m-systems of polar spaces and SPG reguli

D. Luyckx *

Abstract

It will be shown that every *m*-system of $W_{2n+1}(q)$, $Q^{-}(2n+1,q)$ or $H(2n,q^2)$ is an SPG regulus and hence gives rise to a semipartial geometry. We also briefly investigate the semipartial geometries, associated with the known *m*-systems of these polar spaces.

1 Introduction

A partial m-system \mathcal{M} of a polar space \mathcal{P} is a set of m-dimensional subspaces π_1, \ldots, π_t of \mathcal{P} such that each generator of \mathcal{P} containing an element $\pi_i \in \mathcal{M}$ has an empty intersection with $(\pi_1 \cup \ldots \cup \pi_t) \setminus \pi_i$. Partial m-systems of polar spaces were introduced by Shult and Thas in [5]. They show that there exists an upper bound, which is independent of m, on the number of elements of a partial m-system and they call a partial m-system which meets this upper bound an m-system. We mention the size of an m-system \mathcal{M} for the finite classical polar spaces:

if
$$\mathcal{P} = W_{2n+1}(q)$$
, then $|\mathcal{M}| = q^{n+1} + 1$, (1)

if
$$\mathcal{P} = Q(2n,q)$$
, then $|\mathcal{M}| = q^n + 1$, (2)

if
$$\mathcal{P} = Q^+(2n+1,q)$$
, then $|\mathcal{M}| = q^n + 1$, (3)

if
$$\mathcal{P} = Q^{-}(2n+1,q)$$
, then $|\mathcal{M}| = q^{n+1}+1$, (4)

if
$$\mathcal{P} = H(2n, q^2)$$
, then $|\mathcal{M}| = q^{2n+1} + 1$, (5)

if
$$\mathcal{P} = H(2n+1, q^2)$$
, then $|\mathcal{M}| = q^{2n+1} + 1.$ (6)

*The author is Research Assistant of the Fund for Scientific Research – Flanders (Belgium)(F.W.O.)

Received by the editors March 2001.

Communicated by J. Thas.

Key words and phrases : m-system, SPG regulus, semipartial geometry.

Bull. Belg. Math. Soc. 9 (2002), 177-183

¹⁹⁹¹ Mathematics Subject Classification : 51E14, 51E20.

The union of the elements of an *m*-system \mathcal{M} will be denoted by \mathcal{M} . It can be shown that *m*-systems of certain polar spaces have two intersection numbers with hyperplanes.

Theorem 1.1 (Shult and Thas [5]). Every *m*-system of a polar space $\mathcal{P} \in \{W_{2n+1}(q), Q^{-}(2n+1, q), H(2n, q^2)\}$ has two intersection numbers with respect to hyperplanes, namely:

(a) If $\mathcal{P} = W_{2n+1}(q)$ and $H = p^{\perp}$, where p^{\perp} denotes the unique image of p with respect to the symplectic polarity defining $W_{2n+1}(q)$, with pa point of $\tilde{\mathcal{M}}$, respectively p a point of $W_{2n+1}(q) \setminus \tilde{\mathcal{M}}$, then

$$\begin{split} |\tilde{\mathcal{M}} \cap H| &= \frac{(q^{m+1}-1)(q^n+1)}{q-1} - q^n, \ \text{respectively} \\ |\tilde{\mathcal{M}} \cap H| &= \frac{(q^{m+1}-1)(q^n+1)}{q-1}. \end{split}$$

(b) If $\mathcal{P} = Q^{-}(2n+1,q)$ and H is the tangent hyperplane of the quadric $Q^{-}(2n+1,q)$ at a point $p \in \tilde{\mathcal{M}}$, respectively the tangent hyperplane of $Q^{-}(2n+1,q)$ at a point $p \notin \tilde{\mathcal{M}}$ or a non-tangent hyperplane of $Q^{-}(2n+1,q)$, then

$$\begin{split} |\tilde{\mathcal{M}} \cap H| &= \frac{(q^{m+1}-1)(q^n+1)}{q-1} - q^n, \ \text{respectively} \\ |\tilde{\mathcal{M}} \cap H| &= \frac{(q^{m+1}-1)(q^n+1)}{q-1}. \end{split}$$

