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Abstract

Using the realization of positive discrete series representations of su(1, 1) in terms of
a complex variable z, we give an explicit expression for coupled basis vectors in the
tensor product of ν+1 representations as polynomials in ν+1 variables z1, . . . , zν+1.
These expressions use the terminology of binary coupling trees (describing the cou-
pled basis vectors), and are explicit in the sense that there is no reference to the
Clebsch-Gordan coefficients of su(1, 1). In general, these polynomials can be writ-
ten as (terminating) multiple hypergeometric series. For ν = 2, these polynomials
are triple hypergeometric series, and a relation between the two binary coupling
trees yields a relation between two triple hypergeometric series. The case of su(2)
is discussed next. Also here the polynomials are determined explicitly in terms of a
known realization; they yield an efficient way of computing coupled basis vectors in
terms of uncoupled basis vectors.

Key words: multiple hypergeometric series, tensor products, realizations, coupling
coefficient
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1 Introduction

The relation between so-called coupling coefficients of the Lie algebras su(2)
or su(1, 1) and orthogonal polynomials is well established [1–5]. The main
activity in this area was stimulated by applications in quantum theory of an-
gular momentum [6,5,7], as the angular momentum algebra coincides with the
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Lie algebra su(2). The notion of “coupling of angular momentum” is equiv-
alent to taking tensor products of irreducible representations of su(2). The
intertwining or coupling coefficients appearing in tensor products of two or
three representations have been studied considerably. The 3j-coefficients can
be expressed in terms of a 3F2 hypergeometric series of unit argument, lead-
ing to their relation with Hahn polynomials [1,3,7]. The 6j-coefficients are
expressed in terms of a balanced 4F3 hypergeometric series of unit argument,
due to Racah [8], and led to a new class of orthogonal polynomials [4] now
referred to as Racah polynomials [9]. For the Lie algebra su(1, 1), the 3j- and
6j-coefficients for the positive discrete series representations are closely related
to those of su(2) [1,10,11].

The tensor product of an arbitrary number of representations has been given
less attention in the literature. For the tensor product of ν +1 representations
of su(2), the standard method is that of binary coupling [5]. Most of the
attention went to the study of related 3νj-coefficients for su(2), for which a
powerful graphical method was developed by Yutsis et al [12]. The method
of binary coupling however, has the advantage that it works both for su(2)
and su(1, 1) [13,14]. There are a few papers dealing with the relation between
ν + 1 fold tensor products (or 3νj-coefficients) and orthogonal polynomials
or hypergeometric series in several variables. For 9j-coefficients of su(2), a
relation with a triple hypergeometric series was given by Alǐsauskas [7,15–17].
Orthogonal polynomials in several variables, appearing in the context of binary
couplings for su(1, 1) representations, appear in the work of Rosengren [18] and
in [19].

In the present paper we reconsider the classical realization of positive discrete
series representations of su(1, 1), and study the corresponding realization of
coupled vectors (defined by the method of binary coupling) in the tensor
product of ν + 1 such representations. Our main result is a general expression
for such a coupled vector (Theorem 1). This expression is a polynomial in
ν +1 variables, and can be written as a multiple hypergeometric series. These
polynomials are also orthogonal as complex functions on the multidisc, for a
standard weight function.

The structure of the paper is as follows. In the next section, we recall some
standard properties for the Lie algebra su(1, 1), its positive discrete series rep-
resentations, and their tensor products. In particular, we introduce the notion
of binary coupling schemes and their notation. In Section 3 we consider the
classical realization of these representations, and derive the expression for ar-
bitrary coupled vectors in this realization. In Section 4 we consider an applica-
tion : for the tensor product of three representations, the realization of coupled
vectors is written as a triple hypergeometric series. The equation between two
types of coupled vectors, related through an su(1, 1) Racah coefficient, leads to
an identity relating such triple hypergeometric series by means of a 4F3 series.
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Finally, in Section 5 we consider the case of ν + 1 tensor products of su(2)
representations and their realizations. The situation is very similar to that of
su(1, 1). The expression for coupled basis vectors can be useful in applications
if one needs an explicit expansion of such vectors in terms of uncoupled basis
vectors.

2 Tensor product of su(1, 1) representations

The Lie algebra su(1, 1) is generated by J0, J± subject to the relations

[J0, J±] = ±J±, [J+, J−] = −2J0, (1)

with the conditions J †
0 = J0 and J†

± = J∓. The positive discrete representa-
tions [1] Dk are labelled by a positive real number k. The representation space
is `2(Z+), with orthonormal basis vectors denoted by e(k)

n , with n = 0, 1, 2, . . .
(sometimes denoted by |k, n〉). Dk is an irreducible representation of su(1, 1)
with action given by :

J0e
(k)
n = (n + k)e(k)

n ,

J+e(k)
n =

√

(n + 1)(2k + n)e
(k)
n+1,

J−e(k)
n =

√

n(2k + n − 1)e
(k)
n−1.

