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Abstract

Existing groundwater table (GWT) class maps, available at full coverage for the Netherlands at 1:50,000 scale, no longer

satisfy user demands. Groundwater levels have changed due to strong human impact, so the maps are partially outdated.

Furthermore, a more dynamic description of groundwater table dynamics representative for the current climate is needed. A

mapping method to obtain a large set of parameters describing groundwater table dynamics was developed. The method uses time

series analysis and well-timed phreatic head measurements to obtain a data set at point support. This point data set is correlated to

groups of exhaustive high-resolution ancillary data by stratified multiple linear regression. Finally, simple kriging is applied to

interpolate the residuals of the regression model. The method was applied in a 1,790,000 ha area and its performance was

measured in 10,000 and 179,000 ha test areas. The relation between higher sampling density, mapping cost and map quality was

explored. Validation results show that reasonable to good quality maps of various aspects of groundwater dynamics can be

obtained by this method, at much lower cost than traditional survey-based mapping methods. The method includes the

quantification of uncertainty at the actual sampling density and allows the a priori estimation of uncertainty at other sampling

densities. Future research aims at identification of the effect of sources of error in ancillary data and how to diminish these.
D 2004 Elsevier B.V. All rights reserved.
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1. Introduction ation of phreatic water levels in the Netherlands. These
Groundwater table (GWT) class maps are the only

full-cover data source describing the seasonal fluctu-
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maps comprise one of the main information layers of

the Dutch soil information system, and the GWT

surveys were done together with the soil surveys.

The spatial objects in the Dutch geographical database

are thus characterised in terms of both soil type and

GWT. A comparable situation exists in many other

countries, e.g. the United States3 and Russia4. In fact,
3 http://nasis.nrcs.usda.gov/documents/help/cosoilmoist.htm.
4 http://www.iiasa.ac.at/Research/FOR/russia_cd/soil_dat.htm.

https://core.ac.uk/display/55829338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.nasis.nrcs.usda.gov/documents/help/cosoilmoist.htm
http://www.iiasa.ac.at/Research/FOR/russia_cd/soil_dat.htm
http://www.nasis.nrcs.usda.gov/documents/help/cosoilmoist.htm
http://www.iiasa.ac.at/Research/FOR/russia_cd/soil_dat.htm


P.A. Finke et al. / Geoderma 123 (2004) 23–3924
soil maps in all regions with shallow water tables

benefit by an geographically associated characteriza-

tion of the annual evolution of the water table depth,

if only because these include the worlds most

densely populated areas with the highest agricultural

production. The soil and GWT maps have been

surveyed for presentation scales 1:50,000 between

1961 and 1992. Since then, human practices (i.e.

land reclamation, drainage, re-allotment, levelling

and groundwater extraction) have caused changes

in the groundwater levels and dynamics (Braat et

al., 1989) and, thus, detoriation of the groundwater

maps. For this reason, a cost efficient and fast update

of the maps of GWT has become a priority issue in

the Dutch soil data acquisition programme (Finke,

2000). One other priority was the update of the soil

information data layers, which will be reported on

elsewhere.

The GWT is a composite, ordinal variable (Bregt et

al., 1992) based on classes (Fig. 1) of the mean

highest water table (MHW) and mean lowest water

table (MLW). The MHW is defined as the mean value

of the three shallowest groundwater levels measured

within each year over 8 or more consecutive years,

where the measuring frequency is biweekly. The

MLW is defined likewise with the deepest groundwa-

ter levels. The mean spring water table (MSW) is
Fig. 1. Relation between groundwater table class (GWT) and mean

highest water table (MHW) and mean lowest water table (MLW).
defined likewise with the groundwater levels mea-

sured at three dates nearest to April 1. In this paper, all

groundwater levels are phreatic, which means that the

groundwater levels are the surface at every point of

which the water pressure is atmospheric.

Because the combined soil/GWT survey was

organised by map sheet and took 31 years, the

necessary monitoring periods of 8 or more years to

calculate MHW and MLW as a basis for GWT do not

necessary overlap. Also, it has been shown (e.g.,

Knotters and Bierkens, 2000) that the precipitation

deficit is a major driving force for groundwater

fluctuations under Dutch circumstances. Thus, the

asynchronicity in monitoring periods in combination

with weather differences may have caused some

systematic GWT differences between map sheets. A

possibility to overcome this problem would be to base

future MHW and MLW estimates on a longer mea-

surement period of 30 years (the climatic period).

In spite of these shortcomings, the existing GWT

maps are still frequently used. Nevertheless, a stake-

holder survey showed (Finke et al., 1999; Table 1)

that a quantitative description of more aspects of

groundwater level fluctuations was needed in order

to support a wider range of applications of the soil

map (Table 1). Another stakeholders’ wish was that an

indication of the accuracy of the most important

parameters (MHW, MLW and MSW) should be

added.

