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Abstract 
Vibration-based damage detection techniques use the change in modal data as an indicator to assess 

damages in the structure. Knowing the structural dynamic characteristics of the healthy and damaged 

structure, the estimation of the damage location and severity is possible by solving an inverse problem. 

This paper presents a mathematical expression relating damage location and depth to the frequency shifts 

of the bending vibration modes. This expression permits the extraction of a series of coefficients that 

characterize each damage location and are independent of the damage severity. The vector aggregating 

these coefficients for a given location constitutes a Damage Location Indicator (DLI) that unambiguously 

characterizes the position of a geometrical discontinuity in the beam. A set of vectors typifying all 

locations along the beam may be used as patters opposable to the damage signature found by 

measurements. The similarity between the signature and one of the patterns indicates the location of 

damage.  

1 Introduction 

Monitoring of structures to assess their integrity has been one of the most important issues in civil and 

mechanical engineering in the last years. Numerous non-destructive techniques are now available, 

permitting to achieve one of the following damage assessment levels: a) detection, b) localization and c) 

severity. The vibration-based methods associate damage with changes in the dynamic response of 

structures, which occur due to the decreased beam capacity to store energy. The link between a damage 

and the changes in the structural response is described by mathematical expressions reflecting various 

models, from analytical beam models to statistical models predicting the beam dynamic behavior. Often 

the response changes refer to the natural frequencies, but other modal parameters can also be involved in 

damage detection algorithms.  

Extensive literature reviews on this topic are presented by Doebling et al. [1] and Sohn et al. [2]. They 

focused on methods and data required for damage identification by examining the changes in various 

types of measured structure responses. The use of inverse methods in damage detection using measured 

vibration data is presented by Friswell [3], who made a critical review on problems occurring with this 

approach, including modeling errors and environmental effects.  

Methods destined to predict the damage location and evaluate its severity are usually model-based. 

Various damage modeling approaches are presented in literature; see for instance Fritzen [4], Friswell [5], 

Dimarogonas [6] and Ostachowicz and Krawczuk [7] and Christides and Barr [8]. All these approaches 

can be classified into three main categories; nalely local stiffness reduction, discrete spring models, and 

complex models in two or three dimensions. The discontinuity is often considered as an open crack, in 

order to neglect the nonlinear effects due to a crack closure. Other authors like Yan et al. [9] considered a 

bilinear behavior of closing cracks. However, no models precisely predicting frequency changes due to 

discontinuities for a large number of vibration modes are available. Furthermore, the use of existing 
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models requires time for fitting the models to particular applications, in order to utilize them for damage 

detection. Additionally, for higher vibration modes important computational resources are needed to 

numerically solve the characteristic equations, which can impose a serious constrain. 

This paper presents the results of a study aiming to formulate the relation between damage location and 

depth, and the frequency shifts. While the frequency in any mode depends on its stored energy, the idea is 

to compare the frequency decrease for the bending modes with the loss of its energy. The frequencies of a 

slender double clamped beam in healthy and damaged states are found, for numerous locations along the 

beam, by means of the finite element analysis and frequency shift curves plotted for the first eight weak-

axis bending vibration modes. These curves are compared with curves representing the energy distribution 

of the healthy beam, analytically determined, and a perfect agreement is found. This permits to write a 

mathematical expression that predicts the frequency change due to a certain damage by considering the 

healthy state of the beam alone, in terms of modal energy distribution. Furthermore, it is possible to 

decouple the effect of the damage location from that of the damage severity. Thus, from the frequency 

changes in the first several bending vibration modes, parameters characterizing a damage location and a 

pattern describing the behavior due to the damage at that location are obtained. Comparing patterns 

obtained in this way with measured frequency shifts, it is possible to identify precisely that location of 

damage. 

2 The Damage Location Indicators 

Since natural frequencies are the most facile acquirable data characterizing the beam dynamics behavior, 

we focused our research on this feature. The basic idea in damage assessment using the natural 

frequencies of a structure reckons on the fact that any change in the structure causes a change in its 

frequencies. The relationship between physical parameters and the natural frequencies fi of a healthy beam 

is: 
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where λi is the wave number of the i-th bending vibration mode, E is the Young’s modulus, I is the 

moment of inertia of the weak-axis, A is the cross-sectional area, ρ is the mass density and L the beam 

length. Any structural change will affect one or more physical parameters, and consequently upon the 

natural frequencies. Some theoretical models, for instance in references [10] and [11], considered a 

“continuous” approach, where the beam is spited into two segments linked by a torsional massless spring. 