(2)

Furthermore, it is also a ?-representation of su(1, 1): that is, with respect to
the inner product 〈e(k)

n1
, e(k)

n2
〉 = δn1,n2

, the representatives of J0 and J± satisfy

the Hermiticity conditions J †
0 = J0 and J†

± = J∓.

The tensor product of two positive discrete series representations is completely
reducible, and the decomposition is given by [1] :

Dk1
⊗Dk2

=
∞
∑

j=0

Dk1+k2+j. (3)

The standard (orthonormal) basis vectors of Dk (k = k1 + k2 + j) in (3) are
called the coupled basis vectors and related to the uncoupled basis vectors of
Dk1

⊗Dk2
through the Clebsch-Gordan coefficients of su(1, 1). This is written

as :

e(k1,k2)k
n =

∑

n1,n2

Ck1,k2,k
n1,n2,n e(k1)

n1
⊗ e(k2)

n2
, (4)

k = k1 + k2 + j (j ∈ N), k + n = k1 + n1 + k2 + n2, (5)
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where [1,10,11] :

Ck1,k2,k
n1,n2,n =

[

(2k1)n1
(2k2)n2

(2k1)j

n!n1!n2!j!(2k1 + 2k2 + 2j)n(2k2)j(2k1 + 2k2 + j − 1)j

]1/2

× (j + n)! 3F2

(

2k1 + 2k2 + j − 1,−n1,−j

2k1,−n − j
; 1

)

. (6)

Herein, (a)n is the classical notation for the Pochhammer symbol, and 3F2 is
a (terminating) generalized hypergeometric series [20–22]. Later on we shall
also write (a, b, . . .)n for (a)n(b)n . . ..

We shall be concerned in this paper with the tensor product of ν + 1 positive
discrete series representations Dk1

⊗ · · · ⊗ Dkν+1
. Orthonormal basis vectors

in such a tensor product can be constructed by means of binary coupling
schemes. For example, two sets of basis vectors in the tensor product of three
representations Dk1

⊗Dk2
⊗Dk3

, according to the “coupling” (Dk1
⊗Dk2

)⊗Dk3

or Dk1
⊗ (Dk2

⊗Dk3
), are given by :

e((k1,k2)k12,k3)k
n =

∑

n12,n3

Ck12,k3,k
n12,n3,n e(k1,k2)k12

n12
⊗ e(k3)

n3

=
∑

n1,n2,n3,n12

Ck1,k2,k12
n1,n2,n12

Ck12,k3,k
n12,n3,n e(k1)

n1
⊗ e(k2)

n2
⊗ e(k3)

n3
, (7)

and

e(k1,(k2,k3)k23)k
n =

∑

n1,n23

Ck1,k23,k
n1,n23,n e(k1)

n1
⊗ e(k2,k3)k23

n23

=
∑

n1,n2,n3,n23

Ck2,k3,k23
n2,n3,n23

Ck1,k23,k
n1,n23,n e(k1)

n1
⊗ e(k2)

n2
⊗ e(k3)

n3
. (8)

Following (5), the above representation labels are such that

k12 = k1 + k2 + j12, k23 = k2 + k3 + j23,

k = k12 + k3 + j = k1 + k23 + j′,

j12, j, j23, j
′ ∈ Z+, and j12 + j = j23 + j′. (9)

More generally, a binary coupling scheme on a twofold tensor product Dk⊗Dk′

is defined as

∑

n,n′

Ck,k′,K
n,n′,N e(k)

n ⊗ e
(k′)
n′ or

∑

n,n′

Ck′,k,K
n′,n,N e(k)

n ⊗ e
(k′)
n′ . (10)
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A binary coupling scheme T = T (K,N) on the tensor product of (ν + 1)
representations Dk1

⊗Dk2
⊗ · · · ⊗ Dkν+1

is defined (recursively) as

∑

n,n′

Ck,k′,K
n,n′,N σ(T1(k, n) ⊗ T2(k

′, n′)), (11)

where T1(k, n) is a binary coupling scheme on the tensor product of l represen-
tations and T2(k

′, n′) is a binary coupling scheme on the tensor product of the
remaining ν+1− l representations. The map σ reshuffles the order of the com-
ponents in the tensor product such that they belong to Dk1

⊗Dk2
⊗· · ·⊗Dkν+1

.
The notation for the vectors corresponding to a binary coupling scheme is
e
(···)K
N , where (· · ·) is the binary bracketing determined by the binary coupling

scheme; see for example (7) and (8). For instance, in Dk1
⊗Dk2

⊗Dk3
⊗Dk4

,

e((k1,k3)k13,(k2,k4)k24)k
n =

∑

n13,n24

Ck13,k24,k
n13,n24,n σ(e(k1,k3)k13

n13
⊗ e(k2,k4)k24

n24
)

=
∑

n13,n24,n1,n3,n2,n4

Ck13,k24,k
n13,n24,nCk1,k3,k13

n1,n3,n13
Ck2,k4,k24

n2,n4,n24

× e(k1)
n1

⊗ e(k2)
n2

⊗ e(k3)
n3

⊗ e(k4)
n4

. (12)

