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Abstract The effect of environmental conditions

on river macrobenthic communities was studied

using a dataset consisting of 343 sediment samples

from unnavigable watercourses in Flanders,

Belgium. Artificial neural network models were

used to analyse the relation among river charac-

teristics and macrobenthic communities. The

dataset included presence or absence of macro-

invertebrate taxa and 12 physicochemical and

hydromorphological variables for each sampling

site. The abiotic variables served as input for the

artificial neural networks to predict the macro-

benthic community. The effects of the input

variables on model performance were assessed

in order to identify the most diagnostic river

characteristics for macrobenthic community

composition. This was done by consecutively

eliminating the least important variables and,

when beneficial for model performance, adding

previously removed ones again. This stepwise

input variable selection procedure was tested not

only on a model predicting the entire macroben-

thic community, but also on three models, each

predicting an individual taxon. Additionally, dur-

ing each step of the stepwise leave-one-out

procedure, a sensitivity analysis was performed

to determine the response of the predicted

macroinvertebrate taxa to the input variables

applied. This research illustrated that a combina-

tion of input variable selection with sensitivity

analyses can contribute to the development of

reliable and ecologically relevant ANN models.

The river characteristics predicting presence or

absence of the benthic macroinvertebrates best

were the Julian day, conductivity, and dissolved

oxygen content. These conditions reflect the

importance of discharges of untreated wastewater

that occurred during the period of investigation in

nearly all Flemish rivers.
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RIVPACS River In Vertebrate Prediction And

Classification System

RMSE Root mean square error

SLOO Stepwise leave-one-out

Introduction

Development and use of models predicting macr-

oinvertebrate community composition has gained

a lot of interest during the past decade. Such

models are of considerable value for decision

support in river management (Goethals and De

Pauw 2001). Another application is prediction of

the macroinvertebrate community that would be

present at a river site in the absence of environ-

mental stress. The European Water Framework

Directive (EU 2000) requires EU member states

to assess the ecological status of water bodies by

comparing the actual and reference status of

biological communities. When no reference sites

are available, reference status may be based on

modelling (Logan and Furse 2002). Software

packages such as RIVPACS (Wright 2000) and

AUSRIVAS (Davies 2000) offer site-specific

predictions of the macroinvertebrate fauna to be

expected in the absence of major environmental

stresses. Based on these predictions and the fauna

present, an environmental quality index can be

calculated (Wright 2000; Clarke et al. 2003). A

variety of modelling techniques are applied in this

context. RIVPACS and many related assessment

systems are based on classical multivariate tech-

niques. During recent years however, data mining

techniques are increasingly being used, such as

artificial neural networks (ANNs) (e.g. Hoang

et al. 2001; Dedecker et al. 2004) and decision

trees (e.g. Dzeroski et al. 1997; D’heygere et al.,

2003). Various authors have shown that ANNs

provide powerful predictive models, which in

many cases outperform the more traditional

modelling tools (e.g. Paruelo and Tomasel 1997;

Guégan et al. 1998; Walley and Fontama 1998;

Lek and Guégan 1999). ANNs are known for

their capacity to process non-linear relationships

(Hornik et al. 1989; Chen et al. 1990). This

feature makes these models particularly useful

for applications in ecological system analysis (e.g.

Gevrey et al. 2004).

Neural networks can be valuable instruments

to find the dominant sources of stress affecting

river communities. However, selection of vari-

ables that best describe river status is important

for effective model development. A large number

of input variables can provide an accurate

description of the studied issue, but results in

more complex models that are difficult to cha-

racterise and require more computational pro-

cessing time, and often more data for effective

discrimination (Maier and Dandy 2000). Several

procedures have been tested to select input

variables for ANNs, such as a progressive elim-

ination of the least important variables (Walley

and Fontama 1998), sensitivity analysis (Schleiter

et al. 1999; Hoang et al. 2001), a senso-net

(Schleiter et al. 2001) and genetic algorithms

(Goethals 2005; D’heygere et al. 2006). A review

of methods for analysing variable contribution in

ANNs is given by Gevrey et al. (2003).

In this article, a new approach for input

variable selection is proposed and tested. The

ANN input variables for predicting benthic

macroinvertebrate communities were selected

by a stepwise leave-one-out (SLOO) procedure.

