both the rigid façade and the balconies would largely underestimate
the shielding. It can therefore be concluded that numerical simulations will be necessary to
estimate the effect of combinations of parameters.

4. Conclusion

In this paper, a parameter study has been described for the case of two-dimensional
sound propagation from a source canyon to a nearby, identical receiver canyon. A coupled
FDTD-PE model was applied. Symmetry of the source and receiver canyon allowed cal-
culating in only half the sound propagation domain. Very good agreement was obtained
between the coupled FDTD-PE model, exploiting symmetry, and reference calculations
(i.e., FDTD applied completely from source to receiver). Focus was on the sound pressure
levels in the receiver canyon. Although the general applicability of this model in urban
areas is limited, the FDTD-PE model is well suited and numerically efficient in prototype
situations and thus allows investigating the effect of important parameters.

Working in a two-dimensional simulation space means that a coherent line source is
modeled. The effect of an incoherent line source, which is more appropriate for traffic
noise, is estimated by performing a number of calculations in 2D cross-sections through
source and receiver. Modeling an incoherent line source resulted in a decrease in shielding
compared to a coherent line source. Expressing results in 1/3 octave bands however
already averaged out to some degree the deep destructive interferences that arise when
working with a coherent line source.
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The shielding was found to be rather insensitive to the width-height ratio of the can-
yons, except for very narrow canyons. For ratios larger than 1, relative sound pressure lev-
els at the receiver become more or less constant. The degree of absorption on the façades is
very important, due to the large number of interactions between the sound waves and the
walls. Rigid walls result in very poor shielding towards the receiver canyon. With the
FDTD code it is possible to simulate well-localized diffusers near the façades. The effect
of introducing recesses by windows and protrusions by windowsills, together with a rough-
ened wall, increases with increasing frequency when comparing to flat façades. Near
1000 Hz, about 10 dB in shielding is gained for the profiled façade that was simulated
in this paper. It has to be mentioned that scattering is only simulated in two dimensions.
The presence of balconies resulted in an important increase in shielding. Especially near
very low 1/3 octave bands, a large increase in shielding is obtained. Inclining the parapet
of the balconies resulted in an extra increase at some frequency bands.

The effect of a moving atmosphere was investigated in detail. Flow calculations near the
canyons were performed, and this information was used during the sound propagation cal-
culations. In case of downwind sound propagation, shielding decreases to an important
degree compared to a non-moving atmosphere. Refraction is the most important effect
in the latter. With increasing incident wind speed and with increasing frequency, shielding
decreases. In case of upwind sound propagation, turbulent scattering plays an important
role and the shielding does not increase compared to a non-moving atmosphere in our
calculation.

Symmetrical source–receiver locations were shown to be suited to estimate effects of
asymmetric source–receiver locations as well. Examples showed that the combined effect
of parameters is in general not simply the addition of the separate effects.
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[10] Ögren M, Kropp W. Road traffic noise propagation between two dimensional city canyons using an

equivalent sources approach. Acta Acustica united with Acustica 2004;90:293–300.



510 T. Van Renterghem et al. / Applied Acoustics 67 (2006) 487–510
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