To derive the frequency shift due to damage with a given depth and location, it is necessary to replace the 

damage and adjust its stiffness for each case separately. To have an overview about what happens in 

numerous damage scenarios, it implies solving a large number of differential equations that usually 

require a great effort. Our researches were focused in finding an easier way to derive the frequency 

changes. Considering that a certain damage produce the same local effect in any location along the 

structure, and the result on the global dynamic behavior of the structure depends on damage location, we 

searched for a relation that consider the damage severity as a constant for a given depth, adjusted by a 

function to provide the effect of damage location.   

2.1 Numerical analysis of a clamped-clamped beam 

To find the frequency changes for a large number of bending vibration modes, in case of damages with 

different depths and located consecutively on numerous locations along the beam, a finite element analysis 

using the ANSYS program is performed. This paper present the case of a double clamped steel beam, 

having a length L = 1 m, width B = 0.05 m and height H = 0.005 m, cross-section A = 250·10
-6

 m
2
 and the 

moment of inertia I = 520.833·10
-12 

m
4
 for the undamaged state. The material parameters are: mass density 

ρ = 7850 kg/m
3
; Young’s modulus E = 2.0·10

11
 N/m

2
 and Poisson’s ratio μ = 0.3. 



For the damage scenarios we considered around 198 damage locations equidistantly placed along the 

beam, while the breathing cracks had successively 9 levels of depth. Consequently we obtained for eight 

vibration modes the frequency shifts for 1782 damage scenarios. Figure 1 present, for the double clamped 

beam, the frequency shift curves for four levels of depth, namely healthy beam and cross-section reduction 

with 42%, 50% and 58% respectively.  

        

        

Figure 1:  Frequency shift curves for modes 1 to 4 for three depth damage levels. 

From Figure 1, one observes that there are, for a given vibration mode, locations where a damage 

produces no frequency changes, irrespective to damage depth, while for other locations the frequency 

changes exhibit local maxima. These points are different for each vibration mode, but similar as relative 

position x/L for a given mode for beams having the same support type. For instance a double clamped 

beam with a damage placed at x/L = 0.2765 undergo no change in frequency for the fourth vibration mode, 

whereas at x/L = 0.6333, the frequency change exhibits a local maxima. 

It can be presumed that the phenomenon can be explained by considering the way how the beam slices 

contribute to the total potential stored energy in each vibration mode. The slices placed in the vicinity of 

inflection points of the mode shape curvature, where the bending moment is null, do not contribute to the 

total potential stored energy. Opposite, slices placed on local maxima of the mode shape curvature, in 

other words the local maxima of the bending moment, suffer important deflections and accumulate 

therefore the highest values of potential stored energy, substantially contributing to the total value of this 

energy. These presumptions are supported by Eq. (2) describing the strain energy and Figure 2, where the 

similitude between the beam characteristic points and frequency shifts is depicted. 
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Figure 2: The behavior of beam slices relative to their location on the beam for vibration mode 3 

In Figure 2, the curves representing the mode shapes )(xi  and their second derivatives )(xi  , i.e. the 

mode shape curvatures, are plotted using the well-known relations presented in Eqs. (3) and (4), that are 
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From Figure 1, it can be remarked that the frequency shift curves for each bending vibration mode are 

similar, i.e. the differences between them are scaled by factor. By normalizing the frequency shift curves 

to their highest value, occurring at the clamped ends, this family of curves is reduced to a single curve, 

which indicates the effect of damage location. On the other hand, damage severity influences the highest 

value of the frequency shift alone. Consequently, the process of localization can be separated from that of 

severity evaluation; the damage assessment is thus possible in two steps.  

2.2 Contriving the analytic relation of the frequency shift curves 

Since the frequency shifts is in direct relation with the mode shape curvatures or bending moments, and 

the strain energy is the squared of the curvature, it is interesting to compare the frequency shift curves 

with that obtained from the energy distribution. Figure 3 presents this comparison for vibration modes 2 

and 5; the similitude between the curves is obvious. In our researches we observed this concordance for 

beams with other geometrical and mechanical parameters and, which is more significant, with other 

support types.  

Mode shape Mode shape 
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Figure 3: The frequency shift curves and energy distribution for: (a) vibration mode 2 and (b) mode 5. 