(c) If $\mathcal{P} = H(2n, q^2)$ and H is the tangent hyperplane of the hermitian variety $H(2n, q^2)$ at a point $p \in \tilde{\mathcal{M}}$, respectively the tangent hyperplane of $H(2n, q^2)$ at a point $p \notin \tilde{\mathcal{M}}$ or a non-tangent hyperplane of $H(2n, q^2)$, then

$$\begin{split} |\tilde{\mathcal{M}} \cap H| &= \frac{(q^{2m+2}-1)(q^{2n-1}+1)}{q^2-1} - q^{2n-1}, \ \text{respectively} \\ |\tilde{\mathcal{M}} \cap H| &= \frac{(q^{2m+2}-1)(q^{2n-1}+1)}{q^2-1}. \end{split}$$

Theorem 1.1 has the following corollary.

Corollary 1.2 (Shult and Thas [5]). Every *m*-system of a polar space $\mathcal{P} \in \{W_{2n+1}(q), Q^{-}(2n+1, q), H(2n, q^2)\}$ defines a strongly regular graph and a two-weight code.

2 A connection between *m*-systems and SPG reguli

An SPG regulus of PG(n, q) is a set R of m-dimensional subspaces π_1, \ldots, π_r , r > 1, of PG(n, q), satisfying:

SPG1 $\pi_i \cap \pi_j = \emptyset$ for all $i \neq j$.

- **SPG2** If $\mathsf{PG}(m+1,q)$ contains $\pi_i \in R$, then it has a point in common with either 0 or α ($\alpha > 0$) spaces in $R \setminus \{\pi_i\}$. If $\mathsf{PG}(m+1,q)$ has no point in common with $\pi_j \in R$ for all $j \neq i$, then it is called a tangent (m+1)-space of R at π_i .
- **SPG3** If the point x of PG(n, q) is not contained in an element of R, then it is contained in a constant number θ ($\theta \ge 0$) of tangent (m+1)-spaces of R.

In [6], Thas shows that for $n \neq 2m+1$, **SPG3** holds if conditions **SPG1** and **SPG2** are satisfied, and if also the following two conditions hold:

SPG3' At each $\pi_i \in R$, the union of all tangent (m + 1)-spaces is a $\mathsf{PG}(n - m - 1, q)$.

SPG4' $r = q^{(n+1)/2} + 1.$

We now prove that for certain polar spaces, every m-system is an SPG regulus.

Theorem 2.1. If $\mathcal{P} \in \{W_{2n+1}(q), Q^{-}(2n+1,q), H(2n,q^2)\}$, then all msystems of \mathcal{P} are SPG reguli of the ambient space of \mathcal{P} .

Proof.

Let \mathcal{M} be an *m*-system of a polar space \mathcal{P} , with $\mathcal{P} \in \{W_{2n+1}(q), Q^{-}(2n + 1, q), H(2n, q^2)\}$ and denote its ambient space by $\mathsf{PG}(k, t)$, where $(k, t) \in \{(2n+1,q), (2n+1,q), (2n,q^2)\}$. Let π_m be an element of \mathcal{M} . For $\pi_{m-1} \subseteq \pi_m$ consider an (m+1)-dimensional subspace π_{m+1} of $\mathsf{PG}(k, t)$ containing π_{m-1} and meeting \mathcal{P} in $\pi_{m-1}\mathcal{P}_1$, where \mathcal{P}_1 is the polar space $W_1(q), Q^+(1,q)$ or $H(1,q^2)$ in the respective cases. Denote by X the number of points of $\tilde{\mathcal{M}} \cap (\pi_{m+1}^{\perp} \setminus \pi_{m-1})$, with π_{m+1}^{\perp} the image of π_{m+1} with respect to the polarity defining \mathcal{P} . We now use Theorem 1.1 to count the number of pairs (H, x) with H a hyperplane containing π_{m+1} and x a point of $(H \cap \tilde{\mathcal{M}}) \setminus \pi_{m+1}$. This yields the following in the respective cases.

