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Symmetry breaking: how vector calculus can violate the associative law of addition 
 
G. Van Hooydonk, Ghent University, Faculty of Sciences, Krijgslaan 281 S30, B-9000 Ghent (Belgium) 
 
Abstract. Standard vector calculus based upon properties of non-composite particles violates the 
associative law of addition when applied to composite particles. The proof starts with a 
redistribution of number 1 as 1 = x1 + x2, where x2 = 1-x1.Physical unit hydrogen mass mH is 
redistributed as mH=me +Mp, with Mp = mH –me. With the associative law of addition, species H 
can occur naturally in 2 forms: an atom state H, related to the standard distribution x1+(1-x1) and 
an anti-atom state or anti-hydrogen H-state, related to the mirror of the equivalent distribution of 
H or –x1 +(1+x1).The difference between the 2 forms of species H, both with total mass mH, lies in 
their reduced mass: (a) me(1-me/mH) ≡ me/(1+me/Mp), the Bohr value for the H-state and (b) its 
super-symmetrical equivalent me(1+me/mH) for the anti-H or H-state The ratio is 1.0011 known as 
an anomaly for me but an equivalent solution gives 2 proton radii, a problem for bound state QED 
theory as well as for experimentalists. Consequences for CERN-based artificial anti-hydrogen 
experiments are given. 
 
Keywords: generic symmetry breaking, associative law of addition, antihydrogen, Mexican hat curve 
 
Introduction 
 
 Symmetry breaking exists where symmetry is expected, but that expectation is not met. 
Why and how symmetry is broken remains an intriguing question. Algebraic symmetry 
between numbers +a and –a can never be broken but algebraic symmetry between particle 
properties (masses +m and –m) can. 
 Algebraic symmetry in a hydrogen/anti-hydrogen transition is generated by charge-
inversion from +1 in H [electron(-); proton(+)] to –1 in H [positron(+); antiproton(-)], 
based upon Dirac’s view on antimatter. H-H conversions are fundamental for physics, as 
they refer to conservation of lepton and baryon number [1-3] as well as to matter-
antimatter (a)symmetry in the Universe [4].QFT can deal with H-H conversions but cannot 
reach an unambiguous solution [5].To solve this enigma, one is now trying to produce large 
amounts of artificial anti-hydrogen H [6-8] in order to measure its spectrum, especially the 
H 1S-2S interval, known already with great precision (parts in 1014 [9]) for H. Today, 
everything seems set to measure even the smallest symmetry breaking effect in H and H. 
 We argue that symmetry breaking is due to a violation of the associative law of addition 
when standard vector calculus is applied to a composite system with an origin in its center of 
mass. Dimensionless numbers in physics, generated by scaling properties of material particles 
with a dimension (mass m, length ℓ…) must be positive (+m/m0, +ℓ/ℓ0…).We can simply not 
measure a zero system or a negative system [10]. 
 To prove this rather unconventional viewpoint we use (i) the validity of the 
commutative and associative laws of addition; (ii) the algebra of numbers in physics (the 
distinction between a positive (mass) world and the negative (mass) or anti-world is due to 
a convention, based upon physical measurements. Perfect symmetry between positive and 
negative mass worlds would never be broken, just like the symmetry between algebraic 
numbers); (iii) the distinction between scalar and vector properties, important for the 
higher order laws of algebra (multiplication); (iv) a category of symmetries like SU(n), 
SO(n), Sp(n) and classical symmetry operations (inversions, reflections, rotations…); (v) the 
numerical effects associated with the transition from linear x and inverse 1/x 
representations (T-duality) and finally (vi) the effects of fields (repulsive and/or attractive 
inter-particle and/or intra-particle effects). 
 This paper clarifies some of the points raised recently in connection with mirror 
symmetry as it is hidden in the observed terms of the Lyman series of natural species H, 
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known for many a decade but left unnoticed thus far [11,12].In particular, we present a 
quantitative explanation for the difference between hydrogen- and antihydrogen-states, as 
already given in [12] without further explanation. 
 
Theory  
 
Positive world: the division or redistribution of hydrogen mass mH (scaled number +1= mH/mH). The 
center of mass of a composite particle and position-vectors for elementary particles. 
 
 We start with a common 1D representation of hydrogen mass on a semi-axis as in 
(1) by means of two vertices 0, +mH of which only the second is a material point. 
 