The presented facts lead to the conclusion that the mathematical relation expressing the frequency shift 

has to involve one term depending on the damage severity and one term containing the squared of the 

mode shape curvature. Following numerous attempts, we reached the relation given in Eqs. (5) and (6). By 

defining the frequency of the weak-axis bending vibration mode i for the damaged state, depending on the 

maximum deflections under a unit load in the damaged and healthy state, δD and δU respectively, and the 

corresponding normalized mode shape curvature of the undamaged beam, is the following equations are 

obtained: 

- at the clamped ends 
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- at any other location. 
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The ratio between the deflections under a unit load in the damaged and healthy state just reflects the 

apparent increase of energy, in fact the loss of energy, so Castigliano’s first theorem. 

Eq. (5) is in fact a particular case of Eq. (6), where the squared of the mode shape curvature is unity. It has 

to be mentioned that Eq. (6) is applicable for all vibration modes and support types as it is, without further 

alterations. The right hand side of Eq. (6) contains information extracted from the undamaged beam, 

excepting the deflections δD and δU. This means that knowing the maximum deflection in the damage 

state, i.e. deflections δD and δU at the center of the beam, it is possible to know the frequency changes for 

all modes at any location x. In contrary, knowing the frequencies of different modes for the damaged and 

undamaged beam respectively, it is possible to determine the location and depth of the damage.  

F
re

q
u

en
cy

 s
h

if
t 

[H
z]

 
E

n
er

g
y

 d
is

tr
ib

u
ti

o
n
 



                                           

135

136

137

138

139

140

141

142

0 0.2 0.4 0.6 0.8 1

undamaged

a/H =0.5

a/H = 0.25

squared normalized mode shape curvature

   

                Beam length x/L        

Figure 4: Frequency shift curves and squared of the mode shape curvature for bending vibration mode 3. 

Figure 4 presents the frequency shift curves for two different damage depths, together with the squared 

normalized mode shape curvature for bending vibration mode 3. It reveals the influence of the two terms 

upon the natural frequency changes; herein we denoted  
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where the damage severity is given by a damage of depth a. One can observe again the good fit between 

these curves, proving that they belong to the same family. 

Eq. (6) allows us to plot surfaces representing the frequency shifts in respect to damage depth and location 

for any beams support type [12]. The results are similar to that obtained by the means of numerical 

methods such us finite element analysis [13,15]. The surfaces are obtained by numerical methods 

considering a multitude of points individually derived; i.e. mathematical relations that describe the curves 

or surfaces representing the frequency shifts are available in literature [13]. However, these relations are 

obtained as regression curves, which have to be derived for any beam separately. The advantage of the 

proposed relations is based on the fact that they consider the physical phenomenon, are simple to apply 

and provide accurate results. 

2.3 The Damage Location Coefficients  

Since the effect of a damage in any beam slice on the natural frequencies can be easily derived, it is 

possible to characterize each location in terms of multi-modal frequency shifts. From Eq. (6) and (7) this 

shift can be derived as: 

  2)()(),(),( xafaxffaxf iUiDiUii     (8) 

Normalizing the frequency shift Δfi by the frequency of the healthy beam fi-U, one may obtain the relative 

frequency shift for any bending vibration mode i, as:  

  2)()(),( xaaxf ii    (9) 

Obviously, the relative frequency shift takes values lower than the unit. Figure 5 presents the relative 

frequency shifts for the first eight weak-axis bending vibration modes, highlighting the particular cases of  

x/L = 0.3, x/L = 0.5 and x/L = 0.7. 
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Figure 5: The relative frequency shift curves with stress on the locations x/L = 0.3, x/L = 0.5, and x/L = 0.7 

Eq. (9) was used to plot the curves in Figure 5, from which one can extract the series representing the 

normalized frequency shift for any specific location. In Figure 6(a) the normalized frequency shifts at 

location x/L = 0.3 for eight vibration modes are presented. In the general case, the series has the following 

mathematical expression: 
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As presented in the previous section, the influence of the damage depth can be isolated by eliminating γ(a) 

from Eq. (10). Moreover, if we normalize these values for each location x by dividing the values by the 

highest value of the series one obtain coefficients that are independent of the damage severity and take 

values between 0 and 1.  