Thus, there were three major reasons to change the

way the groundwater dynamics should be mapped:

(i) the update of GWT maps should be cost efficient

and fast;

(ii) the resulting maps should reflect the effect of

weather variation within the climatic period (30

years) given the current water management;

(iii) an extended set (quantitative) parameters de-

scribing groundwater dynamics, with quantified

accuracy, was needed.

Taking these three reasons as research objectives,

we designed and applied a method to map the target

parameter set resulting from the stakeholder survey

(82 parameters; Table 1). The parameters are together

referred to as the groundwater dynamics set (GD set).

Each one of the GD parameters should, for the

purpose of backward compatibility with existing



Table 1

Prioritised parameters (and some applications) that describe aspects of groundwater dynamics as identified in a stakeholder survey (after Finke

et al., 1999)

Name Description Example of application of parameter

(always in conjunction with soil data)

Number of

mapped

parameters

MHW mean highest water table; mean value over 8 or

more consecutive years of the three shallowest

groundwater levels measured within each yeara

phosphate binding capacity 1

sdMHW standard error of prediction of the MHW 1

MLW mean lowest water table; mean value over 8 or

more consecutive years of the three deepest

groundwater levels measured within each yeara

assessment of drought stress in field crops 1

sdMLW standard error of prediction of the MLW 1

MSW mean spring water table; mean value over 8 or

more consecutive years of the groundwater

levels at March 14, March 28 and April 14

measured within each yeara

assessment of trafficability in early spring 1

sdMSW standard error of prediction of the MSW 1

GWT groundwater table class (Fig. 1) soil map stratification for environmental

modeling

1

FOE frequency of exceeding a given water table; the

number of periodsa within any 1 year that a

certain groundwater depth is exceeded. Based on

the estimated mean and standard deviation of the

water table in 1 year, and assuming a Normal

distribution function

potential for development of specific

types of wetland or dry land vegetation

2

REG water REGime; the expected water table

depth at a certain datea in any 1 year

assessment of water storage capacity

during the year

24

REG5 water REGime 5th percentile: the 5th percentile of

the distribution of water table depths at a certain date

assessment of minimal water storage

capacity during the year

24

REG95 water REGime 95th percentile: the 95th percentile

of the distribution of water table depths at a certain date

assessment of maximal water storage

capacity during the year

24

SEEP indicator of the occurrence of seepage or leakage in any

1 year; estimated by the degree to which the difference

between average water table and local drainage basis can

be explained by the local precipitation surplus

indicator of the occurrence of bicarbonate rich

upward water fluxes to predict vegetation type

1

a All descriptions are based on a biweekly measuring frequency (the 14th and 28th of each month) and are representative for the current

climate (i.e. reflect the weather variation over 30 recent years).
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GWT maps, be mapped such that a presentation scale

of 1:50,000 (or more detailed) is legitimate.

As the data environment in the Netherlands can be

considered relatively rich, we took the following pre-

assumptions as a basis to develop a mapping method:

(A) Some of the available (cf. Section 2) full-cover

geographic data sets have predictive power to

map GD parameters in the context of multiple

linear regression (though it is a priori unknown

which part of the data sets has predictive power

and what the coefficients of the relation are);
(B) Since groundwater fluctuations may depend on

specific combinations of soil type, land use

landscape position, so may the sought regression

relations. Thereto a functional stratification of the

area to be mapped is taken as the basis for

sampling and mapping.

The additional objectives of this paper are:

(iv) to test the quality of the mapping approach in 2

areas (10,000 ha and 179,000 ha);

(v) to explore the relation between cost and quality.
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2. Material and methods

2.1. Primary data sources and consequences for

mapping GD

Since the target parameter set should reflect the

effect of weather variation within the complete

climatic period (30 years), it is important to have

time series of groundwater measurements. The

existing national network of monitoring piezome-

ters has very few locations with complete data

coverage over the last 30 years (Van Bracht,

2001), and also has too low spatial coverage to

be the only basis for a mapping on detailed scales

(Table 2). This means that both the temporal and

spatial density of groundwater level measurements

must be increased. In the Netherlands the precip-

itation deficit is the major driving force for

groundwater fluctuations, and meteorological data

are available for the climatic period. Time series

analysis explaining groundwater fluctuation by pre-

cipitation deficit can therefore increase the tempo-

ral density of groundwater level estimates, while

additional measurements can increase the spatial

density.

However, groundwater fluctuations are known to

vary geographically because of differences in soil

type, landscape position, land use and (artificial)

drainage situation even when the precipitation deficit
Table 2

Usage of existing data sources and consequences for mapping GD

Primary data source Purpose of usage Problem

Phreatic head monitoring network to obtain GD

characteristics

at point support and

30-year extent

1. Insufficien

coverage

2. Insufficien

Full-cover polygon maps

of soil, GWT and surface

(hydro-) geology

stratification for

sampling and

mapping of GD

3. Stratificati

criteria undef

Full-cover grid DEMa mapping of GD 4. Unknown

hydrological

Drainage network maps mapping of GD 5. Line elem

spatial covera

Presence of subsurface drainage mapping of GD 6. Local mea

a Digital Elevation Model.
is a geographical constant (e.g., Wösten et al., 1985;

Knotters, 2001). This knowledge motivated the usage

of existing data sources that reflect the geography of

the above factors. Two types of geographic data were

available:

1. Quantitative data such as the 25� 25 m2 DEM of

the Netherlands

2. Nominal and ordinal data such as soil type, GWT,

land use and (hydro-) geology.