Variables were excluded or added based on their

effect on model performance as assessed by

Cohen’s j (1960). In this manner, the effect of

the prevalence of the different macroinverte-

brate taxa was compensated for during the river

characteristics selection procedure. This is in

contrast to methods merely making use of the

root mean square error (RMSE) and the number

of correctly classified instances (CCI). Simulta-

neously, during each step of the SLOO proce-

dure, a sensitivity analysis (Lek et al. 1995,

1996a, b) was performed to determine the

response of the predicted macroinvertebrate taxa

to the applied input variables. The emphasis is

put on organic pollution due to urban wastewa-

ter discharges and nutrient enrichment due to

agricultural land use, because these were

assumed to be the main sources of impact on

the aquatic community in Flanders during the

period of sampling (1996–1998) (De Cooman

et al. 1999; Goethals 2005).
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Materials and methods

Dataset

Between 1996 and 1998, 360 sediment samples

were collected in unnavigable watercourses

throughout Flanders, Belgium (Fig. 1). The sam-

ples were taken by means of a Van Veen grab

sampler (2 l volume), zigzagging across the

watercourse over a length of 50 m (Ministry of

the Flemish Community 2000). Between 25 and

40 sub-sample grabs (up to a total volume of

approximately 40 l) were collected and mixed

together to form a homogeneous sample. From

this mixture, a random subsample of approxi-

mately 13 l was kept separate for studying the

macroinvertebrate community (De Pauw and

Heylen 2001). For each sample, all present

macroinvertebrate taxa were recorded. The iden-

tification level for these taxa was genus or family,

except for the Diptera family Chironomidae,

which was divided into the group thummi-plumo-

sus and the group non thummi-plumosus (cf. De

Pauw and Heylen 2001). The total dataset com-

prised 92 different taxa. For each sample a

number of abiotic variables was recorded, includ-

ing in situ measurements of sediment pore water,

physicochemical properties of the sediment and

granulometric characteristics. The environmental

variables used in this study are summarised in

Table 1. Seventeen samples were excluded from

the dataset due to missing data.

These data were collected within the context of

the development and optimisation of the TRIAD

methodology for assessment of freshwater sedi-

ments (e.g. Chapman et al. 1991) of rivers in

Flanders (Ministry of the Flemish Community

2000). The TRIAD assessment is based on

biological, ecotoxicological and physicochemical

data. The biological component consists of deter-

mining the Biotic Sediment Index (BSI) (De

Pauw and Heylen 2001) and the percentage

mentum deformities in Chironomus larvae (Hey-

len and De Pauw 2003). The BSI is a modification

of the Belgian Biotic Index (BBI) (De Pauw and

Vanhooren 1983) and is based on the taxonomic

diversity of the benthic macroinvertebrate com-

munity and the presence or absence of specific

Fig. 1 Overview of the
distribution of the 360
sediment sampling sites in
unnavigable watercourses
throughout Flanders,
Belgium
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indicator taxa in the sediment sample. The BSI

ranges from 10 for unimpacted sediments to 0 for

severely polluted sediments.

Development and assessment of an ANN

predicting all taxa simultaneously

Three-layered feed-forward neural networks with

bias were constructed to predict the benthic macr-

oinvertebrate community composition. The neural

network which was initially developed consisted of

an input layer with 12 neurons (one for each input

variable mentioned in Table 1), a hidden layer with

a number of neurons optimised by trial and error,

and an output layer with 92 neurons, corresponding

to all macroinvertebrate taxa present in the dataset.

The trial and error process was conducted by

consecutively training and validating ANNs with

varying numbers of hidden neurons until no further

improvement of model performance, as assessed by

Cohen’s j (see further), was obtained. All neural

networks were trained using the error backpropa-

gation algorithm with momentum and adaptive

learning rate (Hagan et al. 1996). All river charac-

teristics, that were used as input variables, were

rescaled to the interval [–1 1] prior to presenting

them to the ANN. Output values equalled zero for

absence and one for presence.

Model performance was assessed with cross-

validation (Witten and Frank 2000). When using

cross-validation, the original dataset is equally

split into n subsets. Subsequently, n models are

trained and validated, each subset in turn being

used as validation set for a model that is trained

using the other n – 1 subsets. These n validations

together are used for evaluation of model archi-

tecture. This method is particularly useful when

only a limited number of data are available for

training and validating a model. In this case, 7-fold

cross-validation was used, hence a training set of

294 patterns and a validation set of 49 patterns was

available for each fold. The ANN output values,

continuous values between zero and one, were

rounded in order to enable a comparison with the

discrete absence/presence values from the dataset.

