Affine embeddings of $(0, \alpha)$-geometries

F. De Clerck
N. De Feyter*
J. A. Thas

Abstract

It is the purpose of this research note to give an overview of the recent results on full embeddings of $(0, \alpha)$-geometries in affine spaces.

1 Definitions

A $(0, \alpha)$-geometry $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathrm{I})$ is a connected partial linear space of order (s, t) with the property that for every anti-flag (p, L) the number $\alpha(p, L)$ of lines of \mathcal{S} through p intersecting L equals 0 or a constant α. This class of geometries generalizes the class of partial geometries introduced by Bose [1]. In a partial geometry, denoted as $\operatorname{pg}(s, t, \alpha)$, $\alpha(p, L)=\alpha$ for every antiflag (p, L). A $\operatorname{pg}(s, t, t)$ is also called a (Bruck) net, while a $\mathrm{pg}(s, t, 1)$ is a generalized quadrangle of order (s, t).

The point graph of a partial geometry is strongly regular. If the point graph of a $(0, \alpha)$ geometry \mathcal{S} is strongly regular, then \mathcal{S} is called a semipartial geometry $\operatorname{spg}(s, t, \alpha, \mu)$ [10]. Here μ is the number of vertices adjacent to two non-adjacent vertices in the point graph of \mathcal{S}. Every partial geometry is a semipartial geometry, but not vice versa. A semipartial geometry which is not a partial geometry is called a proper semipartial geometry.

A $(0, \alpha)$-geometry $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathrm{I})$ is said to be fully embedded (or, shortly, embedded) in an affine space $\operatorname{AG}(n, q)$ if the lines of \mathcal{S} are lines of $\operatorname{AG}(n, q)$, if \mathcal{P} is the set of all affine points on the lines of \mathcal{S} and if I is as in $\mathrm{AG}(n, q)$. We also require that \mathcal{P} spans $\mathrm{AG}(n, q)$. We say that \mathcal{S} has a planar net if there is an affine plane such that the points and lines of \mathcal{S} in it form a net. We denote by Π_{∞} the space at infinity of $\operatorname{AG}(n, q)$. If $\alpha>1$ it can be proved (see for example [3]) that if a plane π containing two intersecting lines of \mathcal{S} does not contain a planar net of \mathcal{S}, then $\alpha=2, q=2^{h}$ and the lines of \mathcal{S} in π form a dual oval with nucleus $\pi \cap \Pi_{\infty}$. If $\alpha=1$ and if the plane π contains two intersecting lines of \mathcal{S}, then either π contains a planar net of \mathcal{S} or \mathcal{S} and π have γ concurrent lines in common, $2 \leq \gamma \leq q+1$. Hence, in this case there is less structure and we think that a classification of $(0,1)$-geometries fully embedded in an affine space is very difficult. For some extra information on this case we refer to [3].

[^0]
2 Motivation

The linear representation $T_{n-1}^{*}\left(\mathcal{K}_{\infty}\right)$ of a set $\mathcal{K}_{\infty} \subseteq \Pi_{\infty}$ is the partial linear space embedded in $\mathrm{AG}(n, q)$ which has as line set the set of all affine lines intersecting Π_{∞} in a point of \mathcal{K}_{∞}. If \mathcal{K}_{∞} is a set of type $\{0,1, \alpha+1\}$, i.e., a set intersecting every line in 0,1 or $\alpha+1$ points, spanning Π_{∞} then $T_{n-1}^{*}\left(K_{\infty}\right)$ is a $(0, \alpha)$-geometry. Every two intersecting lines of $T_{n-1}^{*}\left(\mathcal{K}_{\infty}\right)$ are contained in a (necessarily unique) planar net.

Thas [13] has classified the affine embeddings of partial geometries. In the case $\alpha>1$ (that is, where the partial geometry is not a generalized quadrangle) only linear representations occur. In particular, when $\alpha>1, \mathcal{K}_{\infty}$ is the complement of a hyperplane in Π_{∞} or $n=3$ and \mathcal{K}_{∞} is a maximal arc in Π_{∞}. Debroey and Thas [9] have classified the embeddings of semipartial geometries in $\mathrm{AG}(n, q)$ for $n \leq 3$. Again only linear representations occur when $\alpha>1$. In particular, when $\alpha>1$, and the geometry is a proper semipartial geometry then $n=3$ and \mathcal{K}_{∞} is a unital or a Baer subplane of Π_{∞}. Recently De Winter [8] proved that if a linear representation $T_{3}^{*}\left(\mathcal{K}_{\infty}\right)$ in $\mathrm{AG}(4, q)$ is a proper semipartial geometry with $\alpha>1$, then \mathcal{K}_{∞} is a Baer subspace of Π_{∞}.

