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Thermal impedance plots of micro-scaled devices
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Abstract

The complex thermal impedance Zth of a microelectronic heat source on the surface of a silicon wafer has been cal-

culated semi-analytically as a function of the frequency. By representing the results in a Nyquist plot, almost perfect

circular curves are obtained. This result is analogous to complex loci of the dielectric constant obtained for some

materials.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In present day electronics and microelectronics, ther-

mal problems are found to become more dominant due

to the high power densities. The latter being propor-

tional to the clock frequency (for a digital circuit), it is

expected that thermal problems will need more and

more attention in the future.

Usually the high operating temperature of an inte-

grated circuit is considered as the only thermal problem.

However, even if the total dissipated power is quite

moderate, the temperature distribution can still give rise

to malfunctioning circuits. The reason is quite simple: all

transistors have temperature dependent characteristics.

Even a temperature fluctuation of a few degrees may

have an influence on the electric behaviour of the circuit.

It must be emphasised here that this problem is not lim-

ited to uniform heating of a chip but is much more

important for non-uniform and time dependent heating.
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Unwanted couplings between different parts of a circuit

can be induced thermally.

Therefore, the need arises not to limit one self to the

study of the thermal resistance Rth but also to the ther-

mal impedance Zth of a transistor in order to deal with

time or frequency dependent problems.

In this paper we limit ourselves to a linear thermal

analysis. Hence the temperature dependence of the ther-

mal conductivity k or other thermal parameters has not

been taken into account. Otherwise, the thermal conduc-

tion problem becomes non-linear and strictly speaking a

thermal impedance cannot be defined. Experimentally,

thermal impedance measurements are always performed

at a maximum junction temperature (above ambient) of

less than 20 �C [1].

The originality of the present research is proved by

the fact that only a few papers on related topics could

be found in the literature [2]. The most interesting result

is that the impedance plot turned out to be circular

graphs. As a consequence, the AC thermal behaviour

is characterised by a limited number of parameters (cen-

tre and radius of the circle). For the point of view of reli-

ability it might be useful to measure these parameters as

a function of time in order to detect the reliability in the

close neighbourhood of the heat sources.
ed.
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Although a very limited number of papers also dis-

played circular Nyquist plots, no one pointed out the

perfect analogy with the theory of dielectrics published

by Fuoss and Kirkwood long time ago [3].
2. Calculation of the thermal impedance Zth

Due to the small dimensions of the heat sources in-

volved in microelectronics one can consider the semicon-

ductor substrate as a half infinite volume (z < 0) with a

heat source on the top surface z = 0 (Fig. 1).

In phasor notation the temperature distribution

T(x,y,z) in the substrate satisfies the equation [4]:

kr2T ðx; y; zÞ � jxCvT ðx; y; zÞ ¼ 0; ð1Þ

where k is the thermal conductivity (in Wm�1K�1), Cv

the thermal capacity per unit volume (in Jm�3K�1),

j ¼
ffiffiffiffiffiffiffi
�1

p
the imaginary unit and x = 2pf the angular

frequency (in Hz).

For a point shaped heat source dissipating a power P

(in W) and located on the surface z = 0 in the point

(x 0,y 0, 0), the temperature distribution is given by:

T ðx; y; zÞ ¼ P
2pkr

exp �
ffiffiffiffiffiffiffiffiffiffi
jxCv

k

r
r

 !
; ð2Þ

where r is the distance between the field point (x,y,z)

and the source point (x 0,y 0, 0). The square root of j must

be chosen as
ffiffi
j

p
¼

ffiffi
2

p

2
ð1þ jÞ in order to ensure conver-

gence for r !1.

If the power P is omitted and the factor 2 in the

denominator of (2) is replaced by 4, one will recognise

the Green�s function or the fundamental solution of

Eq. (1) in the three-dimensional space. The factor 2 is

due to the fact that the semiconductor material occupies

only the half space z < 0.

On the surface z = 0 the adiabatic boundary condi-

tion has been assumed. The thermal conductivity

k = 160 Wm�1K�1 of silicon is relatively high with re-

spect to the value k = 0.025 Wm�1K�1 of the dry air fill-
Fig. 1. Rectangular heat source on top of h
ing (z > 0) in an electronic package. Taking this into

account, the adiabatic condition is sufficiently accurate.

Although this boundary condition may be questionable

for the DC analysis of the electronic package, for time

dependent or AC problems it is sufficient to consider

only the temperature distribution inside the silicon. We

have verified from our calculations that the AC temper-

ature field is completely decayed (i.e., jTj < 10�3jTjmax)

at a distance of 100 lm from the heat source for frequen-

cies f > 100 kHz.