Such a binary coupling scheme is usually denoted by a binary tree, which is
a graphical way of describing the order in which twofold tensor products are
taken. For example, the binary tree corresponding to (12) is given by :

24

31 4

13

2

k

k

k,n

k

kkk

Finally, let us introduce the notation for the su(1, 1) Racah coefficients. These
are by definition the transition coefficients between the basis vectors (7) and
(8) :

e(k1,(k2,k3)k23)k
n =

k−k3
∑

k12=k1+k2

Uk1,k2,k12

k3,k,k23
e((k1,k2)k12,k3)k

n . (13)

An explicit expression for the Racah coefficients U k1,k2,k12

k3,k,k23
is given by [1,10,11] :

Uk1,k2,k12

k3,k,k23
=

(

j + j12

j23

)

(2k2)j12(2k3)j(2k1 + 2k2 + 2k3 + j + j12 − 1)j23

(2k3, 2k2 + 2k3 + j23 − 1)j23(2k2 + 2k3 + 2j23)j′
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×

(

j′!(2k1, 2k23, 2k1 + 2k23 + j′ − 1)j′ j23!(2k2, 2k3, 2k2 + 2k3 + j23 − 1)j23

j!(2k12, 2k3, 2k12 + 2k3 + j − 1)j j12!(2k1, 2k2, 2k1 + 2k2 + j12 − 1)j12

)1/2

× 4F3

(

2k1 + 2k2 + j12 − 1, 2k2 + 2k3 + j23 − 1,−j12,−j23

2k2, 2k1 + 2k2 + 2k3 + j + j12 − 1,−j − j12

; 1

)

, (14)

with the labels determined by (9).

3 Realization of coupled basis vectors

The Lie algebra su(1, 1) and its representation Dk have a well known realiza-
tion for k > 1/2, in the Hilbert space of analytic functions f(z) (z ∈ C) on
the unit disc |z| < 1 with inner product [1]

〈f1, f2〉 =
2k − 1

π

∫∫

|z|<1

f1(z)f2(z)(1 − |z|2)2k−2dxdy, (z = x + iy). (15)

In this realization, the orthonormal basis vectors are given by

e(k)
n =

√

(2k)n

n!
zn, (16)

and the realization of the su(1, 1) basis elements reads

J0 = z
d

dz
+ k, J− =

d

dz
, J+ = z2 d

dz
+ 2kz. (17)

It is easy to verify that the action of these operators on the basis (16) is indeed
the same as in (2).

We shall now investigate the explicit expressions for coupled vectors in the
realization of tensor products.

For a coupled vector in the tensor product of two representations, an expres-
sion was already given in [23, Formula (3.16)] :

e(k1,k2)k
n (z1, z2) =

√

√

√

√

(2k1)j(2k2)j(2k)n

j!n!(2k1 + 2k2 + j − 1)j

(z2 − z1)
jzn

1

× 2F1

(

−n, 2k2 + j

2k
; 1 − z2/z1

)
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=

√

√

√

√

(2k1)j(2k2)j

j!n!(2k1 + 2k2 + j − 1)j(2k)n

(z2 − z1)
jzn

1 (2k1 + j)n

× 2F1

(

−n, 2k2 + j

1 − n − 2k1 − j
;
z2

z1

)

. (18)

The second expression is derived from the first one using the (easily verified)
transformation

2F1

(

−n, b

c
; x

)

=
(c − b)n

(c)n
2F1

(

−n, b

b − c − n + 1
; 1 − x

)

. (19)

After expanding the 2F1 in (18), this can be written in the following way :

e(k1,k2)k
n (z1, z2) =

(−1)j

√

j!n!(2k1)j(2k2)j(2k1 + 2k2 + j − 1)j(2k)n

×
∑

α12=j

j!(2k1)α1
(2k2)α2

(z1 − z2)
α12

α12!

×
∑

h1+h2=n

(

n

h1, h2

)

(2k1 + α1)h1
(2k2 + α2)h2

zh1
1 zh2

2 , (20)

with α1 = α2 = α12. The reason for this awkward rewriting will become clear
when considering the tensor product of an arbitrary number of representations.

Next, we consider the tensor product of three representations Dk1
⊗Dk2

⊗Dk3
.

For the realization of coupled basis vector of lowest weight (i.e. the vector (7)
with n = 0), an expression was derived in [18, Theorem 7.2] :

e
((k1,k2)k12,k3)k
0 = A

∑

α12=j12
α13+α23=j

j12!j!(2k1)α1
(2k2)α2

(2k3)α3

×
(z1 − z2)

α12

α12!

(z1 − z3)
α13

α13!

(z2 − z3)
α23

α23!
, (21)

where A is a normalization constant, j12 = k12 − k1 − k2, j = k − k12 − k3 and

α1 = α12 + α13, α2 = α12 + α23, α3 = α13 + α23.