Nominal and ordinal data were predominantly used

for stratification, while the quantitative data were used

for prediction. The problems to be solved to make the

data suitable for stratification and prediction are

mentioned in Table 2; the activities needed to make

the data usable for mapping are described in Section

2.3.

2.2. Main activities and workflow

The main activities that were identified (Table

2) to obtain maps of GD are presented in Fig. 2.

The first series of activities translate the primary

data set into a point-support GD data and a set of

full-cover grid data with a common support of

25� 25 m2 (Section 2.3). This GD mapping set

is the basis for the actual mapping procedure

(Section 2.4).
Consequences

t temporal 1. Time series modelling

and simulation

t spatial coverage 2. Additional phreatic measurements

on and sampling

ined

3. Development and application

of criteria for stratified sampling

and variable

relevance

4. Translate into set of full-cover

maps with hydrological relevance

ents have insufficient

ge

5. Translate to set of full-cover

drainage (density) maps

surements, no full coverage 6. Make full-cover estimate



for mapping groundwater dynamics (GD).
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2.3. Data conversion

2.3.1. Time series analysis

Time series analysis is necessary, because in most

networks few piezometers have been monitored for

5–8 years maximally, and time series are often

incomplete as well. In summary, the approach was

as follows:

1. Calibration of a transfer noise time series model;

2. Simulation of 30-year series using the calibrated

model;

3. Characterisation of the 30-year series in terms of

the GD parameter set.

The relation between precipitation surplus (the

precipitation minus the potential evapotranspiration)

was parameterised on the available time series of

Fig. 2. Main activities and workflow
groundwater levels and the complete time series of

precipitation and evapotranspiration data. Groundwa-

ter data were screened for discontinuities in levels

(usually caused by changed hydrological management

practices) and location (displacement of the piezom-

eter). In case of discontinuities, only the part of the

time series after the discontinuity occurred was con-

sidered. Weather data were obtained from the closest

weather station, usually within 20 km distance from

the monitoring piezometer.

We used a simplified version of the transfer noise

model described in detail by Bierkens and Knotters

(1999):

ht ¼ dht�1 þ xPEt ð1aÞ

ðnt � cÞ ¼ /ðnt�1 � cÞ þ at ð1bÞ
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hg;t ¼ ht þ nt; ð1cÞ

where ht is the groundwater level and PEt is the

precipitation surplus (both at day t), d and x are the

weights assigned to the groundwater level at day

t� 1 and the precipitation surplus at day t, respec-

tively. at and (nt� c) are noise components with c

as a constant and at as a white noise process; / is

the weight assigned to the noise component at day

t� 1. The deterministic component of the model

(Eq. (1a), ht) is added to the stochastic component

(Eq. (1b), nt) to yield the actual transfer noise

model (Eq. (1c), hg,t).

This transfer noise model is embedded in a Kalman

filter, which optimises correspondence to measured

groundwater levels. The coefficients d, x, / and c

were calibrated using the KALTFN software (Bier-

kens and Knotters, 1999).

If calibration was successful, the model was used

to simulate 100 realisations of 30 years of ground-

water levels for each monitoring piezometer. Inputs

comprised a complete 30-year time series of pre-

cipitation surpluses measured in the most nearby

weather station, the calibrated coefficients and the

noise term at. The resulting realisations of the

complete time series were used to calculate the time

series characteristics from the GD parameter set

(Table 1).

2.3.2. Stratification and sampling

The purpose of stratification is to minimise the

uncertainty of the GD maps. Hereto, areas must be

identified that have characteristic (yet unknown) rela-

tions between ancillary information and the GD pa-

rameter set. The stratification was based on thematic a

priori information by reclassification of individual

map polygons of the Dutch 1:50,000 Soil and GWT

map (de Bakker and Schelling, 1986). Where

1:10,000 and 1:25,000 maps were available as well,

these were used. The stratification followed the fol-

lowing format:

1. Polygons were labelled on basis of the surface

geological formation. If applicable, surface fault

lines were used to split polygons.

2. These major units were subdivided on the basis of

attributes of the original soil map polygons such

as dominant soil texture, the occurrence of clayey
layers or coarse sandy layers. Indicators of

typical hydrological conditions either appearing

on the original map of GWT, or on topographic

maps as a typical drainage intensity or on land cover

maps (e.g. peat reserves), were used for further

subdivision.

3. The maps thus obtained locally showed fragmented

patterns. The last step consisted of a local de-

fragmentation such that landscape patterns (such as

brook valleys, dry ridges, sand dunes) were

preserved in the final stratification.