 ├────┴───────────────┴────┴──> +m   (1) 
 0 (+m1)            (+m2)  +mH 
 
 Neglecting the internal mass-points m1 and m2 between brackets, 1D model (1) is 
physically unrealistic, if not impossible, to arrive at a rotation of mH around the center of 
this system (zero), since there cannot be an attraction between material point +mH (system 
H) and mass-less origin 0.Just like with algebra, only a rotation by 180°, an inversion or a 
reflection in a mirror plane at the origin would lead to –mH in the negative world (see 
further below), the basis of talking about symmetry effects for (1).With the internal material 
points, we would be conditioned by Newton’s law, which states that heavier particle mH 
should be closer to the origin than less heavy particle m1. 
 Also, scalar hydrogen mass in (1) is treated as a vector with length mH. Avoiding a 
preferential direction in space for +mH means we must place the origin for H within the 
system itself, e.g.at its center of mass, to arrive at rotational (field-) invariance for +mH. 
Hence, we first abandon the material point-model for neutral H and then, artificially or not, divide its total 
mass in two sub-units m1 and m2, respecting the law of addition, as indicated in generic scheme (1).In the 
positive mass world (1), this gives  
 +mH = +m1 + m2 = +m1 +(mH –m1)   (2a) 
since m2 is automatically defined as 
 m2 = mH – m1      (2b) 
 For the Bohr-like H system, 

Mp = m2 = mH – me     (2c) 
as indicated in (1) by the two points between brackets. 

Speaking about positive and negative number worlds in physics nevertheless 
introduces a certain ambiguity, realizing that numbers generated in physics derive from 
scaling (dividing) particle properties by means of a reference value for the same property, 
having the same physical dimension. For instance, positive number +1 can be generated by 
means of two mass ratios: (i) +m0 /(+m0) =+1 deriving from the positive mass world, 
using a positive mass reference value +m0 but also (ii) by –m0/(-m0)=+1 in the negative 
mass world, using the appropriate negative reference mass1 -m0.Although one usually believes 
this ambiguity can be solved by convention by allowing only one (say a positive) world, the situation is more 
complex, as illustrated in footnote 1.Let us therefore analyze first the situation with positive 
numbers. 

                                                 
1 The common sense idea behind this distinction is best illustrated with a simple example. The (positive) number of 
cars N, made by the same manufacturer, driving from A to B can be exactly the same as the number of the same 
cars going from B to A. Yet, the physical characteristics of the cars must be completely different: opposite 
direction, different drivers, different circumstantial conditions (wind, slope) and, above all, separate lanes, to avoid 
calamities (such as crashes, if not annihilation). 
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 In terms of positive numbers, i.e.positive masses in (1) scaled by +mH, and of the associative 
law of addition, the two equivalents of (2a) in the positive number world for +1 are 
 +1 =+x + (1-x) = -x +(1+x)    (3a)  
This creates a set of two equivalent partition functions for positive number +1, which has 
become a binary mixture with simple partition functions. The outer right hand side 
solution in (3a), not yet illustrated in (1), is obtained with the associative law of addition (and is 
discussed further below). 

In terms of physics, (2a) can be read as a zero perturbation of mass mH since in (2a) 
 m1 – m1 = 0      (3b)  
by definition, reproducing unperturbed +mH = +mH, as it should. Whether or not these 
redistributions of H-mass are real or not, we are obliged to admit that real or virtual particles with mass m1 
and m2 must always attract in order that its conglomerate H with mass mH remains the same stable 
particle. Leaving out m1 and m2 in (1) would mean that, exactly as in the kinetic theory for 
the ideal gas, H is just a material point somewhere on an axis. The inclusion of m1 and m2, 
however, makes H a linear additive structure in the first place instead of a material point, as 
depicted in (1). 
 In terms of graphs, the remedy to reproduce (1) without the internal mass points 
between brackets in (1), which means a reproduction of vertices 0 and +mH only in (1), a 
number of discrete options are available, which we can classify simply by introducing two 
secondary axes. Schematically, we get either 
(a) co-linear or parallel graphs (biaxial representations) 
  └──┘or ┌──┐     (3c) 
generating a non-zero field component along the secondary axes, scaled with m1 or  
(b) anti-linear or anti-parallel graphs (biaxial representations) 
  └──┐or ┌──┘     (3d) 
whereby there is a zero-field component along the secondary axes. These models will be 
discussed further below but we remark already here that these structures are basically 4-
particle structures, if the origin is regarded as a virtual mass-less point-particle. As argued elsewhere 
[13,14], the classical 19th century treatment requires at least 4-particles (points) for chiral structures, or 
slightly distorted out-of-plane structures like those in (3c)-(3d).  
 Despite the internal linear 1D division in (1), the absolute center of the 1D axis (the 
reference frame) is still outside the H-system. With respect to the origin, m1 and m2 are in 
conjunction not in opposition. To get the origin within the system, i.e. to get immunity towards 
external field effects, we use vector calculus and an inverse law for the mass of non-
composite particles X in the standard way by using the linear-inverse (mx to 1/rx) 
transformation2 
 mxc2 = e2/rx      (4a) 
without external algebra3. Equation (4a) is the result of equilibrium in a central force model, 
classically given by mv2 = e2/r for Coulomb systems. In the following, we will put the scale 
factor between real velocity v and absolute velocity c in (4a) equal to one (although α could 
be used too), since its value does not affect the procedure developed below. Therefore (4a) is 
the absolute formulation for the linear-inverse transition we need to discuss. This absolute 
procedure gives unit particles X (an indivisible particle -ατοµος- instead of composite H) 
with mass mX a constant moment (position vector), deriving from a (central) field effect 
 mxrx = e2/c2      (4b) 
One effect of this (inverse) field notation for m1 and m2 in (1) is to secure that H, with 
mass mH as given in (1) and (2) and despite its division in two particles, remains a stable 