(a) For $\mathcal{P} = W_{2n+1}(q)$ and $\mathcal{P} = Q^{-}(2n+1,q)$ we obtain the same result:

$$\begin{pmatrix} Y + \frac{q^m - 1}{q - 1} \end{pmatrix} \left(\frac{(q^{m+1} - 1)(q^n + 1)}{q - 1} - q^n - X \right) \\ + \left(\frac{q^{2n-m} - 1}{q - 1} - \frac{q^m - 1}{q - 1} - Y \right) \left(\frac{(q^{m+1} - 1)(q^n + 1)}{q - 1} - X \right) \\ = \left((q^{n+1} + 1)\frac{q^{m+1} - 1}{q - 1} - X \right) \frac{q^{2n-m-1} - 1}{q - 1}$$

from which we obtain

$$(q-1)Y + q^{n-m-1}(q-1)X - q^n + q^{n-m-1} - q^{m+1} + q^m = 0.$$

(b) For $\mathcal{P} = H(2n, q^2)$ the result is:

$$\begin{split} \left(Y + \frac{q^{2m} - 1}{q^2 - 1}\right) \left(\frac{(q^{2m+2} - 1)(q^{2n-1} + 1)}{q^2 - 1} - q^{2n-1} - X\right) \\ + \left(\frac{q^{4n-2m-2} - 1}{q^2 - 1} - \frac{q^{2m} - 1}{q^2 - 1} - Y\right) \left(\frac{(q^{2m+2} - 1)(q^{2n-1} + 1)}{q^2 - 1} - X\right) \\ &= \left((q^{2n+1} + 1)\frac{q^{2m+2} - 1}{q^2 - 1} - X\right) \frac{q^{4n-2m-4} - 1}{q^2 - 1}, \end{split}$$

which yields

$$(q^{2}-1)Y + q^{2n-2m-3}(q^{2}-1)X - q^{2n-1} + q^{2n-2m-3} - q^{2m+2} + q^{2m} = 0.$$

Now consider the special case where $\pi_m = \langle \pi_{m-1}, y \rangle \in \mathcal{M}$, for some $y \in \mathcal{P}_1$. In this case Y = 0 and we can determine X from the above equalities:

(a) For $\mathcal{P} = W_{2n+1}(q)$ and $\mathcal{P} = Q^{-}(2n+1,q)$ we obtain

$$X = \frac{q^{m+1} - 1}{q - 1} + q^{2m - n + 1},\tag{7}$$

here we put $\alpha := q^{2m-n+1}$.

(b) For $\mathcal{P} = H(2n, q^2)$ we find

$$X = \frac{q^{2m+2} - 1}{q^2 - 1} + q^{4m-2n+3},$$
(8)

and in this case $\alpha := q^{4m-2n+3}$.

The value of X tells us that every (m+1)-dimensional subspace of $\mathsf{PG}(k, t)$, containing $\pi_m \in \mathcal{M}$ and not contained in π_m^{\perp} , has exactly α points in common with $\tilde{\mathcal{M}} \setminus \pi_m$. From the definition of an *m*-system, it is known that every (m+1)-dimensional subspace of π_m^{\perp} which contains π_m , has an empty intersection with all elements of $\mathcal{M} \setminus \{\pi_m\}$. Hence the union of all tangent (m+1)-spaces of \mathcal{M} at π_m is exactly π_m^{\perp} and thus has the dimension required in **SPG3'** of the alternative definition of an SPG regulus. As the number of elements of an *m*-system, see (1), (4) and (5), is exactly the value required in **SPG4'**, it follows that \mathcal{M} satisfies **SPG1**, **SPG2**, **SPG3'** and **SPG4'**, so it is an SPG regulus in $\mathsf{PG}(k, t)$ with parameters

(a) for
$$\mathcal{P} = W_{2n+1}(q)$$
 or $\mathcal{P} = Q^{-}(2n+1,q)$:
 $r = q^{n+1} + 1, \quad \alpha = q^{2m-n+1} \text{ and } \theta = q^{n-m} + 1;$

(b) for
$$\mathcal{P} = H(2n, q^2)$$
:
 $r = q^{2n+1} + 1$, $\alpha = q^{4m-2n+3}$ and $\theta = q^{2n-2m-1} + 1$.

