m-systems of polar spaces and SPG reguli

D. Luyckx *

Abstract

It will be shown that every m-system of $W_{2 n+1}(q), Q^{-}(2 n+1, q)$ or $H\left(2 n, q^{2}\right)$ is an SPG regulus and hence gives rise to a semipartial geometry. We also briefly investigate the semipartial geometries, associated with the known m-systems of these polar spaces.

1 Introduction

A partial m-system \mathcal{M} of a polar space \mathcal{P} is a set of m-dimensional subspaces π_{1}, \ldots, π_{t} of \mathcal{P} such that each generator of \mathcal{P} containing an element $\pi_{i} \in \mathcal{M}$ has an empty intersection with $\left(\pi_{1} \cup \ldots \cup \pi_{t}\right) \backslash \pi_{i}$. Partial m-systems of polar spaces were introduced by Shult and Thas in [5]. They show that there exists an upper bound, which is independent of m, on the number of elements of a partial m-system and they call a partial m-system which meets this upper bound an m-system. We mention the size of an m-system \mathcal{M} for the finite classical polar spaces:

$$
\begin{array}{ll}
\text { if } \quad \mathcal{P}=W_{2 n+1}(q), & \text { then }|\mathcal{M}|=q^{n+1}+1, \\
\text { if } \quad \mathcal{P}=Q(2 n, q), & \text { then }|\mathcal{M}|=q^{n}+1, \\
\text { if } \quad \mathcal{P}=Q^{+}(2 n+1, q), & \text { then }|\mathcal{M}|=q^{n}+1, \\
\text { if } \mathcal{P}=Q^{-}(2 n+1, q), & \text { then }|\mathcal{M}|=q^{n+1}+1, \\
\text { if } \quad \mathcal{P}=H\left(2 n, q^{2}\right), & \text { then }|\mathcal{M}|=q^{2 n+1}+1, \\
\text { if } \quad \mathcal{P}=H\left(2 n+1, q^{2}\right), & \text { then }|\mathcal{M}|=q^{2 n+1}+1 . \tag{6}
\end{array}
$$

[^0]The union of the elements of an m-system \mathcal{M} will be denoted by $\tilde{\mathcal{M}}$. It can be shown that m-systems of certain polar spaces have two intersection numbers with hyperplanes.

Theorem 1.1 (Shult and Thas [5]). Every m-system of a polar space $\mathcal{P} \in\left\{W_{2 n+1}(q), Q^{-}(2 n+1, q), H\left(2 n, q^{2}\right)\right\}$ has two intersection numbers with respect to hyperplanes, namely:
(a) If $\mathcal{P}=W_{2 n+1}(q)$ and $H=p^{\perp}$, where p^{\perp} denotes the unique image of p with respect to the symplectic polarity defining $W_{2 n+1}(q)$, with p a point of $\tilde{\mathcal{M}}$, respectively p a point of $W_{2 n+1}(q) \backslash \tilde{\mathcal{M}}$, then

$$
\begin{aligned}
|\tilde{\mathcal{M}} \cap H| & =\frac{\left(q^{m+1}-1\right)\left(q^{n}+1\right)}{q-1}-q^{n}, \text { respectively } \\
|\tilde{\mathcal{M}} \cap H| & =\frac{\left(q^{m+1}-1\right)\left(q^{n}+1\right)}{q-1}
\end{aligned}
$$

(b) If $\mathcal{P}=Q^{-}(2 n+1, q)$ and H is the tangent hyperplane of the quadric $Q^{-}(2 n+1, q)$ at a point $p \in \tilde{\mathcal{M}}$, respectively the tangent hyperplane of $Q^{-}(2 n+1, q)$ at a point $p \notin \tilde{\mathcal{M}}$ or a non-tangent hyperplane of $Q^{-}(2 n+1, q)$, then

$$
\begin{aligned}
|\tilde{\mathcal{M}} \cap H| & =\frac{\left(q^{m+1}-1\right)\left(q^{n}+1\right)}{q-1}-q^{n}, \text { respectively } \\
|\tilde{\mathcal{M}} \cap H| & =\frac{\left(q^{m+1}-1\right)\left(q^{n}+1\right)}{q-1}
\end{aligned}
$$