                                                 
2 Using equation (4a) does not exclude the possibility that extra numerical scale factor ½ may be needed.The 
equally possible alternative and important expression 2mXc2 =e2/rX is not discussed in this paper. 
3 At this stage, we leave algebra out of (4a).Stable X requires –e2/rX, unstable X +e2/rX but this is just convention. 
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unit. An advantage is that we can speak of particles using position vectors instead of so-
called mass vectors as implicit in (1).We must now evaluate the effect of the linear-inverse 
transformation (4a) for indivisible non-composite particles upon the law of addition (1) and 
(2) for composite particle system H. Using the same conversion factors c2 and e2 as in (4a) 
for linear mass system H, we can rewrite (2a) as 
 mHc2/e2 = 1/rH’ = 1/r1 + 1/r2 = (r1+r2)/r1r2  (5a) 
which defines the corresponding position vector for H in 1D, rH’, as a reduced distance, equal to 
 rH’ = rerp/(re+rp)     (5b) 
if re is the so-called electron- and rp the proton-radius, reminding (4a).This is at variance not 
only with the conventional Bohr but also with the vector-based quantum field theory 
solution that 
 rH = re + rP      (6a) 
or, in vector notation 
 rH = re - rP      (6b) 
which is identical in absolute value with (6a). 
 These transformations are valid for the redistribution of mass H as in (1) and (2a) 
as long as the classical equilibrium condition  
 mere = Mprp (=e2/c2)    (7a) 
holds4, on the basis of (4b), since e2/c2 is a universal constant. One of the reasons to use 
(6a) rather than (5b) is that, for system H, the moment (mass times radius) is equal to the 
universal constant in (4b) pending a scale factor, if and only if one goes over to a reduced mass 
for hydrogen too or 
 µHrH = e2/c2 = mXrX      (7b) 
Only in this way the laws for scaling and the determination of physical constants can 
proceed consistently. In fact, with a reduced mass for system H, defined as  
 µH = meMp/(me +Mp) =1/(1/me + 1/Mp) = (e2/c2)/(re+rp) (8a) 
the identity µHrH = e2/c2 in (7b) is still obeyed for composite system H also. Using identity 
(2c), we easily verify that this reduced mass (8a) is numerically identical with 
 µH = me/(1+me/Mp) ≡ me (1-me/mH)   (8b) 
Although (8b) is perfectly allowed, this linear form is never used in the analysis of system H.  
 Using this information on the transformed inverse model for H using position 
vectors re and rp for particles me and Mp, we get at the linear 1D (but in reality inverse mass) 
representation in r (9) 
 

  ┴──┴────┼────────────────┴────> +r  (9) 
 -rp (-rH’) 0    +re  
to be compared with equivalent linear mass representation (1).Electron and proton are now 
described by position vectors indeed and, as required, the origin of the H system is naturally 
replaced within the system (center of mass), securing the system is rotationally invariant to 
external field effects as intended. The inverse mass representation leads to vector calculus, 
culminating in (6b), meaning essentially the same as (6a) but whereby an addition (+ sign) is 
formally replaced by a subtraction (- sign), although the picture is qualitatively the same as 
that given in (1). 
 Quantitatively, however, there is a difference. If we choose to place rp at the negative 
semi-axis, the implicit effect is that rH’, defined in (5b), must also be placed in the negative 
world, only it must be closer to the origin than rp, since mass Mp is smaller than mH. This 
means that going over to the standard vector model, implies that we shifted the mass of 
neutral system H from a positive to a negative world in a 1D model also. To restore this 

                                                 
4 Like in a classical balance 
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seemingly illegitimate rotation or inversion, we should rotate 1D model (9) also by exactly 
180° or by π (or invert it).But if we do, we are obliged to displace or linearly shift, instead of particle 
with mass m2 or Mp, the properties of particle with mass m1, or me, from a positive to a negative world in 
turn. 
  