However Hirschfeld and Thas [12] describe an $\operatorname{spg}\left(q-1, q^{2}, 2,2 q(q-1)\right) \mathrm{TQ}(4, q)$ which, for even q, is embedded in $\operatorname{AG}(4, q)$ but is not a linear representation. This geometry is obtained by intersecting the secant lines of a nonsingular elliptic quadric in $\operatorname{PG}(5, q)$ through a given external point with a hyperplane not containing that point. The intersection of $\mathrm{TQ}(4, q)$ with an affine hyperplane yields a $(0,2)$-geometry of order $(q-1, q)$ which we will denote as HT. This geometry is embedded in $\operatorname{AG}(3, q)$ and it is not a linear representation. Neither TQ $(4, q)$ nor HT contains a planar net.

The existence of the geometries TQ $(4, q)$ and HT motivates the characterization by De Clerck and Delanote [3] of the linear representations among the ($0, \alpha$)-geometries ($\alpha>1$) embedded in $\operatorname{AG}(n, q)$. In particular, it follows from their result that if $\alpha>2$ or if q is odd, then only linear representations can occur. Recently also the (0,2)-geometries embedded in $\mathrm{AG}\left(n, 2^{h}\right)$ were classified by De Feyter $[4,5,6,7]$. Two new constructions, found by De Feyter, of $(0,2)$-geometries arise which are not linear representations. We describe them in the next section.

3 The geometries $\mathcal{A}\left(O_{\infty}\right)$ and $\mathcal{I}(n, q, e)$

De Feyter has constructed two (0,2)-geometries with an affine embbedding. We give a short description, for more information we refer to the papers of De Feyter, $[4,5,6,7]$.

The $(0,2)$-geometry $\mathcal{A}\left(O_{\infty}\right)$ which is embedded in $\operatorname{AG}(3, q), q=2^{h}$, is constructed as follows. Let O_{∞} be an oval of Π_{∞} with nucleus n_{∞}. Choose a basis such that Π_{∞} : $X_{3}=0, n_{\infty}(1,0,0,0)$ and such that $(0,1,0,0),(0,0,1,0),(1,1,1,0) \in O_{\infty}$. Let f be the opolynomial (see [11], section 8.4) such that $O_{\infty}=\{(f(\rho), \rho, 1,0) \mid \rho \in \operatorname{GF}(q)\} \cup\{(0,1,0,0)\}$ and for every affine point $p(x, y, z, 1)$ let $O_{\infty}^{p}=\{(y+z \rho+f(\rho), \rho, 1,0) \mid \rho \in \operatorname{GF}(q)\} \cup$ $\{(z, 1,0,0)\}$. Let \mathcal{L}_{p} be the set of lines through p and a point of O_{∞}^{p}. Let \mathcal{P} be the point set of $\mathrm{AG}(3, q), \mathcal{B}=\bigcup_{p \in \mathcal{P}} \mathcal{L}_{p}$, and let I be the natural incidence. If O_{∞} is not a conic
then $\mathcal{A}\left(O_{\infty}\right)=(\mathcal{P}, \mathcal{B}, \mathrm{I})$ is connected and is indeed a $(0,2)$-geometry of order $\left(2^{h}-1,2^{h}\right)$ [5]. If O_{∞} is a conic then the incidence structure $\mathcal{S}=(\mathcal{P}, \mathcal{B}$, I $)$ consists of two connected components which are projectively equivalent with HT [5], and we let $\mathcal{A}\left(O_{\infty}\right)$ be any of these two components. Note that $\mathcal{A}\left(O_{\infty}\right)$ is not a semipartial geometry and has no planar nets.