(c) If $\mathcal{P}=H\left(2 n, q^{2}\right)$ and H is the tangent hyperplane of the hermitian variety $H\left(2 n, q^{2}\right)$ at a point $p \in \tilde{\mathcal{M}}$, respectively the tangent hyperplane of $H\left(2 n, q^{2}\right)$ at a point $p \notin \tilde{\mathcal{M}}$ or a non-tangent hyperplane of $H\left(2 n, q^{2}\right)$, then

$$
\begin{aligned}
& |\tilde{\mathcal{M}} \cap H|=\frac{\left(q^{2 m+2}-1\right)\left(q^{2 n-1}+1\right)}{q^{2}-1}-q^{2 n-1}, \text { respectively } \\
& |\tilde{\mathcal{M}} \cap H|=\frac{\left(q^{2 m+2}-1\right)\left(q^{2 n-1}+1\right)}{q^{2}-1}
\end{aligned}
$$

Theorem 1.1 has the following corollary.
Corollary 1.2 (Shult and Thas [5]). Every m-system of a polar space $\mathcal{P} \in\left\{W_{2 n+1}(q), Q^{-}(2 n+1, q), H\left(2 n, q^{2}\right)\right\}$ defines a strongly regular graph and a two-weight code.

2 A connection between m-systems and SPG reguli

An $S P G$ regulus of $\mathrm{PG}(n, q)$ is a set R of m-dimensional subspaces π_{1}, \ldots, π_{r}, $r>1$, of $\mathrm{PG}(n, q)$, satisfying:

SPG1 $\pi_{i} \cap \pi_{j}=\emptyset$ for all $i \neq j$.
SPG2 If $\mathrm{PG}(m+1, q)$ contains $\pi_{i} \in R$, then it has a point in common with either 0 or $\alpha(\alpha>0)$ spaces in $R \backslash\left\{\pi_{i}\right\}$. If $\mathrm{PG}(m+1, q)$ has no point in common with $\pi_{j} \in R$ for all $j \neq i$, then it is called a tangent $(m+1)$-space of R at π_{i}.

SPG3 If the point x of $\mathrm{PG}(n, q)$ is not contained in an element of R, then it is contained in a constant number $\theta(\theta \geq 0)$ of tangent $(m+1)$-spaces of R.

In [6], Thas shows that for $n \neq 2 m+1$, SPG3 holds if conditions SPG1 and SPG2 are satisfied, and if also the following two conditions hold:

SPG3' At each $\pi_{i} \in R$, the union of all tangent $(m+1)$-spaces is a $\mathrm{PG}(n-m-1, q)$.

SPG4' $r=q^{(n+1) / 2}+1$.
We now prove that for certain polar spaces, every m-system is an SPG regulus.

Theorem 2.1. If $\mathcal{P} \in\left\{W_{2 n+1}(q), Q^{-}(2 n+1, q), H\left(2 n, q^{2}\right)\right\}$, then all m systems of \mathcal{P} are $S P G$ reguli of the ambient space of \mathcal{P}.

Proof.
Let \mathcal{M} be an m-system of a polar space \mathcal{P}, with $\mathcal{P} \in\left\{W_{2 n+1}(q), Q^{-}(2 n+\right.$ $\left.1, q), H\left(2 n, q^{2}\right)\right\}$ and denote its ambient space by $\mathrm{PG}(k, t)$, where $(k, t) \in$ $\left\{(2 n+1, q),(2 n+1, q),\left(2 n, q^{2}\right)\right\}$. Let π_{m} be an element of \mathcal{M}. For $\pi_{m-1} \subseteq$ π_{m} consider an $(m+1)$-dimensional subspace π_{m+1} of $\mathrm{PG}(k, t)$ containing π_{m-1} and meeting \mathcal{P} in $\pi_{m-1} \mathcal{P}_{1}$, where \mathcal{P}_{1} is the polar space $W_{1}(q), Q^{+}(1, q)$ or $H\left(1, q^{2}\right)$ in the respective cases. Denote by X the number of points of $\tilde{\mathcal{M}}$ contained in $\pi_{m-1} \mathcal{P}_{1}$ and by Y the number of points of $\tilde{\mathcal{M}} \cap\left(\pi_{m+1}^{\perp} \backslash\right.$ π_{m-1}), with π_{m+1}^{\perp} the image of π_{m+1} with respect to the polarity defining \mathcal{P}. We now use Theorem 1.1 to count the number of pairs (H, x) with H a hyperplane containing π_{m+1} and x a point of $(H \cap \tilde{\mathcal{M}}) \backslash \pi_{m+1}$. This yields the following in the respective cases.
(a) For $\mathcal{P}=W_{2 n+1}(q)$ and $\mathcal{P}=Q^{-}(2 n+1, q)$ we obtain the same result:

$$
\begin{aligned}
& \left(Y+\frac{q^{m}-1}{q-1}\right)\left(\frac{\left(q^{m+1}-1\right)\left(q^{n}+1\right)}{q-1}-q^{n}-X\right) \\
& +\left(\frac{q^{2 n-m}-1}{q-1}-\frac{q^{m}-1}{q-1}-Y\right)\left(\frac{\left(q^{m+1}-1\right)\left(q^{n}+1\right)}{q-1}-X\right) \\
& \quad=\left(\left(q^{n+1}+1\right) \frac{q^{m+1}-1}{q-1}-X\right) \frac{q^{2 n-m-1}-1}{q-1},
\end{aligned}
$$

from which we obtain

$$
(q-1) Y+q^{n-m-1}(q-1) X-q^{n}+q^{n-m-1}-q^{m+1}+q^{m}=0 .
$$

(b) For $\mathcal{P}=H\left(2 n, q^{2}\right)$ the result is:

$$
\begin{aligned}
& \left(Y+\frac{q^{2 m}-1}{q^{2}-1}\right)\left(\frac{\left(q^{2 m+2}-1\right)\left(q^{2 n-1}+1\right)}{q^{2}-1}-q^{2 n-1}-X\right) \\
& +\left(\frac{q^{4 n-2 m-2}-1}{q^{2}-1}-\frac{q^{2 m}-1}{q^{2}-1}-Y\right)\left(\frac{\left(q^{2 m+2}-1\right)\left(q^{2 n-1}+1\right)}{q^{2}-1}-X\right) \\
& \quad=\left(\left(q^{2 n+1}+1\right) \frac{q^{2 m+2}-1}{q^{2}-1}-X\right) \frac{q^{4 n-2 m-4}-1}{q^{2}-1}
\end{aligned}
$$

which yields

$$
\left(q^{2}-1\right) Y+q^{2 n-2 m-3}\left(q^{2}-1\right) X-q^{2 n-1}+q^{2 n-2 m-3}-q^{2 m+2}+q^{2 m}=0 .
$$

Now consider the special case where $\pi_{m}=\left\langle\pi_{m-1}, y\right\rangle \in \mathcal{M}$, for some $y \in \mathcal{P}_{1}$. In this case $Y=0$ and we can determine X from the above equalities:
(a) For $\mathcal{P}=W_{2 n+1}(q)$ and $\mathcal{P}=Q^{-}(2 n+1, q)$ we obtain

$$
\begin{equation*}
X=\frac{q^{m+1}-1}{q-1}+q^{2 m-n+1} \tag{7}
\end{equation*}
$$

here we put $\alpha:=q^{2 m-n+1}$.
(b) For $\mathcal{P}=H\left(2 n, q^{2}\right)$ we find

$$
\begin{equation*}
X=\frac{q^{2 m+2}-1}{q^{2}-1}+q^{4 m-2 n+3} \tag{8}
\end{equation*}
$$

and in this case $\alpha:=q^{4 m-2 n+3}$.
The value of X tells us that every $(m+1)$-dimensional subspace of $\mathrm{PG}(k, t)$, containing $\pi_{m} \in \mathcal{M}$ and not contained in π_{m}^{\perp}, has exactly α points in common with $\tilde{\mathcal{M}} \backslash \pi_{m}$. From the definition of an m-system, it is known that every $(m+1)$-dimensional subspace of π_{m}^{\perp} which contains π_{m}, has an empty intersection with all elements of $\mathcal{M} \backslash\left\{\pi_{m}\right\}$. Hence the union of all tangent ($m+1$)-spaces of \mathcal{M} at π_{m} is exactly π_{m}^{\perp} and thus has the dimension required in SPG3' of the alternative definition of an SPG regulus. As the number of elements of an m-system, see (1), (4) and (5), is exactly the value required in SPG4', it follows that \mathcal{M} satisfies SPG1, SPG2, SPG3' and SPG4', so it is an SPG regulus in $\mathrm{PG}(k, t)$ with parameters
(a) for $\mathcal{P}=W_{2 n+1}(q)$ or $\mathcal{P}=Q^{-}(2 n+1, q)$:

$$
r=q^{n+1}+1, \quad \alpha=q^{2 m-n+1} \quad \text { and } \quad \theta=q^{n-m}+1
$$