Note that this vector depends only on the differences zi − zj and that it is a
homogeneous polynomial in (z1, z2, z3) of degree j + j12.
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From (2) is is clear that one can determine e((k1,k2)k12,k3)k
n by n times applying

J+ to e
((k1,k2)k12,k3)k
0 :

Jn
+e

((k1,k2)k12,k3)k
0 =

√

n!(2k)n e((k1,k2)k12,k3)k
n . (22)

In the current realization J+ takes the following form :

J+ = z2
1∂z1

+ z2
2∂z2

+ z2
3∂z3

+ 2k1z1 + 2k2z2 + 2k3z3; (23)

thus e((k1,k2)k12,k3)k
n is a homogeneous polynomial in (z1, z2, z3) of degree j12 +

j + n.

Applying J+ a couple of times suggests the following form :

e((k1,k2)k12,k3)k
n =

A
√

n!(2k)n

×
∑

α12=j12
α13+α23=j

j12!j!(2k1)α1
(2k2)α2

(2k3)α3

(z1 − z2)
α12

α12!

(z1 − z3)
α13

α13!

(z2 − z3)
α23

α23!

×
∑

h1+h2+h3=n

(

n

h1, h2, h3

)

(2k1 + α1)h1
(2k2 + α2)h2

(2k3 + α3)h3
zh1
1 zh2

2 zh3
3 .

(24)

The validity of this form follows from Theorem 1.

Now we turn our attention to the determination of the normalization con-
stant A in (21) or (24). From Rosengren [18, page 33] and the fact that the
polynomials (24) are normalized to unity, it follows that the square A2 of the
normalization constant is given by :

A2 = (j12!j!(2k1)j12(2k2)j12(2k12)j(2k3)j(2k1 + 2k2 + j12 − 1)j12

×(2k12 + 2k3 + j − 1)j)
−1. (25)

The phase factor of A depends on the choice of the phase factor for the su(1, 1)
Clebsch-Gordan coefficients and the phase factor of (16). Computing the co-
efficient of zj12+j

1 in both left and right hand side of

e
((k1,k2)k12,k3)k
0 =

∑

n12+n3=j

Ck12,k3,k
n12,n3,0 e(k1,k2)k12

n12
e(k3)

n3
, (26)

one finds that the phase factor of A equals (−1)j12+j. Thus we have :
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A = (−1)j12+j/(j12!j!(2k1)j12(2k2)j12(2k12)j(2k3)j

×(2k1 + 2k2 + j12 − 1)j12(2k12 + 2k3 + j − 1)j)
1/2. (27)

After these special examples, let us consider the tensor product of ν + 1 rep-
resentations, and determine an explicit expression for the standard coupled
basis vectors. We shall use here the terminology of binary coupling schemes,
and of the related binary coupling trees. In order to fix some notation and ter-
minology, let us consider an example in Dk1

⊗Dk2
⊗Dk3

⊗Dk4
⊗Dk5

(ν = 4),
namely

T (k, n) = ( (((k1, k2)k12, k3)k123, (k4, k5)k45)k, n). (28)

The corresponding binary coupling tree has ν + 1 leaves, each with a repre-
sentation label ki, whilst the internal nodes are labelled by the intermediate
representations. Figure 1(a) shows this binary coupling tree. Note that by the
su(1, 1) tensor product rule (3), one can associate with every internal node,
say vi, of such a binary tree a nonnegative integer ji.

From [18, Theorem 7.2] one can deduce an explicit expression for T (k, 0) for an

arbitrary binary coupling scheme. To this end, we introduce
(

ν+1
2

)

summation
variables αij associated with each pair of leaves ki and kj, with i < j. For
conciseness of notation, we introduce also variables αm which are the sum
of all αij where either i or j equals m. Compare this with the conventions
adopted in (21).

We say that two leaves meet at a node vi if vi is the first common ancestor of
those two leaves. So, with every internal node one can associate a set of pairs
of leaves meeting at that particular node, and hence a set of variables αij.

Figure 1(b) gives a name vi to the internal nodes in postorder. For the example
tree, we have the following :

node meeting pairs of leaves

v1 (k1, k2)

v2 (k1, k3), (k2, k3)

v3 (k4, k5)

v4 (k1, k4), (k1, k5), (k2, k4), (k2, k5), (k3, k4), (k3, k5)

This is indicated in Figure 1(c).
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(c)

��� ��� ��� ��� ���
	 � 	 � 	 � 	 � 	 �

��� ��� ��� ��� ���
	 � 	 � 	 � 	 � 	 �

� � � � � � � � � �
	 � 	 � 	 � 	 � 	 �


 ������������
 ������������

 ���������������������

�

� ���� ���
�������

� �

� �� �
� �


 � ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

Fig. 1. example tree

Then, one can write the following :

T (k, 0) = A
∑

αij∈V

j1! · · · jν !(2k1)α1
· · · (2kν+1)αν+1

∏

1≤i<j≤ν+1

(zi − zj)
αij

αij!
,(29)

where V is a set of ν linear constraints to be satisfied by the variables αij.
There is one constraint associated with each internal node of the coupling
scheme, namely : the sum of the variables αij associated with an internal node
vm should be equal to jm. Note that these constraints are in agreement with
those in (20) and (21).