Conflict with the associative law of addition in going from (1) to (9) or from the linear mass to the inverse 
mass or r-representation for a composite system like H. Going to a negative world 
 
 Whatever transformation we choose, (9) or its mirror, one of the two sub-particles 
must be placed in an algebraically conjugated world. Then these particles are in opposition, 
since the center of mass of the total neutral system H is situated between the two. This is as 
far as we can go for the external algebra of particle masses m1 and m2 (or me and Mp) and 
their center of mass. Nevertheless, the equivalence of (1) and (9) is, however, false: the 
associative law of addition has been violated tacitly, as is easily demonstrated. In (10), the 
commutative law of addition for H mass or 
 mH = me + Mp = Mp + me = me +(mH-me) = (mH-me) + me  (10) 
is still obeyed but the associative law of addition is violated in going from (1) to (9).This law says that 
x+(y+z) = (x+y) +z, which means that, in an addition, we are completely free to change the 
order as well the combination (association) of all terms to be added, since all operations 
(additions) are equivalent. If we apply this law to the right hand side of (2a), we get 2 
different associations 
  +mH = +me + (mH-me) = +me + mH – me 
  = -me + (mH +me)    (11) 
for +mH, which are both perfectly valid, as illustrated numerically in (3a). In the linear 1D 
mass representation we now obtain for the last identity in (11) the 1D mass representation 
 

┴───┼────────────────────┴───┴──────> +m (12) 
 -me 0     +mH +(mH+me) 
instead of (1).The effect of this representation is that also here the center of the system is 
internal, exactly as with inverse mass based vector model (9). However, in the vector 
notation re as well as –re (related to mass me) remain correlated with the same vector with 
length rp (related to mass Mp = mH –me) irrespective of its orientation in space, due to (4a) and (7a). 
Equation (11) and representation (12) both clearly show that negative mass particle –me 
must and can only be correlated (associated) with a particle with total mass mH+me instead of with 
the less heavy particle with mass mH-me=Mp, the proton, only valid for unit +me. This 
explains the title above5. 
 Instead of the proton with mass mH-me, the associative law of addition demands the 
existence of another (real of virtual) particle with total mass mH+me, which, at least, seems 
strange. Since a particle with negative mass appears (-me) as a unit or reference mass, it 
seems straightforward to forbid representation (12) in a positive world or for positive mass 
system H (1). Nevertheless, mass being a scalar and not a vector, an absolute exclusion may be too 
severe. For a scalar like energy, positive and negative values for unstable (unbound) and 
stable (bound) systems cannot be excluded a priori. 
 Distinguishing between bound and unbound states can be done by considering 
reduced mass for the two mathematically allowed and correct representations (11) or (12).If 
reduced mass (8) is denoted as µH(+,+), referring to (1) with +me and +Mp, we get 
analytically for distribution (11) or (12)  

µH(-,+) = (-me)(mH+me)/mH 

                                                 
5 Classical macroscopic cases, subject to the same phenomenon, are dealt with elsewhere [15]. 
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= - me(1+me/mH) = -me(Mp+ 2me)/(me+Mp) 
= - µH(+,+)(1+2me/Mp)   (13) 

not only a difference in absolute value with (8) but, obviously with the wrong algebraic sign to be 
applicable in an exclusively positive (mass) world. Result (13), deriving from the associative 
law for particle masses, must be rejected in a positive mass world. This reflects the 
problems associated with presentation (9) and the seemingly arbitrary choice to use its 
inverted or rotated equivalent, as discussed above. 
 To reach a conclusion, the problem is to find out exactly what happens with 
mathematically valid representations and associations (3a) in a negative world. Is it possible to 
distinguish between (9) and its rotated equivalent (not shown) and if so, is there a quantitative 
measure available to do so unambiguously? To do so, all models above are now repeated 
for a negative mass hydrogen species. 
 
Equivalent representations (associations) in the negative (mass) world 
 

Without duplicating details, we give the additive mass equations in the negative 
mass world for system H, with mass –mH instead of +mH, using (11) as reference. Again, 
we obtain two different but perfectly allowed associations starting from the same zero-mass 
perturbation 

- mH = -mH +me -me     (14a) 
in the negative mass world. Analytically, these associations are now 

- mH = (-mH +me) -me     (14b) 
  - mH = (-mH -me) +me     (14c) 
 First, (14b) is the negative equivalent of representation (1) or the electron-proton model in 
the negative world, which generates a negative reduced mass 

µH(-,-) = (-me)(-Mp)/(-me-Mp) = - µH(+,+)  (15a) 
numerically equal to Bohr’s (8a).It is a forbidden version of Bohr’s reduced mass (8) for 
species H but, by symmetry, it is only allowed in the symmetrical negative mass world. 
 Next, (14c) is the negative equivalent of distribution (12).Despite the fact that it 
derives from an inverted or mirrored negative mass world, this model generates a positive 
reduced mass, equal to 

µH(+,-) = me(-Mp)/(me-Mp) = meMp/(Mp-me) >0 
 = me(1+me/mH) = - µH(-,+)    

= µH(+,+)(1+2me/Mp)    (15b) 
 Although this reduced mass derives from a negative (mass) world, where it is 
forbidden, it must be allowed in a positive (mass) world. It is, however, numerically different from 
the standard reduced mass µH(+,+) or simply µH as derived above in (8).Result (15b), compared 
with (8a), perfectly illustrates the violation of the associative law of addition through an incorrect 
application of vector calculus, as mentioned in the title. 
 The consequence is that, as soon as we decide by convention that only one positive 
world is allowed for composite particle masses like mH, which is exactly as we did a long 
time ago, this convention no longer holds for the masses of the components of that 
particle due to the associative law of addition, as illustrated in (3a). 
 