(b) for $\mathcal{P}=H\left(2 n, q^{2}\right)$:

$$
r=q^{2 n+1}+1, \quad \alpha=q^{4 m-2 n+3} \quad \text { and } \quad \theta=q^{2 n-2 m-1}+1
$$

We mention two interesting corollaries of the previous theorem.
Corollary 2.2. For any m-system of $\mathcal{P} \in\left\{W_{2 n+1}(q), Q^{-}(2 n+1, q)\right.$, $\left.H\left(2 n, q^{2}\right)\right\}$ there holds that $2 m+1 \geq n$.

Proof.
In (7) and (8), $X \geq\left|\pi_{m}\right|$ must hold. The result follows.
Remark.
This inequality was already found by Hamilton and Mathon [2]. However the proofs are distinct.

Corollary 2.3. If \mathcal{M} is a 1-system of $Q^{-}(7, q)$, then every line of $Q^{-}(7, q)$ meets $\tilde{\mathcal{M}}$ in 0, 1, 2 or $q+1$ points. If a line of $Q^{-}(7, q)$ contains $q+1$ points of $\tilde{\mathcal{M}}$, then it is necessarily a line of \mathcal{M}.

Proof.
This follows immediately from the proof of Theorem 2.1, applied to 1systems of the quadric $Q^{-}(7, q)$.

3 semipartial geometries arising from the known m-systems

In [6], Thas shows that every SPG regulus gives rise to a semipartial geometry. Hence, by the previous theorem, every m-system of $W_{2 n+1}(q)$, $Q^{-}(2 n+1, q)$ or $H\left(2 n, q^{2}\right)$ also gives rise to a semipartial geometry. For spreads of $H\left(2 n, q^{2}\right)$ or $Q^{-}(2 n+1, q)$, this was already observed by Thas in [6]. For arbitrary m-systems, the corresponding semipartial geometries have the following parameters:
(a) for $\mathcal{P}=W_{2 n+1}(q)$ or $\mathcal{P}=Q^{-}(2 n+1, q)$:

$$
s=q^{m+1}-1, t=q^{n+1}, \alpha=q^{2 m-n+1} \text { and } \mu=q^{m+1}\left(q^{m+1}-1\right) ;
$$

(b) for $\mathcal{P}=H\left(2 n, q^{2}\right)$:

$$
s=q^{2 m+2}-1, t=q^{2 n+1}, \alpha=q^{4 m-2 n+3} \text { and } \mu=q^{2 m+2}\left(q^{2 m+2}-1\right) .
$$

For several values of m and n, these parameters are new. Unfortunately, most of the known m-systems of the considered polar spaces do not yield new semipartial geometries.

First we remark that a lot of examples of m-systems arise from a known m-system in a small polar space by applying the so-called "trace trick". This means that the trace map is used to reduce the field while at the same time increasing the dimension, see [3] for an algebraic approach to the trace trick and [5] for a geometric explanation of this method. The corresponding semipartial geometry is clearly isomorphic to the one arising from the initial m-system in the small polar space, so m-systems which
are constructed with the trace trick never yield new semipartial geometries. This observation highly reduces the number of candidates for new semipartial geometries.

Of the hermitian polar space $H\left(2 n, q^{2}\right)$, only one m-system is known, apart from those obtained by the trace trick from this one, namely the point set of $H\left(2, q^{2}\right)$ considered as an ovoid (or a spread) of $H\left(2, q^{2}\right)$. The associated semipartial geometry is well known and was introduced by Debroey and Thas in [1]; it is often denoted by $T_{2}^{*}(\mathcal{U})$.

