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Abstract

It is the purpose of this research note to give an overview of the recent results on
full embeddings of (0, α)-geometries in affine spaces.

1 Definitions

A (0, α)-geometry S = (P ,B, I ) is a connected partial linear space of order (s, t) with
the property that for every anti-flag (p, L) the number α(p, L) of lines of S through p
intersecting L equals 0 or a constant α. This class of geometries generalizes the class of
partial geometries introduced by Bose [1]. In a partial geometry, denoted as pg(s, t, α),
α(p, L) = α for every antiflag (p, L). A pg(s, t, t) is also called a (Bruck) net, while a
pg(s, t, 1) is a generalized quadrangle of order (s, t).

The point graph of a partial geometry is strongly regular. If the point graph of a (0, α)-
geometry S is strongly regular, then S is called a semipartial geometry spg(s, t, α, µ) [10].
Here µ is the number of vertices adjacent to two non-adjacent vertices in the point graph
of S. Every partial geometry is a semipartial geometry, but not vice versa. A semipartial
geometry which is not a partial geometry is called a proper semipartial geometry.

A (0, α)-geometry S = (P ,B, I ) is said to be fully embedded (or, shortly, embedded) in
an affine space AG(n, q) if the lines of S are lines of AG(n, q), if P is the set of all affine
points on the lines of S and if I is as in AG(n, q). We also require that P spans AG(n, q).
We say that S has a planar net if there is an affine plane such that the points and lines
of S in it form a net. We denote by Π∞ the space at infinity of AG(n, q). If α > 1 it
can be proved (see for example [3]) that if a plane π containing two intersecting lines of
S does not contain a planar net of S, then α = 2, q = 2h and the lines of S in π form
a dual oval with nucleus π ∩ Π∞. If α = 1 and if the plane π contains two intersecting
lines of S, then either π contains a planar net of S or S and π have γ concurrent lines
in common, 2 ≤ γ ≤ q + 1. Hence, in this case there is less structure and we think that
a classification of (0, 1)-geometries fully embedded in an affine space is very difficult. For
some extra information on this case we refer to [3].
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2 Motivation

The linear representation T ∗n−1(K∞) of a set K∞ ⊆ Π∞ is the partial linear space embedded
in AG(n, q) which has as line set the set of all affine lines intersecting Π∞ in a point of
K∞. If K∞ is a set of type {0, 1, α + 1}, i.e., a set intersecting every line in 0, 1 or α + 1
points, spanning Π∞ then T ∗n−1(K∞) is a (0, α)-geometry. Every two intersecting lines of
T ∗n−1(K∞) are contained in a (necessarily unique) planar net.

Thas [13] has classified the affine embeddings of partial geometries. In the case α > 1
(that is, where the partial geometry is not a generalized quadrangle) only linear represen-
tations occur. In particular, when α > 1, K∞ is the complement of a hyperplane in Π∞ or
n = 3 and K∞ is a maximal arc in Π∞. Debroey and Thas [9] have classified the embed-
dings of semipartial geometries in AG(n, q) for n ≤ 3. Again only linear representations
occur when α > 1. In particular, when α > 1, and the geometry is a proper semipartial
geometry then n = 3 and K∞ is a unital or a Baer subplane of Π∞. Recently De Winter [8]
proved that if a linear representation T ∗3 (K∞) in AG(4, q) is a proper semipartial geometry
with α > 1, then K∞ is a Baer subspace of Π∞.

However Hirschfeld and Thas [12] describe an spg(q−1, q2, 2, 2q(q−1)) TQ(4, q) which,
for even q, is embedded in AG(4, q) but is not a linear representation. This geometry is ob-
tained by intersecting the secant lines of a nonsingular elliptic quadric in PG(5, q) through
a given external point with a hyperplane not containing that point. The intersection of
TQ(4, q) with an affine hyperplane yields a (0, 2)-geometry of order (q−1, q) which we will
denote as HT. This geometry is embedded in AG(3, q) and it is not a linear representation.
Neither TQ(4, q) nor HT contains a planar net.

The existence of the geometries TQ(4, q) and HT motivates the characterization by De
Clerck and Delanote [3] of the linear representations among the (0, α)-geometries (α > 1)
embedded in AG(n, q). In particular, it follows from their result that if α > 2 or if q is odd,
then only linear representations can occur. Recently also the (0, 2)-geometries embedded
in AG(n, 2h) were classified by De Feyter [4, 5, 6, 7]. Two new constructions, found by De
Feyter, of (0, 2)-geometries arise which are not linear representations. We describe them
in the next section.

3 The geometries A(O∞) and I(n, q, e)

De Feyter has constructed two (0, 2)-geometries with an affine embbedding. We give a
short description, for more information we refer to the papers of De Feyter, [4, 5, 6, 7].

The (0, 2)-geometry A(O∞) which is embedded in AG(3, q), q = 2h, is constructed
as follows. Let O∞ be an oval of Π∞ with nucleus n∞. Choose a basis such that Π∞ :
X3 = 0, n∞(1, 0, 0, 0) and such that (0, 1, 0, 0), (0, 0, 1, 0), (1, 1, 1, 0) ∈ O∞. Let f be the o-
polynomial (see [11], section 8.4) such that O∞ = {(f(ρ), ρ, 1, 0) | ρ ∈ GF(q)}∪{(0, 1, 0, 0)}
and for every affine point p(x, y, z, 1) let Op

∞ = {(y + zρ + f(ρ), ρ, 1, 0) | ρ ∈ GF(q)} ∪
{(z, 1, 0, 0)}. Let Lp be the set of lines through p and a point of Op

∞. Let P be the point
set of AG(3, q), B =

⋃
p∈P Lp, and let I be the natural incidence. If O∞ is not a conic
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then A(O∞) = (P ,B, I ) is connected and is indeed a (0, 2)-geometry of order (2h − 1, 2h)
[5]. If O∞ is a conic then the incidence structure S = (P ,B, I ) consists of two connected
components which are projectively equivalent with HT [5], and we let A(O∞) be any of
these two components. Note that A(O∞) is not a semipartial geometry and has no planar
nets.