Values larger than or equal to 0.5 were rounded

up to 1. For each validation site, the actual

presence or absence and the one predicted by

the model could be compared for all 92 taxa. This

gave rise to 92 times 343, or 31566 cases to be

compared each time. The assessment was based

on the calculation of the percentage of CCI

(Witten and Frank 2000) and Cohen’s j (1960).

Both CCI and j can be used for comparing model

predictions, but the j value takes a correction into

account for the expected number of correct

predictions due to randomness, which is strongly

related to taxon prevalence (Manel et al. 2001).

Therefore j provides a more reliable representa-

tion of model performance (Cohen 1960). Kappa

values are evaluated as follows in medical appli-

cations: 0.00–0.40: slight to fair; 0.40–0.60: moder-

ate; 0.60–0.80: substantial; 0.80–1.00: almost

perfect (Manel et al. 2001 after Landis and Koch,

1977). However, these j values also represent the

information that is in the dataset, and each dataset

has a limit regarding extractable information.

Consequently, also differences between classes

can be expected between disciplines in general

and datasets in particular. As a result, the j cannot

Table 1 Environmental variables in the dataset used in the present study

Variable Abbreviation Units Min Mean Max

Date of sampling DAY Julian day (1–365) 20 175 338
River width WIDT m 0.4 3.8 15.0
River depth DEPT m 0.01 0.61 3.00
Stream velocity class VELO 0 (stagnant) to 4 (fast) 0 1.9 4
Clay fraction in sediment CLAY % 0 11 65
Silt fraction in sediment SILT % 0 20 80
Sand fraction in sediment SAND % 0 69 100
pH PH – 3.38 7.42 9.06
Dissolved oxygen DO mg/l 0.1 5.7 13.2
Electric conductivity COND mS/cm 0.11 0.91 16.66
Total phosphorus in sediment TP mg P/kg dry matter 17 1,759 42,200
Kjeldahl nitrogen in sediment TKN mg N/kg dry matter 100 2,022 1,1200
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be seen as an absolute value to make a model

evaluation, but should rather be seen as a good

way to compare models, and study the effect of

removing variables. In an ecological context,

Randin et al. (2006) assess j values as follows:

0.00–0.40: poor; 0.40–0.75: good; 0.75–1.00: excel-

lent. The following assessment scheme, based on

the two cited schemes, will be used throughout this

article:

0.00–0.20: poor;

0.20–0.40: fair;

0.40–0.60: moderate;

0.60–0.80: substantial;

0.80–1.00: excellent.

Development and assessment of ANNs

predicting individual taxa

In order to study the effects of the river character-

istics on individual taxa, three models were devel-

oped which were similar to the previous ones, each

time using one individual taxon as output. Those

taxa with prevalence closest to 25%, 50% and 75%,

respectively, were chosen as focus taxa for this

study. In this manner, representatives of different

tolerance classes could be compared. These taxa

were Pisidium (Bivalvia, Sphaeriidae) (27.1%),

Erpobdella (Hirudinea, Erpobdellidae) (37.3%)

and Chironomidae, group thummi-plumosus

(Insecta, Diptera) (73.8%). The input variables

were the same as used for the whole community.

Neural network architecture was also identical to

the previous one, except for the number of hidden

neurons, which was again optimised by trial and

error. Assessment was once again carried out by

means of 7-fold cross-validation.

Input variable selection

To study the impact of the input variables on the

ANN predictions, a SLOO procedure for variable

selection was proposed and tested. Throughout

this selection procedure, all characteristics of the

ANN remained unaltered, except for the number

of input neurons.

The SLOO procedure is outlined in Fig. 2. It is

an iterative process starting with the 12 input

variables until only one variable remains. Each

phase of this process consists of two steps. In the

first step a new series of ANN models is trained

and validated. The number of models equals the

number of remaining variables, each model being

constructed by excluding a different variable. The

best performing model, according to Cohen’s j, is

selected, and hence the least important variable is

excluded. In the second step, a new series of

models is built, this time by adding all previously

removed variables again. If one of these models

performs better than any previous model with the

same number of variables, the corresponding

variable is again included. Otherwise no variable

is added in the second step. This iterative

process of stepwise removing the least important

Stop

v increases by 1

no yes

Is one of the new models better than all previous ones

having this number of variables?