We mention two interesting corollaries of the previous theorem.

Corollary 2.2. For any m-system of $\mathcal{P} \in \{W_{2n+1}(q), Q^-(2n+1,q), H(2n,q^2)\}$ there holds that $2m+1 \ge n$.

Proof.

In (7) and (8), $X \ge |\pi_m|$ must hold. The result follows.

Remark.

This inequality was already found by Hamilton and Mathon [2]. However the proofs are distinct.

Corollary 2.3. If \mathcal{M} is a 1-system of $Q^{-}(7, q)$, then every line of $Q^{-}(7, q)$ meets $\tilde{\mathcal{M}}$ in 0, 1, 2 or q + 1 points. If a line of $Q^{-}(7, q)$ contains q + 1points of $\tilde{\mathcal{M}}$, then it is necessarily a line of \mathcal{M} .

Proof.

This follows immediately from the proof of Theorem 2.1, applied to 1-systems of the quadric $Q^{-}(7, q)$.

3 semipartial geometries arising from the known *m*-systems

In [6], Thas shows that every SPG regulus gives rise to a semipartial geometry. Hence, by the previous theorem, every *m*-system of $W_{2n+1}(q)$, $Q^{-}(2n + 1, q)$ or $H(2n, q^2)$ also gives rise to a semipartial geometry. For spreads of $H(2n, q^2)$ or $Q^{-}(2n + 1, q)$, this was already observed by Thas in [6]. For arbitrary *m*-systems, the corresponding semipartial geometries have the following parameters:

(a) for
$$\mathcal{P} = W_{2n+1}(q)$$
 or $\mathcal{P} = Q^{-}(2n+1,q)$:
 $s = q^{m+1} - 1, \ t = q^{n+1}, \ \alpha = q^{2m-n+1} \text{ and } \mu = q^{m+1}(q^{m+1} - 1);$

(b) for
$$\mathcal{P} = H(2n, q^2)$$
:

$$s = q^{2m+2} - 1$$
, $t = q^{2n+1}$, $\alpha = q^{4m-2n+3}$ and $\mu = q^{2m+2}(q^{2m+2} - 1)$.

For several values of m and n, these parameters are new. Unfortunately, most of the known m-systems of the considered polar spaces do not yield new semipartial geometries.

First we remark that a lot of examples of m-systems arise from a known m-system in a small polar space by applying the so-called "trace trick". This means that the trace map is used to reduce the field while at the same time increasing the dimension, see [3] for an algebraic approach to the trace trick and [5] for a geometric explanation of this method. The corresponding semipartial geometry is clearly isomorphic to the one arising from the initial m-system in the small polar space, so m-systems which

are constructed with the trace trick never yield new semipartial geometries. This observation highly reduces the number of candidates for new semipartial geometries.

Of the hermitian polar space $H(2n, q^2)$, only one *m*-system is known, apart from those obtained by the trace trick from this one, namely the point set of $H(2, q^2)$ considered as an ovoid (or a spread) of $H(2, q^2)$. The associated semipartial geometry is well known and was introduced by Debroey and Thas in [1]; it is often denoted by $T_2^*(\mathcal{U})$.