As before, it follows from Rosengren [18, page 33] that the square A2 of the
normalization constant is given by :

A2 =

(

ν
∏

i=1

ji!(ai + 1)ji
(bi + 1)ji

(ai + bi + ji + 1)ji

)−1

, (30)

where

ai =
∑

left leaves
of vi

2kl +
∑

nodes in left
subtree of vi

2jl − 1,

bi =
∑

right leaves
of vi

2kl +
∑

nodes in right
subtree of vi

2jl − 1. (31)
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We now come to the main result of this paper :

Theorem 1 In the tensor product of ν + 1 representations Dk1
⊗Dk2

⊗ · · · ⊗
Dkν+1

, the realization of a coupled vector defined by a binary coupling scheme
T (k, n) is given by :

T (k, n) = (−1)|j|

√

√

√

√

j1! · · · jν !

n!(2k)n
∏ν

i=1(ai + 1, bi + 1, ai + bi + ji + 1)ji

×
∑

αij∈V

∑

|h|=n

(

n

h1, . . . , hν+1

)

(2k1)α1+h1
· · · (2kν+1)αν+1+hν+1

×
∏

1≤i<j≤ν+1

(zi − zj)
αij

αij!
zh1
1 · · · z

hν+1

ν+1 . (32)

Herein, |j| = j1 + · · · + jν, |h| = h1 + · · · + hν+1, V is the set of ν linear
constraints satisfied by the αij, αm is the sum over all αij with either i or j
equal to m, and ai and bi are determined by the binary coupling tree and given
in (31).

Proof. Let us write (32) as

T (k, n) = B
∑

αij∈V

∑

|h|=n

(

n

h1, . . . , hν+1

)

ν+1
∏

i=1

(2ki)αi+hi

∏

i<j

(zi − zj)
αij

αij!

ν+1
∏

i=1

zhi

i ,(33)

where B is some constant. It is clear that in the case n = 0 (33) coincides with
(29), so we shall use induction on n to prove (33). In the present realization,
J+ has the following form :

J+ =
ν+1
∑

l=1

z2
l ∂zl

+ 2klzl. (34)

Since J+ is a linear operator we can write :

J+T (k, n) = B
∑

αij∈V

∑

|h|=n

J+

((

n

h1, . . . , hν+1

)

ν+1
∏

i=1

(2ki)αi+hi

×
∏

i<j

(zi − zj)
αij

αij!

ν+1
∏

i=1

zhi

i



 = B
∑

αij∈V

∑

|h|=n

J+ (Z) , (35)

where the meaning of Z is obvious. We first concentrate on J+Z.
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J+Z =
ν+1
∑

l=1

z2
l





∑

j>l

αlj
Z

(zl − zj)
−
∑

j<l

αjl
Z

(zj − zl)
+ hl

Z

zl



+ 2klzlZ

=
ν+1
∑

l=1

ν+1
∑

j=l+1

(z2
l − z2

j )αlj
Z

zl − zj

+ (2kl + hl)zlZ

=
ν+1
∑

l=1

ν+1
∑

j=l+1

(zl + zj)αljZ + (2kl + hl)zlZ

=
ν+1
∑

l=1

(2kl + αl + hl)zlZ.

Plugging in the explicit form for Z, we get :

J+Z =





∏

i<j

(zi − zj)
αij

αij!





ν+1
∑

l=1

(

n

h1, . . . , hν+1

)(

ν+1
∏

i=1

(2ki)αi+hi

)

×(2kl + αl + hl)

(

ν+1
∏

i=1

zhi

i

)

zl,

and thus, when introducing the sum over the variables h

∑

|h|=n

J+Z =





∏

i<j

(zi − zj)
αij

αij!





∑

|h|=n

ν+1
∑

l=1

(

n

h1, . . . , hν+1

)

×





∏

i6=l

(2ki)αi+hi



 (2kl)αl+hl+1





∏

i6=l

zhi

i



 zhl+1
l

=





∏

i<j

(zi − zj)
αij

αij!





∑

|h|=n+1

ν+1
∑

l=1

(

n

h1, . . . , hl − 1, . . . , hν+1

)

×
ν+1
∏

i=1

(2ki)αi+hi

ν+1
∏

i=1

zhi

i

=





∏

i<j

(zi − zj)
αij

αij!





∑

|h|=n+1

(

n + 1

h1, . . . , hν+1

)

ν+1
∏

i=1

(2ki)αi+hi

ν+1
∏

i=1

zhi

i ,

where, in the last line we have used the fact that

ν+1
∑

l=1

(

n

h1, . . . , hl − 1, . . . , hν+1

)

=

(

n + 1

h1, . . . , hν+1

)

, (36)

when |h| = n+1. This proves (33). To fix the (absolute value of the) coefficient
in (33), use the explicit action of J+ and the knowledge of A2 in (29). To fix
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the sign of this coefficient, use induction and apply the method of [18, Lemma
7.1] to

T (k, 0) =
∑

nl+nr=jν

Ckl,kr,k
nl,nr,0 σ(Tl(kl, nl) ⊗ Tr(kr, nr)). (37)