For a rectangular heat source with dimensions a and

b (Fig. 1), and a power dissipation P or a power density

p ¼ P
ab (in W/m2), the temperature distribution can be

found by superposition:

T ðx; y; zÞ ¼ p
2pk

Z a=2

�a=2
dx0
Z b=2

�b=2
dy0

�
exp �

ffiffiffiffiffiffiffi
jxCv
k

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ2 þ z2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ2 þ z2

q .

ð3Þ

The integral (3) has been evaluated numerically by divid-

ing the heat source area into N small sub areas. The

numerical convergence was checked by using different

values of N. The singularity in the integrand of (3),

which occurs for x = x 0, y = y 0 and z = 0, has been calcu-

lated separately by an exact analytical integration [5].

Strictly speaking, the thermal impedance is defined as

the temperature difference between a heat source (as-

sumed at a uniform temperature) and the temperature

of a heat sink (here T = 0 at infinity) divided by the heat

flow. In our situation the temperature of the heat source

is not uniform at all. Hence the impedance has been

evaluated by taking (i) the average temperature and

(ii) the maximum temperature (i.e. the maximum abso-

lute value) of the heat source evaluated by (3).

A Nyquist plot of both kinds of impedances is shown

in Fig. 2.
alf infinite thermal conductor (z < 0).



Fig. 2. Nyquist plot of thermal impedance Zth.
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These results have been obtained for the thermal

parameters of Si (k = 160 Wm�1K�1 and Cv = 1.784 ·
106 Jm�3K�1) and a square shaped heat source of

200 lm · 200 lm. However, by rearranging (3) in a

dimensionless form, it can be easily proved that those

parameters have no influence on the shape of the Ny-

quist plot. Just the frequency scale has to be adjusted

if smaller heat sources or another semiconductor mate-

rial is investigated.

The same kind of Nyquist plots have been obtained

for rectangular heat sources with aspect ratios a/b up

to 10. The central frequency fc, where the imaginary part

of Zth reaches its minimum value, has also been deter-

mined. From all these data the following relationship

was found by curve fitting:

fc ¼ 1.20
1

ab
k
Cv

. ð4Þ

It has been verified that (4) can even be applied with an

accuracy of 10% for aspect ratios a/b up to 48.

A more careful inspection of both curves in Fig. 2 re-

veals that a curve fitting with a circle intersecting the

horizontal axis at 45�, is almost perfect. Although it

can be proved mathematically that (3) does not give rise

to an exact circular plot. The particular form of the Ny-

quist curve corresponds with the experimental measure-

ments performed on electronic packages. The high

frequency part of these results were found to be a circle

with the same intersection angles [1,6].

Experimentally, the temperature of a microcircuit at

chip level is usually measured by using sensor diodes

or any other junction. These devices deliver a signal pro-

portional to the average device temperature. Hence, the

use of the impedance using the average temperature is

more sound (Fig. 2).
3. Discussion

The most remarkable fact of the Nyquist plot of

Fig. 2 is the almost perfect circular shape. Similar results

have been reported in the literature many years ago

about the complex dielectric constant of some materials
[7,8]. A Nyquist plot of this quantity is called the Cole–

Cole plot.

The explanation for this phenomenon was the exis-

tence of a Debye relaxation mechanism in the dielectric

layer. If one single time constant was taken into account,

the Nyquist plot of the complex dielectric constant

turned out to be a circle with its centre point located

on the real axis. Experimentally the Nyquist plots were

indeed circles, but with their central point above the real

axis just like the plot of Fig. 2. This aspect has been ex-

plained successfully by introducing a probability distri-

bution for the relaxation time constants [3].

For the thermal impedance plot on the other hand,

similar plots have been obtained although no probabil-

ity distribution has been used. All parameters like k,

Cv were kept constant. It proves that a homogeneous

thermal conductor involves a spectrum of thermal time

constants rather than a single value. This conclusion

also agrees with the experimental results published by

Székely et al. obtained from transient temperature mea-

surements on electronic packages [9–11].
4. Conclusion

The Nyquist plot of the thermal impedance of a rect-

angular heat source on a half infinite thermal conductor

has been evaluated numerically. All the Nyquist plots

show a circular curve just like the Cole–Cole plots ob-

served for dielectric layers involving Debye relaxation

mechanism. Hence, the theories developed for dielectric

layers can be directly applied to the AC thermal imped-

ance analysis, for example to determine the time con-

stant distribution.
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