Another (0,2)-geometry $\mathcal{I}(n, q, e)$ embedded in $\operatorname{AG}(n, q), n \geq 2, q=2^{h}$ is constructed as follows. Let U be a hyperplane of $\mathrm{AG}(n, q)$, and choose a basis such that $\Pi_{\infty}: X_{n}=0$ and $U: X_{n-1}=0$. Let $e \in\{1,2, \ldots, h-1\}$ be such that $\operatorname{gcd}(e, h)=1$, and let φ be the collineation of $\mathrm{PG}(n, q)$ mapping $p\left(x_{0}, x_{1}, \ldots, x_{n-2}, x_{n-1}, x_{n}\right)$ to $p^{\varphi}\left(x_{0}^{2^{e}}, x_{1}^{2^{e}}, \ldots, x_{n-2}^{2^{e}}, x_{n}^{2^{e}}, x_{n-1}^{2^{e}}\right)$. Put $U_{\infty}=U \cap \Pi_{\infty}$ and let \mathcal{K}_{∞} be the set of points of U_{∞} fixed by φ. Then \mathcal{K}_{∞} is the point set of a projective geometry $\operatorname{PG}(n-2,2) \subseteq U_{\infty}$. Let \mathcal{B} be the set of affine lines L such that either $L \subseteq U$ and $L \cap \Pi_{\infty} \in \mathcal{K}_{\infty}$, or L intersects U in an affine point p and $L \cap \Pi_{\infty}=p^{\varphi}$. Let \mathcal{P} be the set of affine points on the lines of \mathcal{B}, and let I be the natural incidence. Then $\mathcal{I}(n, q, e)=(\mathcal{P}, \mathcal{B}, \mathrm{I})$ is a $(0,2)$-geometry of order $\left(2^{h}-1,2^{n-1}-1\right)$ embedded in $\mathrm{AG}\left(n, 2^{h}\right)$ [6]. These geometries are not semipartial geometries and have planar nets as well as planes containing a dual oval of lines of $\mathcal{I}(n, q, e)$.

4 Results and applications

We recall that, given a $(0, \alpha)$-geometry $(\alpha>1)$ embedded in $\mathrm{AG}(n, q)$, every intersection with a plane containing at least two intersecting lines of the geometry, is either a planar net or is a geometry whose lines form a dual oval with nucleus the line at infinity of the plane (in which case $\alpha=2$ and $q=2^{h}$). De Clerck and Delanote [3] have proved the following theorem.

Theorem 4.1 ([3]) If \mathcal{S} is a $(0, \alpha)$-geometry ($\alpha>1$) embedded in $\mathrm{AG}(n, q)$ such that every two intersecting lines of \mathcal{S} are contained in a planar net of \mathcal{S}, then \mathcal{S} is a linear representation of a set \mathcal{K}_{∞} in Π_{∞}. In particular this conclusion holds if $\alpha>2$ or q is odd.

A $(0,2)$-geometry of order $(1, t)$ is just a complete graph. The embedding of complete graphs in $\operatorname{AG}(n, 2)$ is trivial, so we assume in the following theorem, due to De Feyter, that $q>2$.

Theorem $4.2([4,5,6,7])$ Let \mathcal{S} be a $(0,2)$-geometry embedded in $\mathrm{AG}(n, q), q=2^{h}$, $h>1$, of order $(q-1, t)$. Then one of the following cases occurs.

1. \mathcal{S} is a linear representation of a set \mathcal{K}_{∞} in Π_{∞} which spans Π_{∞} and is of type $\{0,1,3\}$.
2. $\mathcal{S}=\mathcal{I}(n, q, e)$.
3. $n=2$ and the lines of \mathcal{S} together with Π_{∞} form a dual hyperoval.
4. $n=3$ and $\mathcal{S}=\mathcal{A}\left(O_{\infty}\right)$.
5. $n=4$ and $\mathcal{S}=\mathrm{TQ}(4, q)$.

The most difficult part of the proof of Theorem 4.2 is when $n=3$. In [6] it is proved that when $n=3$ and there is a planar net, then we are in case 1 or 2 . In [5] it is proved that under the conditions $n=3, t=q$ and such that there are no planar nets, case 4 is occuring. In [5,4] it is assumed that $n=3$, while $t \neq q$, and that there are no planar nets, and a contradiction is found. Finally in [7] the case $n>3$ is treated. This final part of the proof uses mainly an induction argument on n. In particular we rely on the following fact. Let \mathcal{S} be a $(0, \alpha)$-geometry $(\alpha>1)$ embedded in $\mathrm{AG}(n, q)$ and let $\mathrm{AG}(m, q)$ be an affine subspace. If a connected component of the incidence structure induced by \mathcal{S} in $\mathrm{AG}(m, q)$ contains two intersecting lines, then it is again a $(0, \alpha)$-geometry, which is embedded in $\mathrm{AG}(m, q)$. Similar arguments do not hold however for $\alpha=1$, making this case much more difficult. Note that Theorem 4.2 does not classify the sets \mathcal{K}_{∞} in case 1 as this would imply the unlikely classification of all sets of type $\{0,1,3\}$ in $\operatorname{PG}\left(n, 2^{h}\right)$.

