

A Comprehensive R-package for Studying Families, Based on the Social Relations Model Lara Stas^a, Tom Loeys^a and Felix Schönbrodt^b

^aDepartment of Data Analysis, Ghent University, Belgium ^bDepartment of Psychology, Ludwig-Maximilians-Universität München, Germany

1. The Social Relations Model (SRM)

1.1. Design and SRM components

Example

A family researcher is interested in fear of rejection within the family context (cfr. attachment) (Cook, 2000)

- \Rightarrow BUT is this a problem of an individual, a dyad or a family?
 - The SRM enables researchers to isolate and examine dynamics on these three different levels

• ϵ_{ijk} = measurement error

 \bullet *i* = role of the rater

being rated

• $_{k} = family ID$

 \bullet *i* = role of the person

1.2. Additional analyses

Additional analyses:

- Individual reciprocities
 - i.e. correlation between actor and partner effect
- Dyadic reciprocities i.e. correlation between relationship effects

Round Robin Design

- Each participating family member rates every other participating member
- At least three family members are required for the SRM
- In a four person family, this design results in 12 dyadic measurements
- \Rightarrow Variability across families on these dyadic measurements
- SRM identifies sources of this variability \Rightarrow

SRM components:

- Actor effect (for each role)
 - i.e. cross-relational consistency in the ratings of a particular person
 - e.g. a traumatized child may experience relationship anxiety towards all family members
- Partner effect (for each role)
 - i.e. cross-relational consistency of the ratings about one person
 - e.g. a cold and emotionally distant father may elicit fear of rejection

- Relationship effects
 - i.e. unique adaptation of one person towards another, controlled for both actor and partner effects
 - e.g. an extramarital affair causes that the wife experiences fear of rejection in relation to her husband
- Family effect
 - i.e. characteristics that causes all family members to be similar

Intragenerational similarities i.e. correlation between actor or partner effects within same generation

1.3. Advantages

Some advantages of an SRM analysis:

- Examine family dynamics on three separate levels simultaneously (individual, dyadic and family level)
- Able to perform case studies, single and multigroup analyses
- Allows to investigate reciprocities
- Etiology of (extreme) dyadic measurements
- No more methodological artifacts:
 - (e.g. labeling multiple unidirectional effects as bidirectionality)

1.4. Analyses

Each dyadic measure is viewed as a linear combination:

 $X_{ijk} = \mu_k + \alpha_{ik} + \beta_{jk} + \gamma_{ijk} + \epsilon_{ijk}$

- $\mu_k = \text{family effect}$ • $\alpha_{ik} = \text{actor effect}$ • $\beta_{ik} = partner effect$
- γ_{ijk} = relationship effect

Figure: The SRM as a SEM

Boxes represent observed dyadic measurements, circles latent variables. Parameters that are fixed are indicated by '1', free parameters by an asterisk. Every indicator is connected with the corresponding latent variable by a single headed arrow. Double headed arrows represent reciprocities.

- SRM factors are specified as latent variables in a CFA
- Family researchers find it hard to perform analyses

 \Rightarrow SRM often not used due to complex analyses!

2. fSRM: A Comprehensive R-package for SRM analyses

2.1. Content

Different kinds of analyses are easily performed.

- **1** Information about the model fit (i.e. chi², CFI, TLI/NNFI, RMSEA)
- **2** Variance estimation
- **3** Relative variance decomposition
- Estimation generalized reciprocities