Choose best performing mode l

v decreases by 1

Training and cross-validation

of 12 - v models with v + 1 variables

Training and cross-validation

of v models with v - 1 variables

Initial model

Number of variables v = 12

Number of variables = v

v >1  v = 1

Fig. 2 Summary of the
stepwise leave-one-out
procedure used in the
present study to select
input variables for neural
network models
predicting absence/
presence of
macroinvertebrate taxa
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variables for predicting macroinvertebrate taxa is

continued until only one variable is left.

This input variable selection procedure was

tested for the ANN predicting all taxa simulta-

neously as well as for the three models predicting

individual taxa.

Sensitivity analysis

During each step of the SLOO procedure, a

sensitivity analysis was performed based on Lek

et al. (1995, 1996a, b). Olden et al. (2004)

illustrated that other methods can be better to

select input variables of models. However the

method of Lek et al. (1995) was selected because

it has as major advantage that it directly illus-

trates the relation between input variables and

the predicted variable. This extra information is

very useful, because this provides direct insight

regarding the ecological relevance of this rela-

tion as well. In this way, the stability of these

ecological relations could be monitored during

the selection process. This allowed the interpre-

tation of the impact of river characteristics on

the probability of occurence of the three focus

taxa (Pisidium, Erpobdella and Chironomidae,

group thummi-plumosus). Twelve values of a

variable were taken at equal intervals covering

the whole range of the variable within the

dataset, starting with the minimum and conclud-

ing with the maximum. These values were

separately presented to the ANN, while all other

variables were kept constant at their mean value

within the dataset. In this way, the effect of one

variable on ANN predictions throughout its

range within the dataset could be visualised.

(Lek et al 1996b). For all three focus taxa, this

sensitivity analysis was performed for all remain-

ing variables following each step of the SLOO

procedure.

Results

Development and assessment of an ANN

predicting all taxa simultaneously

For the initial ANN model, optimisation of the

number of hidden neurons with trial and error

resulted in a network architecture with 12 hidden

neurons. The percentage of correctly classified

presence was 44.6%, while the percentage of

correctly classified absence was 98.9% (Table 2).

Average CCI percentage was 95.0%. Since the

number of taxa absent was usually far higher than

the number of taxa present, the total CCI was far

closer to the CCI for absent taxa. Kappa equalled

0.537, which corresponds to moderate model

performance.

Development and assessment of ANNs

predicting individual taxa

Optimisation with trial and error resulted in a

neural network architecture with eight hidden

neurons for the individual taxa ANNs. CCI values

are close to 70% for all three taxa, but j values

can be characterised as poor for Pisidium and

Chironomidae, group thummi-plumosus and fair

for Erpobdella (Table 3).

Input variable selection for the ANN

predicting all taxa simultaneously

Performance remained virtually unchanged when

the number of input variables was reduced

(Fig. 3; Table 4). Throughout the selection

Table 2 Confusion matrix of the results obtained with
7-fold cross-validation using all input variables to predict
absence/presence of 92 macroinvertebrate taxa in the
dataset

Predicted

Present Absent

Actually Present 1015 (44.6%) 1261 (55.4%)
Absent 323 (1.1%) 28957 (98.9%)

The total percentage of CCI was 95.0%. Cohen’s j
equalled 0.537

Table 3 Results obtained with 7-fold cross-validation
using all input variables to predict absence/presence of
Pisidium, Erpobdella and Chironomidae, group thummi-
plumosus

Taxon CCI (%) Kappa

Pisidium 71.1 0.165
Erpobdella 70.3 0.326
Chironomidae, group t.-p. 69.1 0.068
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procedure, the decrease of j in comparison to the

initial model is never more than 0.05, and in some

cases j even increases. Model performance

remained moderate until only one variable

remained. The highest values for j and CCI,

0.548 and 95.0%, respectively, were obtained

when eight input variables were used. When only

the variables day, width, and clay were considered

as input variables, the lowest j (0.490) and CCI

value (94.1%) was obtained. When all variables

were listed in order of importance, expressed as

the smallest set of variables in which each

variable still appeared, Julian day, clay fraction,

conductivity, and dissolved oxygen were the four

most important variables (Table 5).

Input variable selection for ANNs predicting

individual taxa

The response of j to number of ANN input

variables generally rose to an asymptote for

predictions of Pisidium, Erpobdella and Chiro-

nomidae, group thummi-plumosus (Fig. 3). The

best model performance for Pisidium (j = 0.322

and CCI = 76.4%) was obtained when the input

variables pH, width, silt, total phosphorus and

Kjeldahl nitrogen were removed. When only one

variable was left (day), j decreased to a minimum

of 0.024 although the CCI remained above 70.0%.