We denote these series as Damage Location Indicators (DLI) and the individual terms as Damage 

Location Coefficients (DLC). For a given location x the DLCs can be expressed as:     
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As it can be observed from Eq. (11), the DLCs are obtained using just information about the beam in 

healthy state. The DLCs uniquely characterize locations on asymmetric structures, while for symmetric 

structures two mirrored locations have the same value of DLC. The DLCs characterizing both locations 

x/L = 0.3 and x/L = 0.7 are presented in figure 6(b).  
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Figure 6: The relative frequency shifts (a) and DLCs (b) for the beam with a damage located at x/L = 0.3. 

If 
m

Uif  and 
m

Dif   are the first eight natural frequencies of the weak-axis bending vibration modes measured 

on a healthy beam and a beam with one damage with unknown location, respectively we can derive the 

relative frequency shift for the eight vibration modes, as:  
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These values can be normalized by dividing them by the highest value of the series. The obtained 

dimensionless values are again severity-independent. We denote these series as Damage Signature and the 

individual terms as Measured Normalized Frequency Shifts, that are: 
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These parameters have a similar meaning as the DLCs; i.e. they take also values between 0 and 1. 

Comparing the Damage Location Indicators  jjjj 821 ,...,,   for all possible locations along the 

beam  j = 1…m with the Damage Signature  821 ,...,,  , obtained by measurements on the real 

structure, one can find the pair of vectors that best fit. The subscript j, for which the two vectors Φ and Ψ 

best fit, indicates the damage location. 

To find the most similar vectors, we use a simple algorithm, that evaluates the ratio between pairs of terms 

i in the series. The idea is that for similar values the ratio is 1 and consequently its logarithm is 0. To avoid 

obtaining negative values, the logarithm gets an even exponent 2r. For positive values of r, the closer the 

compared terms, the smaller the result. Sometimes it is convenient to use a negative exponent, that 

produces a dramatically increases to the lowest value; consequently the value defining the damage 

location is highlighted.   



The similarity index, which is actually the proposed Damage Index, is:  
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which indicates the presence of damage at the location at its highest value. The term wi is a weight factor 

that takes values between 0 and 1 with the implicit value of unity. In case of difficulties to acquire the 

natural frequency of a vibration mode, or the results are improbable, the term can be diminished or even 

reduced to 0.   

If accidentally the measured values perfectly fit those obtained by measurements, DI cannot be calculated. 

To avoid this, it is important to use different number of digits at the right hand side of the decimal 

point for the two series Φ and Ψ. Figure 7 present the variation of DI for the process of localization of a 

damage placed at distance x/L = 0.3 from one beam end. Figure 7(a) presents the DI values for the case of 

strongly altered measurement results, while Figure 7(b) presents the DI values in case of relatively well 

acquired frequencies.  
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Figure 7: Damage Index values for altered measurement data (a) and relatively accurate acquired 

frequencies (b) - damage placed at x/L = 0.3 from one beam end. 

One observes that even using raw data the Damage Index is able to indicate precisely the damaged beam 

region. This makes the proposed Damage Index suitable for industrial applications in which beam-like 

structures or sub-structures are monitored.  

3 Experimental research 

3.1 Implementation of the damage localization procedure 

The damage detection and localization procedure is designed to be implemented in monitoring schemes 

for beams in intact state or with known damages. Actually, the first measurement checks the structural 

integrity for the incipient stage. Afterwards, the periodic measurements evaluate the actual state and can 

predict damage occurrence or extension.  

This paper present an algorithm where he first eight natural frequencies of the weak-axes bending 

vibration modes are considered. This number varies from one application to another and has to be bigger 

for symmetric structures. However, the minimum recommended number of monitored modes is six. 

Damage index DILOG Damage index DILOG 



Steps to be followed in the monitoring process: 

1. Initial evaluation of the structure 

The first eight natural frequencies of the weak-axes bending vibration modes for the undamaged beam 

have to be measured. The following series is obtained:  

A:{ Uf 1 ; Uf 2 ; Uf 3 ; Uf 4 ; Uf 5 ; Uf 6 ; Uf 7 ; Uf _8 } 

In case of structures in use, the actual status of the beam can be considered as start point, neglecting the 

possible existing cracks. Thus, only the evolution of new or developing cracks can be assessed. 

2. Periodical or continuous monitoring 

For the same vibration modes the frequencies have to be measured periodically. For each choose moment 

a series is obtained: 

S:{ Df 1 ; Df 2 ; Df 3 ; Df 4 ; Df 5 ; Df 6 ; Df 7 ; Df 8 } 

Changes may occur and indicates structural changes.  