For the elliptic quadric $Q^{-}(2n+1,q)$, the situation is similar. First we observe that for q even, every m-system of $Q^{-}(2n+1,q)$ is also an *m*-system of $W_{2n+1}(q)$. This can be seen as follows. It is possible to embed $Q^{-}(2n+1,q)$ in a parabolic polar space Q(2n+2,q) such that the nucleus of Q(2n+2,q) is not contained in the ambient space $\mathsf{PG}(2n+1,q)$ of $Q^{-}(2n+1,q)$. Clearly, every *m*-system of $Q^{-}(2n+1,q)$ is an *m*-system of Q(2n+2,q) as well. If we project Q(2n+2,q) from its nucleus onto $\mathsf{PG}(2n+1,q)$, we obtain a symplectic polar space $W_{2n+1}(q)$. Now it is easily seen that the projection of the *m*-system of Q(2n+2,q) is an *m*-system of $W_{2n+1}(q)$. As this *m*-system is completely contained in $\mathsf{PG}(2n+1,q)$, it is projected onto itself and this shows that every *m*-system of $Q^{-}(2n+1,q)$, q even, is an m-system of $W_{2n+1}(q)$. Hence we may omit the q even case. If q is odd, m-systems are only known for the small dimensions, except for those which are constructed with the trace trick from the small ones. It is known that $Q^{-}(5,q)$ has several non-isomorphic spreads, but the case of spreads of elliptic quadrics was already discussed in [6]. Moreover, $Q^{-}(5,q)$ has no ovoids and the point set of $Q^{-}(3,q)$, considered as an ovoid of $Q^{-}(3,q)$, yields the well known semipartial geometry $T_{3}^{*}(\mathcal{O})$, with $\mathcal{O} =$ $Q^{-}(3,q)$. Consequently, nothing new arises here.

Finally, we consider the known *m*-systems of $W_{2n+1}(q)$. The semipartial geometry corresponding to the regular spread of $W_{2n+1}(q)$, that is, a spread of $W_{2n+1}(q)$ which is regular considered as an *n*-spread of $\mathsf{PG}(2n+1,q)$, was given as an example in [6]. Other spreads of $W_{2n+1}(q)$ are known and they yield other semipartial geometries with the same parameters. Candidates for new semipartial geometries are given by the *m*-systems of $W_{2n+1}(2)$, $n \leq 4$, which were found by computer by Hamilton and Mathon in [2]. Some of these yield indeed new semipartial geometries, but their parameters are not new. Very recently, A. Offer ([4]) discovered a new class of spreads of the hexagon $H(2^{2h})$, which yields a new class of 1-systems of the parabolic quadric $Q(6, 2^{2h})$. By projection from the nucleus of $Q(6, 2^{2h})$ onto a 5-dimensional subspace not containing the nucleus, a new class of 1-systems of $W_5(2^{2h})$ is obtained. These 1-systems are distinct from the only previously known 1-system of $W_5(q)$, which arises from $H(2,q^2)$ as described in [5, Theorem 14] and the semipartial geometry of which is isomorphic to $T_2^*(\mathcal{U})$. Hence this new class of spreads of $H(2^{2h})$ implies the existence of a new class of semipartial geometries for $q = 2^{2h}$, but once again their parameters are not new. All other known m-systems of $W_{2n+1}(q)$ give rise to known semipartial geometries, as they are always obtained from an *m*-system in a small polar space, the semipartial geometry of which is well known.

References

- I. Debroey and J. A. Thas. On semipartial geometries. J. Combin. Theory Ser. A, 25:242–250, 1978.
- [2] N. Hamilton and R. Mathon. Existence and non-existence of *m*-systems of polar spaces. *European J. Combin.*, 22(1):51–61, 2001.
- [3] N. Hamilton and C. Quinn. *m*-systems of polar spaces and maximal arcs in projective planes. *Bull. Belg. Math. Soc.*, 7(2):237–248, 2000.
- [4] A. Offer. Translation spreads of the split cayley hexagon. To appear in Advances in Geometry, 2002.
- [5] E. E. Shult and J. A. Thas. *m*-systems of polar spaces. J. Combin. Theory Ser. A, 68(1):184–204, 1994.
- [6] J. A. Thas. Semi-partial geometries and spreads of classical polar spaces. J. Combin. Theory Ser. A, 35:58–66, 1983.

Ghent University, Department of Pure Mathematics and Computer Algebra Galglaan 2, B-9000 Gent Belgium *email* : dluyckx@cage.rug.ac.be