Symmetry breaking. ART (algebraic recoil theory) [16] and supersymmetry. Physical number theory.  
 
 The perfect symmetry between algebraic numbers suggests that this same symmetry 
should exist between the positive world (+mH) in physics and the negative antiworld (-mH). 
Unfortunately, this expectation is not met, due to the difference between (15b) and (8).In 
physics, one of the two mathematically possible conjugated worlds must be forbidden (like 
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for scalar particle mass), since our measurements are bound or restricted to the positive number world 
exclusively. Nevertheless, as soon as the idea of the point-like mass particle6 is abandoned by 
using a Bohr model like in (2b), the positive/negative symmetry must be looked at 
differently, as we have shown above. For a composite neutral particle model, an internal 
algebraic symmetry breaks the external algebraic symmetry conform a process, which is even easily assessable 
quantitatively. In fact, given the derivations above for allowed positive reduced masses 
µH(++) and µH(-,+), the result is that a numerical symmetry breaking correction factor appears, 
equal to 
 µH(-,+)/µH(+,+) = 1+ 2me/Mp   (16a) 
 This is the first quantitative result of the correction needed for standard vector 
calculus, according to the associative law of addition, applied to a composite physical 
system like species H with mass mH. This is the so-called simple electron-proton Coulomb bond. 
When transposed to the positive world only, it appears that the two associations simply 
follow a (slightly) different scaling law, which is easily deduced. 

Using (8b) and (15b), the anomaly (16a) may be rewritten in a super-symmetric 
form using a number A, a reduced difference, which leads to familiar expressions for (chiral) 
symmetry breaking processes, since from (15b) we obtain 
 A = µH(+,+)/µH(-,+)  

= (1-me/mH)/(1+me/mH)   
= (mH – me)/(mH+me)    (16b) 

With (16b), we have an algebraic recoil theory, instead of a conventional non-algebraic one, 
expressible as 

µH (±) = me(1±me/mH)    (16c) 
as proposed earlier (ART, Algebraic Recoil Theory) [16]. It can be expected that this super-
symmetrical version (16c) of reduced mass is the equivalent of a chiral symmetry breaking 
(CSB) theory [11,12]. In fact, the physical mechanism behind the sign-inverted equivalent 
of (12), which leads to a positive reduced mass (15b) for the inverted H system, deriving 
from (3a) and the associative law of addition, must be identified. If this transformation is 
real, it must be retraceable experimentally (this is presented elsewhere [18]). As remarked in 
the Introduction, the simplest interpretation possible is a charge inversion (a mirror symmetry) 
between two charge conjugated particles. If confirmed by experiment, this must now lead 
to two physically different forms or states for species H: the hydrogen- and the anti-
hydrogen-state, as we argued in [12]. If so, ART is also a CSB theory, conform (16b). 
 In this hypothesis, the difference between the two states, allowed by a law of 
association (internal algebra) and by an inversion (external algebra), can be quantified using 
the two different reduced masses in (16c). Numerically, this distinction reduces to the 
difference between  
(a) a baryon with mass Mp= 1836.1526675me (proton mass [19]) for the hydrogen-state and  
(b) a (not yet identified) baryon with mass Mx= 1838.1526675me for the antihydrogen-state 
while the total mass of the neutral system H remains invariant and equal to 
mH=1837.1526675me. These results were given in [12] without proof. If confirmed, 
symmetry in neutral species H is broken by mass mH, both conceptually and quantitatively. 
 It is now easily verified that algebraic symmetry for non-material points (i.e. finite systems) like 
system H must always be broken, since correction factors are needed when the composite material system is 
described by unconventional mass unit -me instead of conventional +me. Quantitatively, generic symmetry 
breaking is determined by the ratio of the unit mass |me| and the total mass of the composite system |mH| 
or |me/mH|, as illustrated by equations (16). This ratio is close to, but not identical with classical 

                                                 
6 A point-model was also the basis of the famous ideal gas law, the first ever equation of state (EOS).Vanderwaals 
succeeded in deriving a much better EOS by giving up the point-model.The analogy of the Vanderwaals-Maxwell 
model for unit particles and its refined EOS with the Bohr model (2b) for H is discussed in full elsewhere [15]. 
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recoil me/Mp, building upon (7a). Although we would expect a perfect (algebraic) symmetry 
between +me and –me, just like between pure numbers +1 and –1, this expectation is not met 
for physical numbers for a composite neutral system (see Introduction). And since this 
generic symmetry breaking or scaling effect is simply overlooked in bound state QED, this 
theory can not yet be validated, as we argued before [12]. Only in the limit of very small, 
nearly zero unit m1, the less useful material point model for perturbed mH in (1) is 
reproduced, since this is only valid for unperturbed system H [13]. In [15] we show that the 
switch from a point model to a non-point model is exactly what Vanderwaals had to do to 
account for easily observable phase- or order-disorder-transitions in macroscopic systems. 
 