Depending on the scale of the landscape, the

resulting strata usually occupied areas between 1000

and 5000 ha.

The strata served as the basic units for additional

sampling in the field. Groundwater levels were mea-

sured at two dates and according to a purposive spatial

sampling scheme.

One measurement was done near the date that

groundwater levels are close to the MHW (usually

near the end of the winter), the other measurement

was done near the date that groundwater levels are

close to the MLW (usually at the end of summer).

Groundwater levels were measured in both the piezo-

meters of the monitoring network and in a set of

temporary piezometers. The method to obtain MHW,

MSW and MLW values in the temporary piezometers

was developed from the one described by te Riele and

Brus (1991). Regression relations were fitted between

the MHW, MLW and MSW and the measured water

level in the permanent piezometer for the combina-

tions of two dates as well as each one date separately

Thus, for each temporary piezometer in which a

summer and a winter measurement has been done,

three regression models can be fitted for MHWas well

as MLW and MSW:

Y ¼ b0 þ b1X1 þ b2X2 þ e ð2Þ

where Y is MHW, MLW or MSW, b0 is the regression
constant, b1 is the coefficient for the measurement at

date X1 and b2 is the coefficient for the measurement

at date X2. The three possible models are: b1 = 0^b2 p
0; b1 p 0^b2 = 0; and b1 p 0^b2 p 0. The best model

for each MHW, MSW or MLW for a specific combi-

nation of two measurement dates was chosen by the
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following procedure based on Mallow’s Cp (Mallows,

1966):

1. Calculation of Mallow’s Cp:

Cp ¼ SSres=s
2 � nþ 2p ð3Þ

where SSres is the sum of squared errors of

predicted versus measured MHW (MSW, MLW)

of the analysed model, s2 is the error variance of

the complete model (in this case: with b1 p 0^b2 p
0), n is the number of sampled piezometers from

the permanent network, and p is the number of

coefficients of the model ( p = 2 or 3, since models

containing only a constant are not considered).

2. Selection of models with a Cp smaller than ( p + 3);

3. Selection of the model(s) with the smallest number

of coefficients;

4. Selection of the model with the smallest error

variance.

The selected model was applied to the measured

groundwater levels in the temporary piezometers,

resulting in an estimate of the MHW, MLW and

MSW and associated standard errors. Since the tem-

porary piezometers have a limited depth (250 cm),

part of the data set of measured groundwater tables

consists of censored (‘‘deeper than’’) observations.

These censored observations were replaced by maxi-

mum-likelihood estimates before applying the select-

ed regression models. Maximum likelihood estimates

were obtained according to a method given by Cohen

(1991). The corrected distribution function including

the censored observation is given by:

r2 ¼ s2 þ kðh; aÞ � ðx̄� TÞ2 ð4aÞ

l ¼ x̄� kðh; aÞ � ðx̄� TÞ; ð4bÞ

where s2 is the variance of the non-censored observa-

tions, x̄ is de mean value of the non-censored obser-

vations, T is the censored depth (e.g., 250 cm), h is de

fraction of the sample that is censored, a = s2/(x̄� T)2

and k is tabulated for specific values of h and a (cf.

Cohen, 1991, pp. 21–24). The maximum likelihood

value for a censored observation is obtained by

numerical integration of the right tail (greater than

T) of the corrected distribution.
Spatial allocation of the temporary piezometers

was done by stratum. Inside each stratum the number

of temporary piezometers was minimally 25, with an

overall average sampling density of 1 per 1 km2. The

sampling locations were chosen to reflect the distri-

bution of local drainage depths as well as homoge-

neous spatial coverage. The local drainage depth was

estimated in GIS by interpolating the known water

levels in ditches and brooks with inverse distance

weighted interpolation and subtracting these values

from the 25� 25 m2 DEM. The distribution of local

drainage depths was log-transformed, and one 25� 25

cell from each Xth percentile of the distribution was

chosen such that a minimal distance to the previously

chosen grid cell was maintained. The log-transforma-

tion was done to put some emphasis in sampling the

wetter terrain parts, since the stakeholders expressed

the wish to have the highest accuracy of GD maps in

the wettest terrain parts. The value of X depended on

the sample size N for the stratum (e.g., when N = 25,

X = 4%).

2.3.3. Ancillary information

Ancillary information is necessary as predictor in

the regression approach for mapping GD. All ancillary

parameters must have full geographic coverage in the

non-urban parts of the area, and should have hydro-

logical relevance. Also, these predictive parameters

should be of quantitative nature to be applicable in

regression equations, thus be either on an indicator (0/

1) scale or on the ratio scale. From the available

primary data sets (Table 2) we derived groups of

ancillary data. Ancillary data were grouped into seven

groups, because it was expected that subsets of these

data would be highly correlated. Allowing highly

correlated data as predictors would cause redundancy

in the regression models. This expectation was sup-

ported by scattergrams (Fig. 3). The seven groups were:

1. Absolute altitude. This parameter is derived

directly from the 25� 25 m2 DEM.