Another (0, 2)-geometry I(n, q, e) embedded in AG(n, q), n ≥ 2, q = 2h is constructed
as follows. Let U be a hyperplane of AG(n, q), and choose a basis such that Π∞ : Xn = 0
and U : Xn−1 = 0. Let e ∈ {1, 2, . . . , h − 1} be such that gcd(e, h) = 1, and let ϕ be the
collineation of PG(n, q) mapping p(x0, x1, . . . , xn−2, xn−1, xn) to pϕ(x2e

0 , x2e

1 , . . . , x2e

n−2, x
2e

n , x2e

n−1).
Put U∞ = U ∩Π∞ and let K∞ be the set of points of U∞ fixed by ϕ. Then K∞ is the point
set of a projective geometry PG(n−2, 2) ⊆ U∞. Let B be the set of affine lines L such that
either L ⊆ U and L ∩ Π∞ ∈ K∞, or L intersects U in an affine point p and L ∩ Π∞ = pϕ.
Let P be the set of affine points on the lines of B, and let I be the natural incidence. Then
I(n, q, e) = (P ,B, I ) is a (0, 2)-geometry of order (2h−1, 2n−1−1) embedded in AG(n, 2h)
[6]. These geometries are not semipartial geometries and have planar nets as well as planes
containing a dual oval of lines of I(n, q, e).

4 Results and applications

We recall that, given a (0, α)-geometry (α > 1) embedded in AG(n, q), every intersection
with a plane containing at least two intersecting lines of the geometry, is either a planar
net or is a geometry whose lines form a dual oval with nucleus the line at infinity of the
plane (in which case α = 2 and q = 2h). De Clerck and Delanote [3] have proved the
following theorem.

Theorem 4.1 ([3]) If S is a (0, α)-geometry (α > 1) embedded in AG(n, q) such that
every two intersecting lines of S are contained in a planar net of S, then S is a linear
representation of a set K∞ in Π∞. In particular this conclusion holds if α > 2 or q is odd.

A (0, 2)-geometry of order (1, t) is just a complete graph. The embedding of complete
graphs in AG(n, 2) is trivial, so we assume in the following theorem, due to De Feyter,
that q > 2.

Theorem 4.2 ([4, 5, 6, 7]) Let S be a (0, 2)-geometry embedded in AG(n, q), q = 2h,
h > 1, of order (q − 1, t). Then one of the following cases occurs.

1. S is a linear representation of a set K∞ in Π∞ which spans Π∞ and is of type {0, 1, 3}.

2. S = I(n, q, e).

3. n = 2 and the lines of S together with Π∞ form a dual hyperoval.

4. n = 3 and S = A(O∞).

5. n = 4 and S = TQ(4, q).
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The most difficult part of the proof of Theorem 4.2 is when n = 3. In [6] it is proved
that when n = 3 and there is a planar net, then we are in case 1 or 2. In [5] it is proved
that under the conditions n = 3, t = q and such that there are no planar nets, case 4 is
occuring. In [5, 4] it is assumed that n = 3, while t 6= q, and that there are no planar nets,
and a contradiction is found. Finally in [7] the case n > 3 is treated. This final part of the
proof uses mainly an induction argument on n. In particular we rely on the following fact.
Let S be a (0, α)-geometry (α > 1) embedded in AG(n, q) and let AG(m, q) be an affine
subspace. If a connected component of the incidence structure induced by S in AG(m, q)
contains two intersecting lines, then it is again a (0, α)-geometry, which is embedded in
AG(m, q). Similar arguments do not hold however for α = 1, making this case much more
difficult. Note that Theorem 4.2 does not classify the sets K∞ in case 1 as this would imply
the unlikely classification of all sets of type {0, 1, 3} in PG(n, 2h).

Corollary 4.3 Let S be a semipartial geometry spg(s, t, α, µ), α > 1, embedded in AG(n, q),
q > 2. Then one of the following cases occurs.

1. S is a linear representation of a set K∞ of type {0, 1, α+1} in Π∞ such that through
every point of Π∞ not in K∞ there are exactly µ

α(α+1)
lines containing α + 1 points

of K∞.

2. n = 2 and the lines of S together with Π∞ form a dual hyperoval.

3. n = 4 and S = TQ(4, q).

We recall that for n ≤ 4 the linear representations of semipartial geometries with α > 1
are classified [9, 8]. The only known linear representation T ∗n−1(K∞) with n ≥ 5 that is a
proper semipartial geometry with α > 1 is T ∗n−1(B∞), where B∞ is a Baer subspace of Π∞.

Corollary 4.3 classifies the semipartial geometries with α > 1 embedded in AG(n, q)
which are not linear representations. This extends partially the result of Debroey and
Thas [9] for AG(2, q) and AG(3, q), where no restriction is assumed (see also [3] for another
proof). Corollary 4.3 also improves the characterization by Brown, De Clerck and Delanote
[2] saying that TQ(4, q) is the only spg(q − 1, q2, 2, 2q(q − 1)) embedded in AG(4, q).
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