The j and the CCI values for Erpobdella were

between 0.247 and 0.423 and between 66.8% and

74.1%, respectively, when two input variables

Table 5 Ranking of the 12 input variables in order of
importance for predicting absence/presence of 92 macro-
invertebrate taxa simultaneously, and for the three indi-
vidual taxa, according to the input variable selection
procedures for these four ANNs

Rank
of
variable

Model

All
taxa

Pisidium Erpobdella Chironomidae,
group thummi-
plumosus

1 DAY DAY COND PH
2 CLAY DO DO DO
3 COND SILT DAY DAY
4 DO CLAY CLAY TP
5 SAND DEPT PH CLAY
6 WIDT COND VELO TKN
7 PH SAND TKN DEPT
8 SILT TP SAND SILT
9 TKN WIDT DEPT SAND
10 TP TKN TP VELO
11 VELO VELO WIDT WIDT
12 DEPT PH SILT COND

The variable rank equals the lowest number of variables in
which it was still included (in other words, the variable that
was excluded first has rank 12). See Table 1 for variable
abbreviations

0.00

0.10

0.20

0.30

0.40

0.50

0.60

12 11 10 9       

Number of input variables

K
ap

pa

12346578

Fig. 3 Influence of the number of input variables on
Cohen’s j throughout the input variable selection proce-
dure for four ANN models predicting absence or presence
of macroinvertebrate taxa. For each model, only the
highest j found for each number of input variables is
plotted. Squares: ANN for all taxa simultaneously; circles:
ANN for Erpobdella; triangles: ANN for Pisidium;
rhombuses: ANN for Chironomidae, group thummi-
plumosus

Table 4 Summary of the selection procedure of the input
variables to predict absence/presence of 92 macroinverte-
brate taxa in the dataset

Step Number of
input variables

Variable
removed

Variable
added

CCI
(%)

Kappa

1 12 – – 95.0 0.537
2 11 DEPT – 95.0 0.541
3 10 VELO – 94.9 0.538
4 9 TP – 94.8 0.540
5 8 COND – 95.0 0.548
6 7 TKN – 94.8 0.531
7 6 SILT – 95.0 0.541
8 5 SAND – 94.9 0.531
9 4 DO – 94.7 0.516
10 3 PH – 94.1 0.490
11 4 – COND 95.0 0.535
12 3 CLAY – 94.5 0.507
13 4 – SAND 95.0 0.545
14 3 WIDT – 94.8 0.519
15 2 SAND – 94.6 0.506
16 3 – DO 94.7 0.520
17 2 DO – 94.6 0.506
18 1 COND – 94.4 0.491
19 2 – CLAY 94.8 0.512
20 1 CLAY – 94.4 0.491

See Table 1 for variable abbreviations
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(dissolved oxygen and conductivity) were used

and only one variable (silt fraction) was removed.

For Chironomidae, group thummi-plumosus,

poor results were obtained based on j. The

highest j value (0.185) was reached when seven

input variables were used. The CCI was higher

than the initial percentage of 69.1 after each step

of the input variable selection procedure.

The most important variables for the three

focus taxa, based on the variable selection proce-

dure, were quite similar. The three most impor-

tant variables were Julian day, dissolved oxygen

concentration and silt fraction for Pisidium;

conductivity, dissolved oxygen concentration

and Julian day for Erpobdella; and pH, dissolved

oxygen concentration and Julian day for Chiro-

nomidae, group thummi-plumosus (Table 5).

The effects of the input variables on the

probability of presence of Pisidium, Erpobdella

and Chironomidae, group thummi-plumosus,

respectively, showed a variety of responses

(Figs. 4–6). Only the curves for 12, 8 and 4

variables are presented for each taxon (see figures

a–c). For Pisidium, conductivity and dissolved

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Interval step of variable range

 fo ecneserp fo ytilibabor
P

P
is

id
iu

m

DAY

WIDT

DEPT

VELO

CLAY

SILT

SAND

PH

DO

COND

TP

TKN

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7 8 9 10 11 12

Interval step of variable range

 fo ecneserp fo ytilibabor
P

muidisi
P

DAY

DEPT

CLAY

SILT

SAND

DO

COND

TP

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7 8 9 10 11 12

Interval step of variable range

 fo ecneserp fo ytilibabor
P

muidisi
P

DAY

DEPT

DO

COND

(a)

(b)

(c)