2.2. Example

> res <- fSRM(value ~ actor.id*par means = T. IGSIM=list	tner.id fam.id, data = data2, t(c("m"."f"). c("c". "v")))		
		m_f 4	
SRM with roles (latent) (Roles: c, f, m	n,y;DVs = value):	m_y s	
		y_f 5	
Model summary:		y_m 6	
lavaan (0.5-12) converged normally aft	mean 6		
		4 Generalized	rec
Number of observations	208		 F
Estimator	ML	1 A.C ~~ P.	C (
Minimum Function Test Statistic	43.088	2 A.f ~~ P.1	F -(
Degrees of freedom	43	3 A.m ~~ P.I	n (
P-value (Chi-square)	0.468	4 A.y ~~ P.	/ (
Model Fit:		5 Dyadic recip	roc
$CIII_2$ ($uI = 43$) = 43.088, p = 0.468			

m_f	4	23	9	63	0	100	
m_y	5	29	11	54	0	100	
y_c	5	34	8	53	0	100	
y_f	5	34	10	51	0	100	
y_m	6	44	11	39	0	100	
mean	6	38	11	46	0	100	

iprocity (actor-partner covariances)

			f	est	se	z	pvalue	ci.lower	ci.upper	COR	label
1	A.C	~~~	P.C	0.069	0.021	3.349	0.001	0.029	0.109	0.663	
2	A.f	~~~	P.f	-0.001	0.020	-0.063	0.949	-0.040	0.037	-0.010	
3	A.m	~~~	P.m	0.028	0.018	1.580	0.114	-0.007	0.063	0.277	
4	А.У	~~	P.y	0.081	0.022	3.608	0.000	0.037	0.124	0.653	

relationship covariances): Mean r = 0.163 (out of bounds estimates set to NA)

f est se z pvalue ci.lower ci.upper 1 R.c.f ~~ R.f.c 0.042 0.024 1.736 0.083 -0.005 0.089

5 Estimation dyadic reciprocities
6 Intragenerational similarities
7 Estimation mean SRM components
Single or multiple group analyses
Insert equality constraints
Suitable for different family sizes
Specify multiple dependent variables for dyadic measurements in order to
separate relationship component from error variance
Ask for modification indices and adjust model
Manually add lavaan syntax

fSRM is built on lavaan (Rosseel, 2012), an R-package for structural equation modeling.

TLI / NNFI = 1RMSEA = 0.003 [0;0.047]; Test of close fit: p(data | true value == .05) = 0.967

2 Variance decomposition:

CFI = 1

f	est	se	z	pvalue	ci.lower	ci.upper	
1 FE ~~ FE	0.032	0.019	1.722	0.085	-0.004	0.069	
2 A.C ~~ A.C	0.210	0.033	6.404	0.000	0.146	0.274	
3 A.f ~~ A.f	0.233	0.037	6.348	0.000	0.161	0.304	
4 A.m ~~ A.m	0.178	0.034	5.215	0.000	0.111	0.244	
5 A.y ~~ A.y	0.225	0.038	5.906	0.000	0.150	0.300	
6 P.C ~~ P.C	0.052	0.022	2.357	0.018	0.009	0.095	
7 P.f ~~ P.f	0.069	0.024	2.832	0.005	0.021	0.117	
8 P.m ~~ P.m	0.058	0.021	2.774	0.006	0.017	0.100	
9 P.y ~~ P.y	0.068	0.023	2.970	0.003	0.023	0.112	
10 R.c.f ~~ R.c.f	0.207	0.034	6.026	0.000	0.140	0.275	
11 R.C.M ~~ R.C.M	0.107	0.026	4.111	0.000	0.056	0.158	
12 R.c.y ~~ R.c.y	0.208	0.035	5.953	0.000	0.140	0.277	
13 R.f.c ~~ R.f.c	0.168	0.033	5.062	0.000	0.103	0.233	
14 R.f.m ~~ R.f.m	0.611	0.072	8.492	0.000	0.470	0.752	
15 R.f.y ~~ R.f.y	0.203	0.036	5.651	0.000	0.132	0.273	
16 R.m.c ~~ R.m.c	0.223	0.038	5.852	0.000	0.148	0.298	
17 R.m.f ~~ R.m.f	0.480	0.062	7.738	0.000	0.359	0.602	
18 R.m.y ~~ R.m.y	0.331	0.047	6.994	0.000	0.239	0.424	
19 R.y.c ~~ R.y.c	0.350	0.050	7.062	0.000	0.253	0.447	
20 R.y.f ~~ R.y.f	0.334	0.048	6.990	0.000	0.241	0.428	
21 R.y.m ~~ R.y.m	0.201	0.036	5.541	0.000	0.130	0.273	
Relative variance	decomp	ositio	on:				