Mechanical symmetry breaking models 
  
 For mechanical models to describe a linear 1D phase transition, allowed by the 
associative law of addition, we can only make some reasonable guesses. 

(a) For linear mass representations, a first model is offered by comparing (1) and 
(12). To go over from association (1) to association (12) in the same world, a double 
rotation of me is needed. In a 2D Cartesian frame, a biaxial system is generated, with one of 
2 secondary axes with scale me crossing at the origin 0 of the +m semi-axis in (1), the other 
crossing at point +mH. Only the perpendicular configuration can reproduce the simple non-
composite model for H, with just two vertices 0 and +mH on the semi-axis (1), since only 
then the projection of me at either position is zero. These 4-particle structures were already 
sketched in (3c) and (3d) and, using a different approach and their importance was stressed 
in [13]. 

(b) For inverse mass or vector models with a common origin for both vectors re 
and rp, any rotation of vector re must be accompanied by small variations(oscillations) in the length of vector 
rp, as a result of the above. This is exactly the effect, overlooked in standard vector calculus in 
quantum theories for composite particles. If both internal particles rotate independently 
with variable position vectors, chaotic behavior may be the result (see below and [10]).Unlike 
Bohr’s model, particles cannot only be in opposition but also in conjunction. The length of rp 
for electron and proton when in opposition must be smaller than when in conjunction, for the reasons set 
out above around (16).Both models use me as a unit to describe mH. To describe this model 
using a unitary triangle, we should go over to what we already called the engine-model [16,18] 
and to illustrate this, we can switch from the Bohr triangle (the standard vector model)  

rH = re√[1+ (rp/re)2 – 2(rp/re)cosθ]   (16d) 
with fixed angle θ=π and constant rp, which cannot rotate, to the engine triangle 
 rH = recosη + rpcosχ      (16e) 
This model uses the two other angles in the same Bohr unitary triangle, obeying η+χ+θ=π 
[16].The analytical treatment of this mathematical (trigonometric) transition is given in [16]. 
The correlation between the two is unambiguous but the analytical dependence on recoil 
becomes slightly different [16]. 

However, a common feature of both mechanical models (a) and (b) is a critical value for the 
angle of rotation, invariantly equal to 90° or ½π.With this value, the simplest model of all is 
returned: the undivided material point-like H system, either with 1D vertices 0, +mH (or 0, 
-mH) and 0, +rH (or 0, -rH). 

The generic picture behind all this is the transformation of a left-handed 3D Cartesian reference 
frame into a right-handed one, and where the mirror plane, situated exactly at this critical angle too, is 
being crossed [12]. This brings in chiral behavior in a classical way, since a least four particles 
(vertices) are needed in a 3D-structure to arrive at permanent and stable left-right 
structures as we know them since the 19th century [13]. 
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Results and discussion 
 

A theory which tries to explain and account for generic symmetry breaking must be 
put to the test in as many ways as possible to look for any ambiguity. Fortunately, there are 
a number of equivalent tests available, pending the experiments and the interpretation of 
anomaly A (16a) or (16b).We discuss some, not all, pertinent straightforward examples. 
 (a) Electron mass. A first straightforward result is in terms of electron mass, when the 
correction in (16a) is incorporated in electron mass. The generic symmetry breaking effect 
above for the electron with mass me can be rewritten such as if there were two different 
electron masses me and m’e, with m’e given by 