3. Novelty detection 

Comparison with the initial estate has to be performed. The following series is obtained:  

D:{ 1f ; 2f ; 3f ; 4f ; 5f ; 6f ; 7f ; 8f } 

Differences representing frequency shift if  indicate the presence of damage. If possible, the 

environmental and operational loads have to be considered.  

4. Processing of data 

The relative frequency shift is determined by dividing the values of D series by the ones of A series. This 

results in the series R 

R:{
m

f1 ; 
m

f2 ;
m

f3 ;
m

f4 ;
m

f5 ;
m

f6 ;
m

f7 ;
m

f8 } 

5. Computation of the Damage Signature 

The values of the R series have to be normalized, by dividing all values of the series by the highest one. 

This results in the Damage Signature: 

Ψ:{ Ψ1; Ψ2; Ψ3; Ψ4; Ψ5; Ψ6; Ψ7; Ψ8 } 

The series’ elements take positive subunit values, usually only one element takes the unit value.  

6. Determining the energy distribution 

Series representing squared normalized mode shape curvatures for various locations on the beam are 

determined by: 

Cj:{  21 )(x  ;  22 )(x  ;  23 )(x  ;  24 )(x  ;  25 )(x  ;  26 )(x  ;  27 )(x  ;  28 )(x  } 

Usually the location of interest are equidistant located and have to be at least j = 100 to ensure a precise 

damage localization.  

7. Computation of the Damage Location Indicators 

Φ1j:{ Φ 1 j; Φ 2 j; Φ 3 j; Φ 4 j; Φ 5 j; Φ 6 j; Φ 7 j; Φ 8 j } 

for the j locations in accordance to Eq. 11.. 

8. Similarity/damage identification 

The Damage Signature is compared with the derived Damage Location Indicators by using Eq. (14). The 

damage is presumed to be at the location for which the DILOG take its highest value. However, the 

indicator diagram should be carefully examined to assure that no ambiguous results are obtained. 

Normally the value of r in the DILOG is equal to unity, but for disambiguation the value can be increased.      



Following this procedure the damage is localized with high accuracy. While the procedure imposes no 

human interaction, it can be easily implemented in a program for automated damage recognition [16]. For 

the case of multiple damages, the method of superposition can be applied [17], so that the system can 

recognize even multiple cracks if the database containing DLIs is extended with other scenarios. 

Knowing the frequency shifts and damage location, its severity γ(a) can be now extracted as single 

unknown from Eq. (9). Thereafter, damage depth a can be derived using algorithms described in literature, 

see references [7] and [18].  

3.2 Numerical results 

A series of experimental tests were performed on steel beams to validate the suitability of the procedure 

that makes use of the proposed Damage Index. This paper presents results obtained on beams fixed at both 

ends. The equipment used for the vibration signal acquisition, presented in figure 8, consists of a laptop, a 

NI cDAQ-9181 single slot chassis with Ethernet connection, a NI 9234 four-channel dynamic signal 

acquisition module and two Kistler 8772A10M10 piezoelectric accelerometers. The accelerometers were 

placed on the beam in positions permitting a reliable signal acquisition for the first eight weak-axis 

bending vibration modes. A virtual instrument was designed in the LabVIEW environment, capable to 

acquire the time history of acceleration and extract the natural frequencies with high accuracy, as early 

damage detection implies observation of small frequency changes.  

 

 

 

 

 

 

 

 

Figure 8: Damage index values for altered measurement data (a) and relatively accurate acquired 

frequencies (b) - damage placed at x/L = 0.3 from one beam end. 

The real beams have identical physical, mechanical and geometrical characteristics like that presented in 

section 2, used in finite element analysis. A thin saw cut, with a width less than 1 mm and depth around 2 

mm, was made to simulate the damage at a location situated at one third from the left beam’s fixed end. 

The saw cut acceptably simulates a breathing crack, while significant loss of mass is avoided and 

differences between open and closed cracks is less important. A detailed study about this topic is 

presented in reference [19]. The excitation is produced by hitting the beam with a hammer. 

Measurement results obtained for the first eight vibration modes, for intact beam, are presented in Table 1, 

in which frequencies obtained analytically and by means of the finite element analysis are also listed. One 

can observe the good matching of these results. 