	Family	Actor.Effect	Partner.Effect	Relationship.Effect	Error	explained
c_f	6	40	13	40	0	100
c_m	8	52	14	26	0	100
c_y	6	41	13	40	0	100
f_c	7	48	11	35	0	100
f_m	3	25	6	65	0	100
f_y	6	43	13	38	0	100
m_c	7	37	11	46	0	100

R.C.m ~~	R.m.c	0.025	0.023	1.109	0.268	-0.019	0.069	0.162
R.c.y ~~	R.y.c	0.014	0.030	0.445	0.657	-0.046	0.073	0.050
R.f.m ~~	R.m.f	0.185	0.050	3.691	0.000	0.087	0.283	0.341
R.f.y ~~	R.y.f	0.051	0.030	1.712	0.087	-0.007	0.109	0.195
R.m.y ~~	R.y.m	-0.002	0.029	-0.078	0.938	-0.060	0.055	-0.009

6 Intragenerational similarity:

			f	est	se	z	pvalue	ci.lower	ci.upper	COR	label
71	A.f	~~~	A.m	0.026	0.026	0.988	0.323	-0.025	0.077	0.127	IGSIMA1
72	P.f	~~	P.m	0.020	0.017	1.191	0.234	-0.013	0.054	0.321	IGSIMP1
73	A. c	~~	A. y	-0.006	0.027	-0.239	0.811	-0.058	0.046	-0.029	IGSIMA2
74	P.C	~~	P. y	-0.019	0.018	-1.084	0.278	-0.054	0.015	-0.324	IGSIMP2

7 Mean structure

		factor	est	se	Z	pvalue	ci.lower	ci.upper
	1	FE	1.838	0.027	67.705	0.000	1.785	1.892
	2	A. C	-0.134	0.034	-3.960	0.000	-0.200	-0.068
	3	A.f	0.103	0.034	3.011	0.003	0.036	0.170
	4	A.m	-0.087	0.033	-2.653	0.008	-0.151	-0.023
	5	A. y	0.117	0.036	3.307	0.001	0.048	0.187
	6	P.C	0.022	0.026	0.835	0.404	-0.029	0.072
	7	P.f	0.038	0.025	1.528	0.127	-0.011	0.086
	8	P.m	-0.169	0.024	-7.070	0.000	-0.215	-0.122
	9	P.y	0.109	0.026	4.195	0.000	0.058	0.160
	10	R.c.f	-0.003	0.021	-0.142	0.887	-0.045	0.039
	11	R.C.M	-0.059	0.021	-2.861	0.004	-0.099	-0.018
	12	R.c.y	0.062	0.023	2.630	0.009	0.016	0.108
	13	R.f.c	-0.066	0.022	-3.030	0.002	-0.109	-0.023
ed	14	R.f.m	0.116	0.026	4.433	0.000	0.065	0.167
00	15	R.f.y	-0.050	0.022	-2.262	0.024	-0.092	-0.007
00	16	R.m.c	-0.028	0.023	-1.195	0.232	-0.073	0.018
00	17	R.m.f	0.040	0.026	1.547	0.122	-0.011	0.090
00	18	R.m.y	-0.012	0.024	-0.512	0.608	-0.059	0.034
00	19	R.y.c	0.094	0.026	3.604	0.000	0.043	0.145
00	20	R.y.f	-0.037	0.024	-1.541	0.123	-0.084	0.010
00	21	R.y.m	-0.057	0.023	-2.509	0.012	-0.102	-0.013

References

Cook, W. L. (2000). Understanding attachment security in family context. Journal of Personality and Social Psychology, 78(2), 285-294. Rosseel, Y. (2012). Lavaan: an R package for structural equation modeling. Journal of Statistical Software, 48(2), 1-36.