m’e = me(1+2me/Mp) = 1.0011me   (17a) 
the validity of which should be verified experimentally. Numerically, the anomaly is 
2me/Mp. An anomalous electron mass has been observed a long time ago [20], giving 
0.0011596521869 [19] as most recent value for this anomaly. Here, (17a) gives 
2/1836.1526675= 0.001089234 ≈0.0011, a divergence of -6 %. The alternative QED 
explanation for the anomaly starts with the leading term α/2π in a series expansion in the 
fine structure constant [21]. 
 (b) Proton radius. Another test is in terms of two different proton radii rp and r’p, 
invisible in the standard treatment of reduced mass and in the conventional vector-model 
for H. If we adhere to a model with constant electron mass me and overlook its anomaly (17a), 
the effect of (16b) will have to show elsewhere. Since r’p is associated with a particle, with 
absolute mass larger than absolute proton mass (in casu Mp + 2me), we get as an alternative 
for (17a)  
 r’p = rp/(1+2me/Mp)     (17b) 
Despite its accuracy, modern bound state QED is indeed faced with the problem of two 
slightly different proton radii [22]. Since ART is missing (overlooked) in bound state QED 
and if the transition process described above is real, this error of vector calculus must, 
sooner or later, show in the QED results, when put to the test with experiment. The reality 
of having to deal with two slightly different proton radii [22], is a second, be it indirect proof 
for the validity of (16b). Mechanical models (a) and (b) above rely on implications of (17b). 
 (c) Number theory, dimensions and symmetry. A next issue is to transform the indirectly 
measurable reduced mass into a number, obtained with scaling by another mass. In the case 
of H, the most pertinent mass scale factor is mH itself. Numbers N±, showing internal 
algebra, generated with (16c) are 
  N± = µH (±)/mH = (me/mH)(1±me/mH)   

= (1/n)(1±1/n) = 1/n2±1/n   (18a) 
whereby we introduced a subsidiary number n, defined as 
 n = mH/me      (18b) 
The equivalent expression with inverse number 1/n = n’ (nearly recoil) gives numbers N’± 
obeying 

N’± = n’(1±n’) = n’2±n’    (18c) 
instead of (18a).It is easily verified that the numbers N’±, generated with (18c), are of 
Hadamard-type, rather than of Heisenberg-type, as discussed in full elsewhere [10]. As a 
consequence of these number generating processes, (18c) with positive sign is related to 
Sp(n), whereas with negative sign it correlates with SO(n). Any product of the two 
correlates with SU(n).Fig.1 gives the behavior of N’± in function of n’, in line with an 
 