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 4 The impact of the
input variables on the
ANN-generated
probability of presence of
Pisidium. Only the curves
for 12 (a), 8 (b) and 4 (c)
variables are shown. See
text for further
explanation and Table 1
for variable abbreviations
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oxygen were best expressed when 12, 8 and 4

input variables were plotted. An increase of

conductivity resulted in a decrease of Pisidium

occurrence, while an increase of dissolved oxygen

led to an increase. When the number of input

variables becomes smaller, these effects become

more distinct. Although Julian day is the most

diagnostic variable based on the SLOO selection

procedure, it is not expressed well with this

sensitivity analysis (Fig. 4). The two most impor-

tant input variables for Erpobdella, based on the

SLOO selection procedure were conductivity and

dissolved oxygen. Sensitivity analysis confirmed

their importance, except for the case where all

input variables were used (Fig. 5a). In that case,

only conductivity and Kjeldahl nitrogen concen-

tration showed a substantial influence. A decrease

of conductivity induced an increase in the prob-

ability of presence of Erpobdella. An increase of

dissolved oxygen resulted in an increase of

Erpobdella occurrence. For Chironomidae, group

thummi-plumosus, all input variables were

expressed relatively well. When only four vari-

ables were used, the impact of pH becomes most

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 3 5 7 9 10 11 12

Interval step of variable range

 
of ecneserp fo ytilibabor

P
alledbopr

E

DAY

WIDT

DEPT

VELO

CLAY

SILT

SAND

PH

DO

COND

TP

TKN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12

Interval step of variable range

 fo ecneserp fo ytilibabor
P

alledbopr
E

DAY

DEPT

VELO

CLAY

SAND

DO

COND

TKN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12

Interval step of variable range

 fo ecneserp fo  ytilib abor
P

alledbopr
E

DAY

VELO

DO

COND

(a)

(b)

(c)

8642

Fig. 5 The impact of the
input variables on the
probability of presence of
Erpobdella. Only the
curves for 12 (a), 8 (b)
and 4 (c) variables are
shown. See text for
further explanation and
Table 1 for variable
abbreviations

Aquat Ecol (2007) 41:427–441 435

123



important, resulting in low probabilities of pres-

ence for this taxon at low pH values and high

probabilities at high pH values (Fig. 6).

Discussion

Performance of the initial ANN model

The predictive success of the initially constructed

ANN, including all 12 variables was moderate

(CCI = 95%, j = 0.537). Gabriels et al. (2002)

obtained a slightly lower CCI (92.6%) using the

same dataset. Hoang et al. (2001) obtained CCIs

between 75% and 95% when independently

testing 37 ANNs each predicting a specific stream

macroinvertebrate taxon. Based on a dataset of

the Zwalm river basin (Flanders, Belgium),

Dedecker et al. (2002) found CCIs between

59% and 99% when ANN models were tested

for 10 river macroinvertebrate taxa. In contrast to

CCI, j indicates to what extent models correctly

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12

Interval step of variable range

 fo ecneserp fo ytilibabor
P

eadi
monorih

C
suso

mulp-i
m

muht

DAY

WIDT

DEPT

VELO

CLAY

SILT

SAND

PH

DO

COND

TP

TKN

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7 8 9 10 11 12
Interval step of variable range

 fo ecneserp fo ytilibabor
P

eadi
monorih

C
suso

mulp-i
m

muht

DAY

WIDT

DEPT

SILT

SAND

PH

DO

TKN

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7 8 9 10 11 12

Interval step of variable range

 fo ecneserp fo yti libabor
P

eadi
monorih

C
suso

mulp -i
m

muht

DAY

CLAY

PH

TKN

(a)

(b)

(c)

Fig. 6 The impact of the
input variables on the
probability of presence of
Chironomidae, group
thummi-plumosus. Only
the curves for 12 (a), 8 (b)
and 4 (c) variables are
shown. See text for
further explanation and
Table 1 for variable
abbreviations

436 Aquat Ecol (2007) 41:427–441

123



predict occurrence at rates that are better than

chance expectation (Fielding and Bell 1997;

Manel et al., 2001). Therefore, in this study, j
was preferred over CCI for assessing model

performance.