2

The uncoupled basis vectors e(k1)
n1

⊗· · ·⊗ e(kν+1)
nν+1

, in their realization (16), form
an orthonormal basis in the Hilbert space H of analytic complex functions
f(z1, . . . , zν+1) on the multidisc D = (|z1| < 1, . . . , |zν+1| < 1) with an inner
product that is the generalization of (15) :

〈f1, f2〉 = (
ν+1
∏

i=1

2ki − 1

π
)
∫

D

f1f2(
ν+1
∏

i=1

(1 − |zi|
2)2ki−2)dx1dy1 · · · dxν+1dyν+1,(38)

provided all ki > 1/2. As a consequence, we have

Corollary 2 Let T (k, n) and T ′(k′, n′) be two binary coupling schemes in the
tensor product of ν + 1 representations Dk1

⊗Dk2
⊗ · · · ⊗Dkν+1

with the same
binary coupling tree. Then

〈T (k, n), T ′(k′, n′)〉 = δj1,j′1
· · · δjν ,j′νδn,n′ ,

where the inner product is given by (38), j1, · · · , jν are the internal labels of
T (k, n), and j ′1, · · · , j

′
ν are those of T ′(k′, n′). For a fixed binary coupling tree,

the binary coupling schemes T (k, n) form an orthonormal basis in H.

If T (k, n) and T ′(k, n) are two binary coupling schemes with different un-
derlying binary coupling trees, then 〈T (k, n), T ′(k, n)〉 is usually defined as a
generalized 3νj-coefficient.

4 Coupled basis vectors as triple hypergeometric series

Upon inspecting the summations in (32) for specific binary coupling schemes,
one finds that these summations can be rewritten in terms of multiple hyper-
geometric series. We consider one such example in this section, where a triple
hypergeometric series [24, Section 1.5] appears. We use a notation close to
that of Srivastava and Karlsson, and denote

F (3)

(

a

e
::

b

g
;
b′

g′
;
b′′

g′′
;
c

h
;
c′

h′
;
c′′

h′′
; x, y, z

)

=
∑

m,n,p

Λ(m,n, p)
xm

m!

yn

n!

zp

p!
, (39)
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with

Λ(m,n, p) =
(a)m+n+p(b)m+n(b′)n+p(b

′′)p+m(c)m(c′)n(c′′)p

(e)m+n+p(g)m+n(g′)n+p(g′′)p+m(h)m(h′)n(h′′)p

. (40)

In the previous a stands for a1, . . . , aA and (a)m+n+p denotes the product
(a1)m+n+p · · · (aA)m+n+p. The same applies for the other parameters of the
F (3).

After some manipulations of the Pochhammer symbols and a reversal of one
of the summation variables, we obtain for (7) :

e((k1,k2)k12,k3)k
n =

A
√

n!(2k)n

(2k1)j12(2k2)j12+j+n(2k3)j(z1 − z2)
j12(z2 − z3)

jzn
2

×F (3)

(

−

1 − 2k2 − j12 − j − n
::

2k1 + j12

−
;
−n

−
; − ;

−j

−
; − ;

2k3 + j

−
;

z1 − z3

z2 − z3

,
z1

z2

,
z3

z2

)

. (41)

The F (3) appearing in (41) is listed in [24, Table 4 – entry 13a], and was
denoted as F13 resp. FT by Lauricella [25] resp. Saran [26].

A similar expression for e(k1,(k2,k3)k23)k
n is easily derived. Indeed, e((k2,k3)k23,k1)k

n is
immediately obtained from (41) by cyclic permutation of the indices 1, 2 and
3 (and hence replacing j by j ′). Furthermore, e(k1,(k2,k3)k23)k

n and e((k2,k3)k23,k1)k
n

only differ by a phase factor (−1)j′ . We thus find the following :

e(k1,(k2,k3)k23)k
n =

A′

√

n!(2k)n

(2k2)j23(2k3)j23+j′+n(2k1)j′(z2 − z3)
j23(z1 − z3)

j′zn
3

×F (3)

(

−

1 − 2k3 − j23 − j′ − n
::

2k2 + j23

−
;
−n

−
; − ;

−j′

−
; − ;

2k1 + j′

−
;

z1 − z2

z1 − z3

,
z2

z3

,
z1

z3

)

. (42)

Substituting the expressions (42), (14) and (41) in (13) gives an identity be-
tween (terminating) triple hypergeometric series. A simple renaming of the
variables yields the following :

F (3)

(

−

a
::

b

−
;
−n

−
; − ;

−j

−
; − ;

c

−
; x, y,

y − x

1 − x

)

=
m+j
∑

l=0

(−1)m+j+n+l
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×
(−m − j)l(−a + b + c − m − j − n)l(b − m)m+j+n(1 − x)j−lxlyn

l!(c − j + b − m + l − 1)l(1 − c − b − l)m+j−l(a)n+l

×4F3

(

−m,−l, c + b − m − j + l − 1,−a + b − n − m − j

b − m,−a + b + c − n − m − j,−m − j
; 1

)

×F (3)

(

−

1 − b − n − j
::

c − j + l

−
;
−n

−
; − ;

−m − j + l

−
; − ;

1 − a − n − l

−
;