2. Altitude relative to a local mean. This parameter

accounts for the effect that the phreatic surface

often cannot follow intricate relief patterns. In this

case, relative altitude can explain part of the

variation of groundwater table depth. Relative

altitude is calculated in GIS by subtracting the

absolute altitude from each grid cell in the DEM



Fig. 3. Scatter plots between ancillary data in 3478 sampled locations.
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from the local mean altitude within a search radius

(Fig. 4a). We produced five relative altitude maps

by calculation for five search radii: 100, 200, 300,

400 and 500 m.

3. Local density of the drainage network. This

parameter accounts for the effect that an intensive

drainage network is able to reduce the occurrence

of shallow water tables after rainfall events to a

short period. Alternatively, as a drainage network is

purposive, it may be an indicator of the occurrence

of shallow water tables. Local density of the

drainage network is calculated in GIS by counting

the grid cells from the DEM within a search radius

that are intersected by a ditch or brook (Fig. 4c).

The drainage network is obtained from the 1:10,000

topographic map of the Netherlands. We made a
distinction between narrow ditches and wide

ditches to produce two parameter maps.

4. Local drainage depth. This parameter corresponds

to the groundwater levels that the water manage-

ment boards expect to achieve with the drainage

infrastructure and management practices. The local

drainage depth was mapped using the 25� 25 m2

DEM, the 1:10,000 topographic map and main-

tained water levels in ditches if available. First, the

drainage basis was established in GIS by taking the

deepest value within a 100� 100 m2 window of

the DEM that intersects with a line element in the

drainage network map as a first estimate of

drainage basis, and the subsequent spatial interpo-

lation of these values (Fig. 4b) with inverse

distance weighted interpolation. The difference



 

 

Fig. 4. Derivation of ancillary information from DEM and topographic maps.
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between altitude from the DEM and drainage basis

then gave the drainage depth. Measured actual

water levels in the ditches during the field survey

were used to correct the drainage depth map.

Hereto, at the observation locations, the difference

between GIS-estimated and measured drainage

basis was calculated. Subsequently, this difference

was interpolated with inverse distance weighted

interpolation and the resulting map of differences

was added to the GIS map to result in the corrected

map. Both the GIS map and the corrected map of

drainage depth were used as ancillary information.

5. Distance to local ditches. This parameter accounts

for the effect that groundwater levels are increas-

ingly shallow at larger distances from draining

ditches (and, vice versa, that groundwater levels

are increasingly deep at larger distances from water

supply ditches). By interpolating the distance to
ditches from the 1:10,000 topographic map this

map is easily obtained (Fig. 4).

6. Presence of subsurface drainage. The presence or

absence of subsurface drainage is the local farmers’

response to the occurring groundwater levels in

combination to the land use at the field scale. The

presence of drains will deepen the groundwater

levels in the moist part of the year. This indicator

parameter was mapped using the 25� 25 m2 cell

size Land Cover Map of the Netherlands (Thunnis-

sen et al., 1992) and the existing GWTmap, using an

expert classification scheme developed for a

national extent hydrological model (Massop et al.,

2000).

7. Old MHW and MLW from the soil map 1:50,000.

Though the GWT maps are outdated, spatial

patterns of updated maps may still be comparable

to those of the original maps. For this reason, we
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produced maps of the old MHW and MLW as

ancillary information. For each GWT polygon of the

original GWT map, the class average MHW and

MLW was assigned. This map would have dis-

continuities at polygon boundaries, which is not

plausible in a hydrological sense. Therefore, the

MHW and MLW maps were downscaled such that

70% of the area of each polygon would fall within

the class boundaries of the GWT for MHW and

MLW (Fig. 1). The value of 70% represents the

assumed map purity of the original GWT map.

Downscaling was done by projection of the altitude

range of the 15th to 85th percentile of the 25� 25

m2 DEM within the map polygon on the class width

of MHW (or MLW) defined by GWT. Higher

altitudes within a GWT polygon correspond with

deeper MHW of MLW. The remaining 30% of the

area (usually near polygon boundaries) were filled

with MHW (or MLW) data by spatial interpolation

(inverse distance weighted interpolation).

2.4. Mapping MHW, MLW and MSW

2.4.1. Regression analysis

We fitted all possible models between point values

of Gd parameters and the groups of ancillary infoma-

tion as predictors by weighted regression. As weights

we took the factor ( f/(1 + s2)), where s2 is the error

variance of the MHW, MLWor MSW values from the

point data set, and f is a factor that makes the weights

sum up to the sample size. Thus, the weights vary by

the quality of the regression point estimates, based on

either the well-timed measurements or the time series

in permanent piezometers, and are highest for the

estimates in the permanent piezometers. The best

regression model is selected using Mallow’s Cp

statistic in a procedure comparable to that in Section

2.3.2. A complication in the model selection is the fact

that correlated predictors were combined into groups

(Section 2.3.3). Only one member of each group may

enter one regression equation. The total number of

regressions M, for each stratum and MHW, MSW and

MLW, is defined by:

M ¼
YN
i¼1

Gi �
XN
R¼1

N !