Variable selection for all taxa simultaneously

Performance of the neural networks remained

virtually unchanged when the number of input

variables was reduced from 12 to 4. When the

number of input variables was further reduced,

performance decreased, although not dramati-

cally, as can be seen in Fig. 3. Surprisingly, a

moderate j value was obtained even with only

one input variable. These results are more or less

in agreement with Walley and Fontama (1998),

who observed an unaffected performance when

five or eight (depending on the output variable)

out of 13 variables were removed and only a

slightly reduced performance when ten out of 13

variables were excluded. It should be noted

however that the target variable, the assessment

of performance and the selection procedure were

different. In the cited study, assessment was based

on the correlation coefficient between predicted

and actual value, a parameter that would not be

suitable for the present study since categoric

(presence/absence) variables were compared

here.

All input variables could be ranked in order of

importance, based on the smallest set of variables

in which each variable still appeared. A different

ranking can be set up by comparing the perfor-

mance of all models with only one input variable

(not shown). In both rankings, three variables

appeared among the four variables ranked high-

est: Julian day, conductivity and dissolved oxygen.

Many macroinvertebrate taxa occurrences are

characterised by an annual cycle (e.g. Dolédec

1989; Rosillon 1989; Linke et al. 1999; Reece

et al. 2001). Thus, Julian day is evidently a key

variable. Dissolved oxygen is also known as an

important factor regulating benthic macroinver-

tebrate community composition (e.g. Ruse 1996;

Weigel et al. 2003; Chaves et al. 2005) and low

values may indicate organic pollution. Conduc-

tivity integrates several variables like natural

mineral content of the water due to geology, but

also minerals from pollutant degradation (efflu-

ents of wastewater treatment plants) and inor-

ganic pollutants. D’heygere et al. (2003) applied

genetic algorithms to select input variables in

decision tree models for eight taxa, based on the

same dataset. They found that dissolved oxygen

and conductivity were the most important pre-

dictor variables for their models.

In the present study, a total of 153 neural

networks were trained and validated, in order to

select the input variables. If all possible combi-

nations of input variables were to be tested, one

would have to train and validate 212 – 1, or 4095

ANNs. The method developed in this study

results in a drastic reduction of calculation time.

Variable selection for three individual taxa

A trend towards higher j values for higher

numbers of input variables was observed for the

three individual taxa, especially in the case of

Pisidium and Erpobdella (Fig. 3). However, this

trend was reduced and even inverted when the

number of input variables approached 12. A

possible explanation is that for 12 input variables

the only possible combination of variables was

tested, whereas for a smaller number of variables

the best out of a number of possible combinations

was selected. When comparing the maximum j
value obtained during the selection process, an

increase from 0.17 to 0.32 was found for Pisidium,

from 0.33 to 0.42 for Erpobdella, and from 0.07 to

0.19 for Chironomidae, group thummi-plumosus.

D’heygere et al. (2006), applying genetic algo-

rithms to select input variables for ANN models

using the same dataset, obtained an increase in j
only for Pisidium (from 0.34 to 0.37) and

Erpobdella (from 0.28 to 0.33). For Chironomi-

dae, group thummi-plumosus, a decrease from

0.16 to 0.14 in model performance was found.

The sensitivity analysis provided a direct

interpretation of the effect of river characteristics

on the probability of presence of the three focus

taxa. However, slightly different curves were

obtained when not all variables were used for

the sensitivity analysis. Due to the exclusion of

some variables of minor importance for model

performance, relationships between the dominant

variables and the macroinvertebrates became
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more distinct (Figs. 4–6). Analysis of the sensi-

tivity curves can thus enhance insight in the

effects of various impact types on individual taxa

(Marshall et al. 2002). As such, this method

would enable impact-specific indicator taxa to

be readily identified and would enhance the

capacity to monitor and mitigate the effects of

human activities on river ecosystems (Dedecker

et al. 2005, 2007).

The similarity of the most important variables

among the three focus taxa partially results from

the range of environmental features represented

by the dataset, because it can be expected that

variables covering a wide range of values will

more likely be selected. Many of the most

important variables, such as dissolved oxygen

and conductivity, are associated with organic

pollution. Organic wastewater pollution is an

important problem in Flemish surface waters

today (e.g. VMM 2003) and is clearly correlated

with variation in macrobenthic communities.

Autecological relationships of macroinverte-

brates are described in the literature (e.g. Tachet

et al. 2002). Knowledge of tolerance of certain

taxa to particular environmental conditions may

help in deciding which environmental variables

should be measured or preselecting input vari-

ables for predictive models. Thus, knowledge of

the autecology of taxa can be complementary to

automated input variable selection. A narrow

tolerance interval for an environmental charac-

teristic for a certain taxon can be expected to be

an important variable in predictive models for

that taxon. However, the detected range of

tolerance interval for a certain characteristic is

highly dependent on the range of the sampling

sites visited. Furthermore, the effect of one

variable can be confounded by interactions

between different characteristics (e.g. Gevrey

et al. 2006).