1

1 − x
,

y − x

y(1 − x)
,
1

y

)

. (43)

Using easy manipulations on single hypergeometric series, one proves the fol-
lowing transformation for the triple hypergeometric series on the right side :

F (3)

(

−

1 − b − n − j
::

c − j + l

−
;
−n

−
; − ;

−m − j + l

−
; − ;

1 − a − n − l

−
;

1

1 − x
,

y − x

y(1 − x)
,
1

y

)

=
(−1)n(a + l)n(1 − b − c − l)m+j−l(1 − x)−m−j+ly−n

(b + j)n(1 − b − j)m+j−l

×F (3)

(

−

b + c − j − m + 2l
::

b − m + l

−
;
−n, b + c + l

a + l
; − ;

−m − j + l

−
; − ;

c − j + l

−
; x, y,

y − x

1 − x

)

. (44)

This allows us to rewrite (43) as (where we have multiplied by the factor
(1 − x)m) :

(1 − x)mF (3)

(

−

a
::

b

−
;
−n

−
; − ;

−j

−
; − ;

c

−
; x, y,

y − x

1 − x

)

=
∞
∑

l=0

(−m − j)l(−a + b + c − m − j − n)l(b − m)lx
l

l!(c − j + b − m + l − 1)l(a)l

×4F3

(

−m,−l, c + b − m − j + l − 1,−a + b − n − m − j

b − m,−a + b + c − n − m − j,−m − j
; 1

)

×F (3)

(

−

b + c − j − m + 2l
::

b − m + l

−
;
−n, b + c + l

a + l
; − ;

−m − j + l

−
; − ;

c − j + l

−
; x, y,

y − x

1 − x

)

. (45)

Until now, the parameters j, m and n in (45), are assumed to be nonnegative
integers, while a, b, and c are real numbers. Provided both sides converge,
formula (45) is also valid for real j, m and n. Indeed, consider the coefficient
of xpyq on the left side of (45); this is :
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∑

h1,h2,h3

(−1)h3(b)h1+h2
(−n)h2+h3

(−j)h1
(c)h3

(−m + h3)p+q−h1−h2−h3

×(−h3)q−h2
/((a)h1+h2+h3

h1!h2!h3!(p + q − h1 − h2 − h3)!(q − h2)!). (46)

For nonnegative integer values of j, m and n, this is equal to the coefficient of
xpyq on the right side, by (45). But (46) is a rational function in j, m and n
because the sum is terminating due to the appearance of the last two factorials
in the denominator. It follows that (45) is also valid for real values of j, m
and n.

Proposition 1 Provided both the left and right hand side converge, we have

F (3)

(

−

a
::

b

−
;

c

−
; − ;

d

−
; − ;

e

−
; x, y,

y − x

1 − x

)

=
∞
∑

l=0

(d + f)l(−a + b + c + d + e + f)l(b + f)l(1 − x)fxl

l!(b + d + e + f + l − 1)l(a)l

×4F3

(

f,−l, b + d + e + f + l − 1,−a + b + c + d + f

b + f,−a + b + c + d + e + f, d + f
; 1

)

×F (3)

(

−

b + d + e + f + 2l
::

b + f + l

−
;
c, b + e + l

a + l
; − ;

d + f + l

−
; − ;

d + e + l

−
; x, y,

y − x

1 − x

)

. (47)

For c = 0, the two triple hypergeometric series in (47) reduce to the Gauss
hypergeometric series and we get the special case :

2F1

(

b, d

a
; x

)

=
∞
∑

l=0

(d + f)l(−a + b + d + e + f)l(b + f)l(1 − x)fxl

l!(b + d + e + f + l − 1)l(a)l

×4F3

(

f,−l, b + d + e + f + l − 1,−a + b + d + f

b + f,−a + b + d + e + f, d + f
; 1

)

× 2F1

(

b + f + l, d + f + l

b + d + e + f + 2l
; x

)

, (48)

which is similar to Chaundy’s formula [27].

5 Coupled basis vectors in su(2)

The Lie algebra su(2) is generated by J0, J± subject to the relations

[J0, J±] = ±J±, [J+, J−] = 2J0, (49)
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with the conditions J †
0 = J0, J†

± = J∓. The finite-dimensional irreducible rep-
resentations Dl are labelled by a positive halfinteger l (i.e. 2l is a nonnegative
integer). The representation space Dl has orthonormal basis vectors e(l)

m with
m running from −l up to l in steps of 1; so the dimension is 2l+1. The action
of the su(2) generators on these basis vectors is given by

J0e
(l)
m = me(l)

m ,

J+e(l)
m =

√

(l − m)(l + m + 1)e
(l)
m+1,

J−e(l)
m =

√

(l + m)(l − m + 1)e
(l)
m−1.

(50)

These representations appear in the quantum theory of angular momentum,
where the label l, resp. m of the basis vector e(l)

m stands for the total angular
momentum, resp. its projection, of a particle or a system. The tensor product
of representations then corresponds to the coupling of angular momenta. The
tensor product of two such representation is given by [5,6]

Dl1 ⊗ Dl2 =
l1+l2
∑

l=|l1−l2|

Dl. (51)

The coefficients relating the coupled basis vectors to the uncoupled basis vec-
tors are again called the Clebsch-Gordan coefficients of su(2); their theory and
properties are well known.