ðN � RÞ!� R!
; ð5Þ
where N is the number of groups and Gi is the number

of predictors in group i.

In the current study (Section 2.3.2), N = 7, G2 = 5,

G3 = 2, G4 = 2, G7 = 2 and other Gi = 1, so

(30� 127=)3810 regression models must be evaluat-

ed. All models contain a regression constant as well.

As s2 value for the calculation of Mallow’s Cp we

took the best performing complete model, that is, the

model with lowest error variance from the subset of

fitted models with N predictors.

The best found model is then applied to predict

MHW, MLW or MWS at all 25� 25 m2 grid cells at

which the ancillary information is known.

The uncertainty of a prediction ŷ in a non-sampled

location is quantified by:

varðŷ0Þ ¼ r2ð1þ x0VðXVWX Þ�1
x0Þ; ð6Þ

where r2 is the residual variance of the model, x0 is

the ( p + 1) vector of p predictors (and the value 1 for

the regression constant), X is the (n� ( p+ 1)) matrix

with ( p + 1) predictors in the columns and with n

observations on which the regression equation was

fitted in the rows and W is the (n� n) matrix contain-

ing the weight assigned to each observation.

In Eq. (6), the component r2xV(XVWX)� 1x0 rep-

resents the effect of the uncertainty of the regression

parameters, while the component r2� 1 represents the

effect of predicting to non-sampled locations.

2.4.2. Kriging standardised residuals and error

mapping

The error component r2 of the regression model

(Eq. (6)) is obtained for each stratum, but it is not

necessarily spatially constant. If the residuals of the

regression function show spatial autocorrelation, then

they can be mapped using geostatistical methods. In

this case, r2 in Eq. (6) becomes a function of the

location and the sample data configuration. At the

location of a measured MHW (or MLW, MSW), the

value of r2 becomes 0. The further a location is away

from sampled points, the larger the value of r2. This is

elaborated into an error model. It should be noted that

this combination of regression and spatial interpola-

tion to calculate uncertainty is not fully consistent,

since in ordinary least squares regression it is assumed

that residuals are not correlated. However, it can be

shown that the error model we present hereunder
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slightly overestimates true error and will thus yield a

conservative estimate of map quality.

We calculated the residuals of the regression mod-

els on the sampled points, and standardised these by

division by the value of r for the sampling stratum.

The reason for standardisation is that residual varian-

ces are not constant for the strata. Semivariograms

were fitted to the standardised residuals, and the

residuals were mapped using simple kriging, because

the mean of the residuals is known (e.g., Cressie,

1993). Predictions of the standardised residual rstand
and associated kriging error var(r̂stand) were obtained

for each 25� 25 m2 grid cell by using the KT3D

routine from GSLIB (Deutsch and Journel, 1998). De-

standardisation of the interpolated residuals and of the

kriging error was done afterwards, resulting in values

of r̂ and var(r̂) for each grid cell. The actual predicted

values for MHW (MLW, MSW) and associated un-

certainty were then calculated by:

ŷ0 ¼ Xb þ r̂ ð7aÞ

varðŷ0Þ ¼ r2x0VðXVWX Þ�1
x0 þ varðr̂Þ; ð7bÞ

respectively, where b is the ( p + 1) vector of regres-

sion coefficients including the constant. Thus, the

error components, due to uncertainty of the regres-

sion parameters and to the uncertainty associated to

interpolated residuals, are mapped separately. The

slight overestimation of the error model lies in the

fact that r2 is in fact zero near sample points whereas

in the error model it is a constant for the whole

stratum.

The GWT is mapped from values of MHW and

MLW by classification according to Fig. 1.

2.5. Mapping other GD parameters

2.5.1. Annual and fortnightly distribution parameters

These 74 parameters describe the expectation of

the annual distribution (2*FOE) and the expectations

of characteristics of the fortnightly distributions

(24*REG5, 24*REG, 24*REG95). It was expected

that these parameters would show correlation to the

MHW, MLW and MSW, and therefore a simplified

mapping method was applied:

1. For each major unit of the stratification (i.e. the

surface geological formations, Section 2.3.2), the
74 parameters are obtained from simulated (com-

plete) time series in permanent piezometers.

2. A regression relation is fitted to each one parameter,

using MHW, MLW and MSW as predictors.

3. This regression relation is applied to all 25� 25 m2

grid cells for which MHW, MLW and MSW had

become available by mapping.