INSERT Fig.1 around here 
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earlier analysis [10]. For large n’ (not shown), the two parabola nearly coincide near the 
minimum but zooming in at small n’ as in Fig.1 separates the two sets and a double well or 
Mexican hat potential is generated, illustrating the left-right asymmetry hidden in (16b). 
This aspect is discussed further below. As remarked elsewhere, N’+ goes over into N’- by 
applying the simple linear substitution ℓ = n’ –1 [10]. Since both principal quantum 
number n as well as secondary quantum number ℓ = n-1 are needed to interpret the H-
spectrum, the analysis above turns out to be self-consistent [10]. 
 It is also obvious that (18a) is an idealization of the famous Kratzer[23]-Fues[24] 
potential, we discussed recently in great detail [25]. In a generalized form due to Varshni 
[26], this potential is useful in molecular spectroscopy [25] and provided with a first hint 
for natural atom-antiatom transitions, using information from molecular band spectra [27]. 
 (d) Chaos and fractal behavior. When number 1 is a critical value for numbers like N±, 
we get from (18a) 
 1 = (1/n)(1±1/n) 
   = 1/n2 ± 1/n     (18d)  
In this case, we arrive at chaos and fractal behavior for the numbers n and their inverse n’ 
[28]. Using (18d), we can also remove the inverse (mass based) notation by multiplying first 
by n and then by n2 to get at the linear number equivalent of reduced masses, deriving from 
distribution (1) in the positive world and from (12) in the (inverted) negative world. We obtain 
two additional relations 
 n = 1/n ± 1      (19a) 
 n2 = 1±n      (19b) 
intimately related to chaotic and fractal, if not chiral behavior, of pure numbers [28], as 
discussed in [10]. For instance, (19a) shows that linear n is equal to inverse 1/n pending 
algebraic constant 1. Other number theoretical applications and implications, including the 
case of harmonic behavior, are in [10]. 
 (e) H-H conversion: a phase-transition in species H. Despite the great accuracy claimed by 
modern and highly sophisticated bound state QED [22], the analysis given here cannot be 
retraced in the QED framework. The simple left-right phase-transition between different 
states of species H is lacking in bound state QED, which is why we said that QED as it 
stands cannot yet be validated [12]. The issue is important, as the possibility of a natural H-
H conversion can have profound consequences for the (non-) conservation of lepton 
and/or baryon number [1-3]. Recently [15], we analyzed the H spectrum and even found 
that there is evidence for a Vanderwaals-Maxwell-type phase transition within species H 
(when compressed or expanded).The critical n-values, as well as the binodal are easily 
computed, which provides additional evidence for an internal change (an internal phase-
transition) in the H configuration, as derived above. 
 (f) Mirror symmetry. Whatever mechanical model (a) or (b) above we would choose to 
describe this phase transition, the critical angle is invariantly 90° or ½π for the position of 
the electron mass (the electron), a value for which the undivided model or material-point 
model for system H (1) is returned. It is also the generic angle for a mirror plane, placed 
somewhere on one axis of the 3D Cartesian reference frame. A recent analysis of the terms 
of the H Lyman ns-series shows that a critical value for principal quantum number n 
indeed appears, exactly equal to ½π [12]. 
 (g) Mexican hat curve (binodal) for system H. The shape of a binodal, characteristic for a 
classical Vanderwaals-Maxwellian phase transition [15], is essentially that of a Mexican hat 
or double well potential. These latter are characteristic for chiral symmetry, as argued a long 
time ago by Hund [29]. Exactly this type of potential (Mexican hat) is easily extracted from 
the H-spectrum too [13,30,31] and suggests the applicability and the validity of the 
mathematics behind Fig.1 for system H. 
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 (h) H mass. Above, we showed that hydrogen mass mH is important for a 
description of the H system. This is in line with particle physics, where a crucial –if not the 
most important- characteristic of a particle, is its mass. Bohr-Schrödinger theory as well as 
bound state QED, only indirectly refer to mH when describing H, except for the small recoil 
correction. As shown here and also elsewhere [13], this is a serious neglect indeed. 
 (i) CERN’s artificial antihydrogen. The fact that an artificial charge-inverted 
antihydrogen is made with positron and antiproton, producing numerically the same reduced 
mass as in Bohr theory for hydrogen is sufficient ground to show that the generic internal 
symmetry effects, discussed above, are insufficiently accounted for in the ongoing CERN-
AD experiments [6-8]. Given the conjecture that only a positive mass world is allowed, 
artificial antihydrogen is doomed to get annihilated, which seems in line with observation [6-
8]. We suspect that reports [6-8] on the mass production of artificial antihydrogen are 
premature as argued elsewhere on different grounds [13] or, at least, require a different 
interpretation, along the lines set out above. 
 (j) Recoil corrections in QED. Formally adapting Dirac-based bound state QED for 
recoil is a very complicated task ([32], see also [22]). For H, additional recoil corrections 
contribute less than 1 kHz for terms or energies. The standard or classical recoil correction 
1/(1+me/Mp) leads to an expansion in recoil me/Mp, like 1 - me/Mp + (me/Mp)2 - …. 
However, using the equivalent linear notation 1-me/mH = 1/(1+me/Mp) in (8b) simply 
avoids this expansion and its higher correction terms. Eventually, using the linear form (8b) 
instead may lead to a considerable simplification of QED-calculations, without loss of accuracy. 
Moreover, until today, ART result (16c) has never been considered in this type of highly 
sophisticated QED-calculations. This places question marks on attempts to correctly 
describe analytically and/or to compute recoil corrections in a Dirac-theory based 
framework [32] for a bound system like the electron-proton Coulomb bond in species H. 
 (k) Woodward-Hoffmann symmetry rules. Finally, we must return to the perpendicular 
biaxial representations (3c) and (3d) for the material point mH on the linear axis. To arrive 
at the linear 1D representations (1) and (12) allowed by the associative law of addition, 
rotations are required in these biaxial structures. The main point thereby is to find out if 
these double rotations are coupled by additional symmetry rules and if so, if these rotations 
are con- or disrotatory. For parallel structures like └───┘in (3c) producing a subsidiary 
field effect on the secondary axes, only disrotatory ring-closure mechanisms can be allowed 
to reproduce (1) and (12).For the anti-parallel structures like └───┐in (3d), which do not 
invoke subsidiary field effects, only conrotatory mechanisms can reproduce the states (1) and 
(12), allowed by the associative law of addition. Although, to the best of my knowledge, in 
the context of the H problem these mechanisms are completely new, the analytical 
treatment was given a long time ago by Woodward and Hoffman [33], since they represent 
a very common type of reaction mechanism in organic chemistry. The connection between these 
rules and the atom-antiatom transition was discussed already a long time ago [34].  
 Some of these results may be new but they amply illustrate the implications of the 
present deductions for a number of topics, of interest for both theoretical and experimental 
physics and chemistry. These summary of tests provides sufficient, almost conclusive, 
evidence for the validity of the generic symmetry breaking mechanism in this work. 
 
Conclusion 
 
 Symmetry breaking seems to be an unnecessary problem. The internal symmetry of a 
composite system is already broken at the 1D level due to a violation of the associative law of 
addition. The error produced by standard vector calculus using two position vectors of fixed 
length, is easily pinpointed, is simply assessable quantitatively and can therefore easily be 
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accounted for. Whether or not this solution for the artificial problem of symmetry breaking 
is consistent with other tests than those already mentioned above, remains to be 
determined. Additional tests and quantitative verifications will be presented shortly. Maybe 
the current CERN-AD experiments on artificial antihydrogen and their outcome can provide 
an additional test. 
 
I thank M. Tomaselli and B. Sutcliffe for discussions and Y. P. Varhsni for correspondence. 
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Fig. 1.   N’± according to (18c) versus n’ (N’+ full, N’- dashed). 
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