Corollary 4.3 Let \mathcal{S} be a semipartial geometry $\operatorname{spg}(s, t, \alpha, \mu), \alpha>1$, embedded in $\mathrm{AG}(n, q)$, $q>2$. Then one of the following cases occurs.

1. \mathcal{S} is a linear representation of a set \mathcal{K}_{∞} of type $\{0,1, \alpha+1\}$ in Π_{∞} such that through every point of Π_{∞} not in \mathcal{K}_{∞} there are exactly $\frac{\mu}{\alpha(\alpha+1)}$ lines containing $\alpha+1$ points of \mathcal{K}_{∞}.
2. $n=2$ and the lines of \mathcal{S} together with Π_{∞} form a dual hyperoval.
3. $n=4$ and $\mathcal{S}=\mathrm{TQ}(4, q)$.

We recall that for $n \leq 4$ the linear representations of semipartial geometries with $\alpha>1$ are classified $[9,8]$. The only known linear representation $T_{n-1}^{*}\left(\mathcal{K}_{\infty}\right)$ with $n \geq 5$ that is a proper semipartial geometry with $\alpha>1$ is $T_{n-1}^{*}\left(\mathcal{B}_{\infty}\right)$, where \mathcal{B}_{∞} is a Baer subspace of Π_{∞}.

Corollary 4.3 classifies the semipartial geometries with $\alpha>1$ embedded in $\operatorname{AG}(n, q)$ which are not linear representations. This extends partially the result of Debroey and Thas [9] for $\operatorname{AG}(2, q)$ and $\operatorname{AG}(3, q)$, where no restriction is assumed (see also [3] for another proof). Corollary 4.3 also improves the characterization by Brown, De Clerck and Delanote [2] saying that $\mathrm{TQ}(4, q)$ is the only $\operatorname{spg}\left(q-1, q^{2}, 2,2 q(q-1)\right)$ embedded in $\mathrm{AG}(4, q)$.

References

[1] R. C. Bose. Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math., 13:389-419, 1963.
[2] M. R. Brown, F. De Clerck, and M. Delanote. Affine semipartial geometries and projections of quadrics. J. Combin. Theory Ser. A, 103(2):281-289, 2003.
[3] F. De Clerck and M. Delanote. On $(0, \alpha)$-geometries and dual semipartial geometries fully embedded in an affine space. Des. Codes Cryptogr., 32:103-110, 2004.
[4] N. De Feyter. Classification of $(0,2)$-geometries embedded in $\operatorname{AG}(3, q)$. Preprint.
[5] N. De Feyter. The embedding in $\operatorname{AG}(3, q)$ of (0,2)-geometries with no planar nets. To appear in J. Combin. Theory Ser. A.
[6] N. De Feyter. The embedding in $\operatorname{AG}(3, q)$ of $(0,2)$-geometries containing a planar net. Preprint.
[7] N. De Feyter. The embedding of (0,2)-geometries and semipartial geometries in $\mathrm{AG}(n, q)$. To appear in Adv. Geom.
[8] S. De Winter. Linear representations of semipartial geometries. Preprint.
[9] I. Debroey and J. A. Thas. Semipartial geometries in $\operatorname{AG}(2, q)$ and $\mathrm{AG}(3, q)$. Simon Stevin, 51(4):195-209, 1977/78.
[10] I. Debroey and J. A. Thas. On semipartial geometries. J. Combin. Theory Ser. A, 25(3):242-250, 1978.
[11] J. W. P. Hirschfeld. Projective geometries over finite fields. The Clarendon Press Oxford University Press, New York, 1979. Oxford Mathematical Monographs.
[12] J. W. P. Hirschfeld and J. A. Thas. Sets of type ($1, n, q+1$) in $\operatorname{PG}(d, q)$. Proc. London Math. Soc. (3), 41(2):254-278, 1980.
[13] J. A. Thas. Partial geometries in finite affine spaces. Math. Z., 158(1):1-13, 1978.

Department of Pure Mathematics and Computer Algebra
Ghent University
Krijgslaan 281-S22
B-9000 Gent
BELGIUM
fdc@cage.UGent.be, ndfeyter@cage.UGent.be, jat@cage.UGent.be

[^0]: *This research was supported by a BOF ("Bijzonder Onderzoeksfonds") grant at Ghent University.