General comments and further research

Identification of key variables is important for

enhancing knowledge of river ecology and sup-

porting river management. Input variable selec-

tion can also improve the efficiency of data

collection since some variables may be irrelevant

to the problem being examined. Improvement of

river water quality may result in other, previously

ignored, variables becoming essential. For this

reason, expert knowledge remains crucial when it

comes to the construction of generalised and

robust models (Goethals 2005).

Although application of ANNs, in combination

with the SLOO input variable selection proce-

dure, are well accepted, other methods for input

variable selection and/or comparison of input

variable importance are available, such as corre-

spondence analysis (e.g. Ruse 1996) or principal

component analysis (Roadknight et al. 1997),

genetic algorithms (Goldberg 1989), senso-nets

(Schleiter et al. 2001), sensitivity analysis (Schle-

iter et al. 1999; Hoang et al. 2001) and progres-

sive elimination of the least important variables

(Walley and Fontama 1998). Nonetheless, the

simple selection method tested in this article

provided useful results. The added value of more

advanced techniques such as genetic algorithms

could be insignificant when, as in this case, the

available set of initial variables is small, and

consequently the calculation time for the proce-

dure used here will not become excessively long.

Stepwise input variable selection procedures were

previously tested for prediction of macroinverte-

brate taxa (e.g. Schleiter et al. 1999; Obach et al.

2001; Schleiter et al. 2001; Beauchard et al. 2003),

but these were unidirectional procedures. A

reversed procedure, in which variables are added

stepwise starting from one variable, has not yet

been tested. Due to the small number of variables

needed to obtain acceptable model performance,

the calculation effort could be reduced substan-

tially with a reversed method.

ANN architecture is generally highly problem

dependent (Maier and Dandy 2000). For this

reason, it is necessary to develop and optimise the

ANNs to obtain the best model configuration that

gives the lowest error during training. However,

throughout our selection procedure, all charac-

teristics of the ANN were unaltered, except for

the number of input variables. A more refined

procedure could include optimisation of neural

network architecture for each number of input

variables, although this would involve a substan-

tial increase in calculation time.

The taxonomic levels of identification used in

the present study are those defined within the

438 Aquat Ecol (2007) 41:427–441

123



TRIAD assessment method (Ministry of the

Flemish Community 2000). Although they are

commonly used in biological water quality assess-

ment systems (e.g. De Pauw and Vanhooren 1983;

Hawkes 1997; Gabriels et al. 2005), these levels

may be insufficient from the perspective of

biodiversity and conservation.

We recommend further work on optimisation

of the tested approach as well as comparison with

other variable selection techniques, such as the

already cited ones. Using abundance values, or a

rescaling of abundance values, instead of pres-

ence/absence data and the use of taxon-specific

models instead of one model for the whole

community might enhance model reliability, and

as a result possibly optimise the selection as well.

In order to determine which variable selection

method is the most appropriate for which prob-

lem, an extensive comparison should be elabo-

rated using the different methods with different

scenarios. Key considerations are calculation time

restrictions, data collection costs and required

model reliability, all dependent on the studied

problem.

Conclusions

ANNs were developed to predict absence or

presence of benthic macroinvertebrate taxa in

unnavigable watercourses in Flanders. A SLOO

procedure was followed to detect those river

characteristics which are most significant for

macrobenthic communities, resulting in simpli-

fied models with only slightly reduced predictive

performance. For the three taxa considered, the

major input variables included Julian day, con-

ductivity and dissolved oxygen concentration.

One may conclude that the presence/absence of

organic wastewater discharges had a major

influence on the macrobenthic communities in

Flemish watercourses during the period of sam-

pling. The sensitivity analysis illustrated that in

general the ecological relations were stable

during the selection procedure, in particular for

Erpobdella and Pisidium. For Chironomidae,

group thummi-plumosus, many input variables

had a complex relation with the probability of

presence. When only four variables were used,

the impact of pH becomes most important for

this taxon. This demonstrates that pruning pre-

dictive models can illuminate ecological relations

that remain hidden in more complex models. In

conclusion, a combination of input variable

selection with sensitivity analyses can contribute

to the development of reliable and ecologically

relevant ANN models.
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