For the damaged case, as expected, the measurement indicated a frequency diminishing. The results of the 

damaged beam, as well as the results obtained by measurements on the healthy beam healthy and are 

presented in table 2,. By performing the first five steps of the procedure described above, we obtained the 

Damage Signature. The similarity test with the DLIs for three hundred equidistant locations indicated that 

the highest value of the DILOG is obtained for j =  87, i.e. the saw cut is placed at distance x/L = 0.29 from 

one of the beam’s fixed ends. The comparative values of the Damage Signature Ψ and the DLCs Φ87 are 

also presented in table 2. Dimensional measurements confirmed the location of damage, which proves the 

method’s reliability.   

x 
L= 1 m  

Damage 

(saw cut) 

Accelerometers   

Kistler 8772A10M10 

Rigid 

support 
Rigid 

support 



Mode number 

i 

 Frequency [Hz]  

    analytic calculus     finite element analysis       experimental       

1 25.942358 26.099351 25.612542 

2 71.511108 71.926667 71.131492 

3 140.190365 140.991467 140.325688 

4 231.741795 233.070571 230.491022 

5 346.182261 348.205537 344.525590 

6 483.510757 486.420653 485.038719 

7 643.727340 647.735055 640.716628 

8 826.832006 832.155573 830.300510 

Table 1: First eight natural frequencies of the healthy beam  

Mode number 

i 

Measured frequency [Hz] Damage  

signature 

Damage location 

coefficient undamaged damaged 

fi-U fi-D Ψi Φi87 

1 25.612542 25.597815 0.1340 0.13358 

2 71.131492 70.825555 1 1 

3 140.325688 140.035074 0.4837 0.48151 

4 230.491022 230.452069 0.0382 0.03919 

5 344.525590 343.165747 0.9173 0.91771 

6 485.038719 483.015623 0.9697 0.96960 

7 640.716628 640.541072 0.0637 0.06377 

8 830.300510 828.678933 0.4562 0.45403 

Table 2: Results of the damage localization process  

Graphical representations for all values obtained in the similarity analysis (i.e. for all location j = 1…300 

considered along the beam) are presented in Figure 9. Figure 9(a) depicts the values obtained by means of 

the proposed Damage Index and Figure 9(b) shows the values obtained by using the Kullback-Leibler 

Divergence; obviously this Damage Index more clearly indicates the damage location in comparison with 

other similarity estimators [19]. On the other hand, the DLCs are reliable patters characterizing the 

damage location; this is evidenced in our prior researches for a cantilever, see for instance reference [20].  
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Figure 9: Damage localization process utilizing: (a) the proposed Damage Index, and (b) the Kullback-

Leibler Divergence. 

The procedure was tested on beams with different support types, of various damages locations and depths, 

all identifications being successfully performed.  

DILOG 



4 Conclusion 

The frequency changes due to a transversal discontinuity in beams depend on the modal strain energy 

stored in the affected slice. Because the beam’s stiffness decrease due to a given damage is the same for 

any bending vibration mode, the maximum effect upon the frequency shifts is similar in all modes, but 

scaled by the value of the squared wave number λi. These changes occur at the location where the stored 

energy level takes its highest value (in the fixed ends for the double clamped beam in the analyzed case), 

while in all other locations the frequency changes depend on the modal strain energy distribution. 

Therefore, there is no sensitive or insensitive bending vibration mode, but we can affirm that there are 

sensitive locations, in respect to the vibration mode and boundary conditions. This paper proposes a 

mathematical relation that makes the link between the frequency of the healthy beam, the energy 

distribution (i.e. the squared mode shape curvature) and the damage severity.  

Damage localization and severity evaluation are separable, while the stiffness reduction controls the 

severity and the squared mode shape curvatures control the local sensitivity. 

For the same damage scenario, a single location along the beam present different “sensitivities” in 

different vibration modes, imposed by the beam curvature in each mode. This makes the local values of 

the squared mode shape curvatures in several modes, i.e. the proposed Damage Location Coefficients, 

patterns able to characterize any location. This constitutes the basis of the proposed damage localization 

procedure. 

A new damage index, DILOG is proposed. It compares the Damage Signatures obtained from measurements 

with numerous patterns analytically defined from information from the healthy beam alone. The position 

for which the highest value is obtained indicates the damage location. This damage index is able to 

localize multiple cracks if patterns for these scenarios are developed based on the superposition principle.  
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