We consider here the following realization of su(2) which is a formal analogue
of the realization (17) of su(1, 1). Let l be a positive halfinteger,

J0 = z∂z − l, J− = ∂z, J+ = −z2∂z + 2lz. (52)

The realization of the basis vectors e(l)
m are given by :

e(l)
m =

√

√

√

√

(2l)!

(l + m)!(l − m)!
zl+m. (53)

Using the generating function of the Clebsch-Gordan coefficients C l1,l2,l
m1,m2,m in

su(2) [28, Section 8.8, Eq. 5], one determines an explicit form of the coupled
vectors e(l1,l2)l

m , where

e(l1,l2)l
m =

∑

m1+m2=m

C l1,l2,l
m1,m2,m e(l1)

m1
⊗ e(l2)

m2
. (54)

One finds :
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e(l1,l2)l
m = ∆(l1, l2, l)

√

(2l1)!(2l2)!(l − m)!(l + m)!(2l + 1)
(z1 − z2)

l1+l2−l

(l1 + l2 − l)!

×
∑

h1+h2=m+l

1

(l1 − l2 + l − h1)!(−l1 + l2 + l − h2)!

zh1
1

h1!

zh2
2

h2!
, (55)

where, following [28],

∆(a, b, c) =

√

√

√

√

(−a + b + c)!(a − b + c)!(a + b − c)!

(a + b + c + 1)!
. (56)

Our purpose here is to give the explicit expression for the realization of coupled
vectors in the tensor product of ν + 1 representations of su(2). The situation
is very close to that of su(1, 1), so we shall not give any details of the proofs
here. Furthermore, we shall also use the same terminology for binary coupling
schemes and binary coupling trees.

To find the explicit form, note that (55) can be rewritten as

e(l1,l2)l
m = ∆(l1, l2, l)

√

(2l1)!(2l2)!(l − m)!(l + m)!(2l + 1)

×
∑

α12=l1+l2−l

(z1 − z2)
α12

α12!

∑

h1+h2=m+l

1

(2l1 − α1 − h1)!(2l2 − α2 − h2)!

zh1
1

h1!

zh2
2

h2!
,

(57)

with α1 = α2 = α12.

The main result is :

Theorem 3 In the tensor product of ν + 1 representations Dl1 ⊗ Dl2 ⊗ · · · ⊗
Dlν+1

, the realization of a coupled vector defined by a binary coupling scheme
T (l,m), with internal labels ji (i = 1, . . . , ν), is given by :

T (l,m)
√

(l − m)!(l + m)!
=

ν
∏

i=1

∆(ji)

√

√

√

√

ν+1
∏

i=1

(2li)!
ν
∏

i=1

(2ji + 1)

×
∑

αij∈V

∑

|h|=l+m

∏

1≤i<k≤ν+1

(zi − zk)
αik

αik!

ν+1
∏

i=1

zhi

i

hi!(2li − αi − hi)!
. (58)

Herein, |h| = h1 + · · · + hν+1, ∆(jp) ≡ ∆(leftp, rightp, jp) is the function (56)
applied to the internal representation label jp and the representation labels of
its left and right child, V is a set of ν linear constraints satisfied by the αik, and
αp is the sum over all αik with either i or k equal to p. The linear constraints
are as follows : with each internal node with label jp there is one constraint,
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namely the sum of all αik associated with the internal node jp should be equal
to leftp + rightp − jp.

As an example, consider the tensor product of three representations, with a
binary coupling scheme T (l,m) = e((l1,l2)l12,l3)l

m . We get the following :

e((l1,l2)l12,l3)l
m

√

(l − m)!(l + m)!
= ∆(l1, l2, l12)∆(l12, l3, l)

√

(2l1)!(2l2)!(2l3)!(2l12 + 1)(2l + 1)

×
∑

α12=l1+l2−l12
α13+α23=l12+l3−l

(z1 − z2)
α12

α12!

(z1 − z3)
α13

α13!

(z2 − z3)
α23

α23!

×
∑

h1+h2+h3=m+l

1

(2l1 − α1 − h1)!(2l2 − α2 − h2)!(2l3 − α3 − h3)!

zh1
1

h1!

zh2
2

h2!

zh3
3

h3!
.

(59)

Observe that this general result of Theorem 3 also has its use in quantum
theory of angular momentum, as it gives quite explicitly the expansion of a
coupled basis vector (or coupled state) in terms of uncoupled basis vectors
(uncoupled states). Indeed, the expansion of (58) as a polynomial in the zi

is quite straightforward; then using (53) this gives an expansion in terms of
(tensor products of) the orthonormal basis vectors e(li)

mi
(usually denoted by

|ji,mi〉 in the quantum theory context). We have observed that the compu-
tation of such an expansion is more efficient than the direct calculation using
su(2) Clebsch-Gordan coefficients.
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