The fortnightly distribution parameters together are

usually referred to as a regime graph and its band-

width and can be constructed per grid cell directly

from the result of step 3. The annual distribution is

usually presented graphically as a cumulative frequen-

cy distribution (the FOE graph), which shows the

number of days that a specific groundwater level is

exceeded. Assuming a normal distribution, the mean l
and standard deviation r of the water table depth in 1

year mapped in step 3 still have to be converted using:

dðx>aÞ¼ 365 1� 1

r
ffiffiffiffiffiffi
2p

p
Z a

�l
e
�1=2

ðx� lÞ
r

� �2

dx

0
BB@

1
CCA;

ð8Þ

where d is the expected number of days in any future

year that shallower groundwater levels than a cm

depth occur.

2.5.2. Seepage

The occurrence of seepage is indicated when the

yearly average groundwater depth in case of zero

precipitation is shallower than the local drainage

depth. To map the occurrence of seepage, we based

ourselves on previous research by Knotters and Bier-

kens (2000). The seepage flux q is calculated via:

q ¼ ðc� dÞ=c; ð9Þ

where c is the yearly average groundwater depth [cm]

in case of zero precipitation and is available from time

series modelling (Eq. (1b)) for all permanent piezom-

eters, d is the drainage depth [cm] which is an

ancillary variable (Section 2.3.3) and c is the drainage

resistance [d] which can be calculated from the

calibrated parameters x and d of the time series model

via (Knotters and Bierkens, 2000):

c ¼ x=ð1� dÞ ð10Þ



Fig. 5. Areas where GD parameter set is mapped (grey), and where map quality was tested (black).
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Thus, seepage fluxes were calculated for the

permanent piezometers, and regression relations were

then sought for the major units of the stratification,

to predict q from MHW, MLW, MSW and d. These

relations were then applied for the whole area.

Values of q were transformed into three classes,

‘‘seepage’’, ‘‘intermediate’’ and ‘‘leakage’’, to avoid

pseudo-accuracy.

2.6. Testing map quality

The current GD mapping projects cover a total

of 1,790,000 ha (i.e. 55% of the Netherlands). The

resulting maps of GD were evaluated using inde-

pendent test sets in 2 areas (Fig. 5). As the GD
parameters MHW, MLW, MSW and GWT are the

most frequently used, the evaluation of map quality

concentrated on these parameters. In the 10,000 ha

test area, 30 locations were randomly selected, in

the 179,000 ha test area 92 locations. These loca-

tions were distributed proportionally over most

strata and at random within each stratum, excluding

those strata with deep groundwater levels. In the

validation points, MHW, MLW and MSW were

determined by well-timed measurements according

to the procedure in Section 2.3.2. Three error

statistics were calculated:

ME ¼ 1

n
�
Xn
i¼1

ðyi � ŷ0;iÞ ð11aÞ
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n�

Xn
i¼1

ðyi � ŷ0;iÞ2
s

ð11bÞ

RMPEV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n�

Xn
i¼1

var ŷ0;i

s
; ð11cÞ

where the RMPEV follows directly from the map-

ping (Eq. (7b)), while ME and RMSE are based on

differences between the values on the map (ŷ0,i)

and in validation points ( yi).
Fig. 6. Map of MHW and a
Furthermore, the quality of GWT maps was

determined by calculation of the map purity (the %

of the area where mapped GWT and validation

GWT are the same, estimated in locations of the

test set).

2.7. Exploring the effect of sampling density on map

quality and mapping cost

From Eq. (7b) it follows that uncertainty in the

regression parameters and uncertainty due to kriging
ssociated uncertainty.
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the standardised residuals are mapped separately.

Changing the sampling density (i.e. the number of

MHW, MLW and MSW estimates at the point

support) will affect both of these uncertainty com-

ponents. We applied the rule of thumb that the

uncertainty component due to uncertainty in the

regression parameters will decrease by a factor 2

when the sample size N increases with a factor 4. In

case of the GD mapping procedure, this rule of

thumb can serve as a worst case scenario. At any

new (larger) sample size N2, a new ‘‘best’’ regres-

sion model for a stratum would be selected and

fitted that may be better (but is never worse) than

the regression model at sample size N. The uncer-

tainty component due to the kriging of standardised

residuals can be assessed at individual locations

using the variograms fitted for N and the sample

configuration corresponding to N2 (cf. Burgess and

Webster, 1980). By combining both of the uncer-

tainty contributions for a sufficiently large number

of locations, the effect of sampling density on the

map quality parameter RMPEV can be evaluated for

each stratum separately. Associated cost were easily

estimated, since the cost of field work dominate

total cost (Finke, 2000) and the major difference

between two sampling densities is the amount of

fieldwork to be done.
 

Fig. 7. Cumulative distributions of root prediction error variances (RPEV)

lines).
3. Results and discussion

3.1. Data and map quality

The MHW, MLW and MSW maps (Fig. 6) are

associated with maps of the root prediction error

variance (RPEV) as calculated using Eqs. (7a) Eq.

(7b). RPEV values are also known for the point

estimations of these three parameters. Fig. 7 shows

that mapping (regression followed by kriging stand-

ardised resuduals) clearly contributes to uncertainty.