For the elliptic quadric $Q^{-}(2 n+1, q)$, the situation is similar. First we observe that for q even, every m-system of $Q^{-}(2 n+1, q)$ is also an m-system of $W_{2 n+1}(q)$. This can be seen as follows. It is possible to embed $Q^{-}(2 n+1, q)$ in a parabolic polar space $Q(2 n+2, q)$ such that the nucleus of $Q(2 n+2, q)$ is not contained in the ambient space $\mathrm{PG}(2 n+1, q)$ of $Q^{-}(2 n+1, q)$. Clearly, every m-system of $Q^{-}(2 n+1, q)$ is an m-system of $Q(2 n+2, q)$ as well. If we project $Q(2 n+2, q)$ from its nucleus onto $\mathrm{PG}(2 n+1, q)$, we obtain a symplectic polar space $W_{2 n+1}(q)$. Now it is easily seen that the projection of the m-system of $Q(2 n+2, q)$ is an m-system of $W_{2 n+1}(q)$. As this m-system is completely contained in $\operatorname{PG}(2 n+1, q)$, it is projected onto itself and this shows that every m-system of $Q^{-}(2 n+1, q)$, q even, is an m-system of $W_{2 n+1}(q)$. Hence we may omit the q even case. If q is odd, m-systems are only known for the small dimensions, except for those which are constructed with the trace trick from the small ones. It is known that $Q^{-}(5, q)$ has several non-isomorphic spreads, but the case of spreads of elliptic quadrics was already discussed in [6]. Moreover, $Q^{-}(5, q)$ has no ovoids and the point set of $Q^{-}(3, q)$, considered as an ovoid of $Q^{-}(3, q)$, yields the well known semipartial geometry $T_{3}^{*}(\mathcal{O})$, with $\mathcal{O}=$ $Q^{-}(3, q)$. Consequently, nothing new arises here.

Finally, we consider the known m-systems of $W_{2 n+1}(q)$. The semipartial geometry corresponding to the regular spread of $W_{2 n+1}(q)$, that is, a spread of $W_{2 n+1}(q)$ which is regular considered as an n-spread of $\mathrm{PG}(2 n+1, q)$, was given as an example in [6]. Other spreads of $W_{2 n+1}(q)$ are known and they yield other semipartial geometries with the same parameters. Candidates for new semipartial geometries are given by the m-systems of $W_{2 n+1}(2)$, $n \leq 4$, which were found by computer by Hamilton and Mathon in [2]. Some of these yield indeed new semipartial geometries, but their parameters are not new. Very recently, A. Offer ([4]) discovered a new class of spreads of the hexagon $H\left(2^{2 h}\right)$, which yields a new class of 1-systems of the parabolic quadric $Q\left(6,2^{2 h}\right)$. By projection from the nucleus of $Q\left(6,2^{2 h}\right)$ onto a 5 -dimensional subspace not containing the nucleus, a new class of 1 -systems of $W_{5}\left(2^{2 h}\right)$ is obtained. These 1 -systems are distinct from the only previously known 1 -system of $W_{5}(q)$, which arises from $H\left(2, q^{2}\right)$ as described in [5, Theorem 14] and the semipartial geometry of which is isomorphic to $T_{2}^{*}(\mathcal{U})$. Hence this new class of spreads of $\mathrm{H}\left(2^{2 h}\right)$ implies the existence of a new class of semipartial geometries for $q=2^{2 h}$, but once again their parameters are not new. All other known m-systems of $W_{2 n+1}(q)$ give rise to known semipartial geometries, as they are always obtained from an m-system in a small polar space, the semipartial geometry of which is well known.

References

[1] I. Debroey and J. A. Thas. On semipartial geometries. J. Combin. Theory Ser. A, 25:242-250, 1978.
[2] N. Hamilton and R. Mathon. Existence and non-existence of m-systems of polar spaces. European J. Combin., 22(1):51-61, 2001.
[3] N. Hamilton and C. Quinn. m-systems of polar spaces and maximal arcs in projective planes. Bull. Belg. Math. Soc., 7(2):237-248, 2000.
[4] A. Offer. Translation spreads of the split cayley hexagon. To appear in Advances in Geometry, 2002.
[5] E. E. Shult and J. A. Thas. m-systems of polar spaces. J. Combin. Theory Ser. A, 68(1):184-204, 1994.
[6] J. A. Thas. Semi-partial geometries and spreads of classical polar spaces. J. Combin. Theory Ser. A, 35:58-66, 1983.

Ghent University,
Department of Pure Mathematics and Computer Algebra
Galglaan 2, B-9000 Gent
Belgium
email: dluyckx@cage.rug.ac.be

[^0]: *The author is Research Assistant of the Fund for Scientific Research - Flanders (Belgium)(F.W.O.)

 Received by the editors March 2001.
 Communicated by J. Thas.
 1991 Mathematics Subject Classification : 51E14, 51E20.
 Key words and phrases : m-system, SPG regulus, semipartial geometry.