This increase in uncertainty may be partly due to

errors in the 25� 25 DEM that is used to generate

ancillary information used as predictors in the map-

ping procedure. The effect of errors in the DEM on

uncertainty in predictions is a subject for further

research. Point support values of RPEV are almost

exclusively in the class between 0 and 20 cm, while

the mapped MHW, MLW and MSW for 25� 25 m2

cells have RPEVof less than 40 cm in more than 60%

of the area. The highest values of RPEV are found in

the strata with the deepest water table depths. This is

mainly due to the fact, that censored observations

(deeper than 250 cm) had to be used for mapping in

these areas. The most favourable values of RPEV

occur in strata where groundwater levels are relatively

shallow and near sampling locations.
 

of MHW, MLW and MSW point data (dashed lines) and maps (solid



Table 3

Validation results

GD parameter Test

statistica
SI unit 10,000 ha

area (n= 30)

179,000 ha

area (n= 91)

MHW ME m 0.03 0.04

MHW RMSE m 0.37 0.27

MHW RMPEV m n.d. 0.28

MLW ME m 0.06 0.07

MLW RMSE m 0.35 0.42

MLW RMPEV m n.d. 0.37

MSW ME m 0.02 0.05

MSW RMSE m 0.32 0.28

MSW RMPEV m n.d. 0.30

GWT Purity new

map (%)

– 37% 62%

GWT Purity old

map (%)

– 13% 20%

ME=mean error (positive value: validation groundwater level =

deeper than mapped level); RMSE= root mean squared error;

RMPEV= root mean prediction error variance; n.d. = not deter-

mined.
a Described in the text.
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Results of independent quality tests (Table 3) in the

10,000 and the 179,000 ha area (Fig. 5) show, that

values of ME are always close to 0, which indicates

that the maps have no bias. Values for RMSE and

RMPEVonly differ by a few cm, which indicates that
Fig. 8. Relation between sampling density, root mean prediction error varia
the uncertainty measure mapped by the RPEV param-

eter gives an accurate estimate of the map quality.

The purity of the new GWT map is better in both

tested areas than that of the old map, although actual

values of map purity differed strongly between the

tested areas. This may be caused by (i) greater

hydrological changes in one area than in the other,

or (ii) a lesser initial quality of the original GWT map.

These factors both decrease the predictive power of

some ancillary information, and thus the potential to

estimate actual spatial patterns of Gd parameters.

3.2. Sampling density, quality and cost

The total uncertainty in the maps of MHW, MLW

andMSWwas found to be largely due to the prediction

error variance by kriging standardised residuals to

non-visited locations. In the area mapped so far

(>500,000 ha), the uncertainty in the regression param-

eters comprised only 6% of total uncertainty. However,

if different ancillary information would become avail-

able with high predictive power, uncertainty would

strongly decrease because the residuals would be

smaller. Taking the currently available ancillary infor-

mation, increasing the sampling density (Fig. 8) will
nce (RMPEV) due to two uncertainty components and mapping cost.
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therefore most strongly affect the RMPEV via the

kriging component. Thus, the variogram and sample

configuration will be most important. The level of the

semivariance at short lag distances will determine the

maximal quality that can be attained. Unfortunately,

short range variation is not well known from the

current mapping practices since sampling densities

are near to 1/km2, but it can be assumed that maximum

quality levels will be near the RPEV values for point

estimates for MHW, MLW and MSW (Fig. 7).

Mapping cost of the complete GD parameter set

are linear with sampling density, and were approx-

imately EUR 150/km2 at the actual sampling den-

sity of 1/km2. Mapping (only) the GWT parameter

with the traditional free survey would have cost

approximately EUR 230/km2, because fieldwork is

more intensive.

3.3. Portability of methods to other parameters and

areas

We feel that the proposed mapping method,

using ancillary data such as elevation data, derived

terrain attributes and thematic information such as

soil maps, is applicable to a wider range of soil-

related parameters than just the Gd parameter set.

The dependency to landscape position, land use and

drainage situation may exist for many soil parame-

ters, and this recognition of the value of terrain

modelling has already led to various attempts to

map various soil parameters (e.g., Gessler et al.,

2000). Our method is new in the sense that it

incorporates the temporal dimension.

Since the support units of the ancillary variables

and the target variables were more or less comparable

in size, we did not deal with change of support. In

other areas, where the support units of ancillary

variables would be considerable greater, the issue of

change of support in spatial prediction needs attention

while applying the proposed methods.
4. Conclusions

(1) The developed GD mapping method is robust,

costs less than a traditional GWT map, yields a

complete set of parameters and is now routinely

being applied.
(2) The uncertainty associated with mapping the

MHW, MLWand MSW is mapped as well, which

enables a motivated further investment in map

improvement at known cost.

(3) The safest way, but at high cost, to improve map

quality is to increase sampling density. Another

option is to evaluate new sources of ancillary

information, such as possibly may be derived

from calculations with hydrological models.
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