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Abstract. In the deep-level transient spectroscopy (DLTS) spectra of the 3d-

transition metals cobalt and chromium in p-type germanium, evidence is obtained

that hole emission from defect levels can occur by two parallel paths. Besides classical

thermal emission, we observed a second, slower and temperature-independent emission.

We show that this extra emission component allows to determine unambiguously

whether or not multiple DLTS peaks arise from the same defect. Despite similar

characteristics, we demonstrate that the origin of the non-thermal emission is not

tunneling but photoionization related to black body radiation from an insufficiently

shielded part of the cryostat.
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1. INTRODUCTION

Due to its high carrier drift mobility, Ge is used in advanced electronic devices. This has

caused a revival of the interest in the electronic properties of impurities and intrinsic

defects in Ge. A powerful technique to study these properties is Deep Level Transient

Spectroscopy (DLTS). [1] Its high sensitivity and resolution have made it one of the

most popular techniques for the characterisation of deep levels in semiconductors. In

the last decades, DLTS has been used for a comprehensive study of metal impurities

in Ge. The first succesful studies were accomplished on metal-diffused Ge (Cu, Ag,

Au and Ni). [2–5] Because in in-diffused samples the contamination level of Cu and Ni

is usually very high, the spectra of other transition metals (Ti, Cr, Fe and Co) were

obtained on metal-implanted Ge. [6–9] All these impurities form multiple acceptors

in agreement with occurence on substitutional lattice sites. For all acceptor levels

observed in p-type material, field enhanced hole emission was observed except for Co0/−

and Fe0/−. Recently Gurimskaya et al. [10] claimed to have observed a Poole-Frenkel

effect for hole emission via Minority Carrier Transient Spectroscopy on Fe in n-type

Ge, which is not in agreement with the observation in p-type. [9] The shift observed

by Gurimskaya et al. could, however, be influenced by a continuum of states that

seems to be difficult to avoid in Schottky barriers. [10] The hole emission from the

donor levels (Co0/+,Cr0/+,Ag0/+,Au0/+) close to the valence band showed no observable

field enhancement. [5, 8, 9] The agreement of the metal levels observed in DLTS with

corresponding levels from Hall effect measurements [11] is excellent and the assignment

to charge states seems rather well established. [5, 8, 9] The absence of field enhanced

emission in the case of Co0/− and Fe0/− therefore indicates that it may not always

be straightforward to conclude about the charge state of a level from the behaviour

of carrier emission in presence of a strong electric field. In addition, although in

the case of the metal centers the multiple acceptor nature was strongly supported by

essentially equal concentrations of different levels, DLTS by itself is unable to decide in

a straightforward way whether two levels are associated with the same defect. In all

mentioned studies, interpretation of the observed capacitance transients relied on the

assumption of thermally activated emission of carriers from deep levels. In this paper we

report on a second, slow and temperature-independent emission component, observed

in DLTS spectra of Co- and Cr-implanted Ge. Its spectral characteristics are similar to

those of a parallel carrier emission path reported for quantum wells and dots in III-V

semiconductors [12–19] that was assigned to direct, through barrier tunnelling. The hole

emission component reported here is, however, much slower and only becomes apparent

in the spectrum when recording transients with large observer window time (tW ).

The paper is further organized as follows. Section 2 describes the experimental

details. In Section 3.1 the general characteristics of the additional emission component

are illustrated for hole emission from the Co+/0 donor level. We show that this

temperature-independent emission allows to study the hole capture characteristics in

an extended temperature range.
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In section 3.2 the case of Ge:Cr is discussed, where similar temperature-independent

emission is observed from two acceptor levels. The spectra allow to establish

unambiguously that the two levels are related to the same defect. The electric field

dependence and possible origin of the emission are discussed in Section 3.3. The

conclusions are summarized in Section 4.

2. EXPERIMENTAL DETAILS

The starting materials were p-type single crystal Ge wafers with a Ga shallow acceptor

concentration of 1×1014 cm−3, supplied by Electro-Optic Materials, Umicore. These

wafers were implanted with Co or Cr at an energy of 90 keV with a dose of 5×1013

cm−2, as described elsewhere. [6, 8, 9] In order to remove the implantation damage and

to diffuse the metal impurities deeper into the substrate, a 5 min post-implantation

anneal at 500◦C was applied in a N2 ambient. The samples were prepared for DLTS

measurements by evaporating In to form a Schottky junction. This evaporation was

preceded by a short etch in a HNO3:HF (3:1) solution. Ohmic contacts were prepared

using In-Ga eutectic and In foil. Our previous DLTS studies on these samples have

shown that they exhibit no signals of residual implantation defects. The transition

metal concentration in these samples near the junction is of the order 5x1012cm−3 and

exhibits a slight in-diffusion profile. Capacitance DLTS measurements were performed

with a Fourier transform instrument (Phystech FT1030) equipped with a Boonton 72B

capacitance meter with an AC test signal of 1 MHz. The sample was placed in a Heraeus

contact gas liquid He cryostat, shielded from the environmental black-body radiation

by four heat shields. Extra shielding in the experiments described in Section 3.3 was

provided by a 50 µm aluminium foil covering the sample space.

In the DLTS measurements, capacitance transients were recorded at VR after a

filling pulse (200 ms) to VP (VR < VP <0) and a waiting time t0, typically tW/512 for

temperature sweeps and tW/4 for isothermal measurements. In all DLTS spectra in this

paper, the b1 Fourier component is shown:

b1 =
2A

tW
exp

(
−t0
τ

) [
1− exp

(
−tW
τ

)]
ω

1
τ2

+ ω2
, (1)

with A the amplitude of the transient, τ the emission time constant and ω = 2π
tW

.

Electric field values were calculated as described by Blood and Orton [20], assuming

an abrupt depletion.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. EXTRA EMISSION COMPONENT IN A SINGLE DLTS PEAK

The DLTS spectrum of Ge:Co in the 30-180K temperature range with tW=5 ms is

shown in figure 1(a). It features two peaks, corresponding to the Co+/0 level (EA=83

meV, KT=4.2×108 s−1K−2) and the Co0/− level (EA=254 meV, KT=1.7×107 s−1K−2),

in agreement with Lauwaert et al. [9]
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Figure 1. DLTS Spectra of Co in p-type Ge (VR=-2 V, VP =-0.2 V) (a) Temperature

scan at tW =5.12 ms. (b) Influence of window time tW on the observation of the

extra component of the Co+/0-peak in temperature sweep. (c) Isothermal DLTS

measurements at several temperatures. The abscis represents tW /1.41 in order to

allow for direct evaluation of the emission time constant τmeas from the max of the

spectra. Symbols represent experimental data points. The full lines are simulations

based on equations 2 and 3.

The b1 Fourier DLTS spectrum of the Co+/0 peak in p-type Ge is shown in figure

1(b), recorded for a wide range of rate windows. At temperatures lower than the thermal

emission temperature, an emission component with constant amplitude and emission

time constant (τc) is observed for tW > 51 ms. This extra component is “shunted” by

the thermal emission: after the thermal emission peak the b1 amplitude falls to zero.

Figure 1 (c) displays isothermal DLTS spectra of this peak, recorded at different

temperatures. These are all chosen such that thermal hole emission from Co0/− is too

slow to appear in the experiment. At T>31 K, the maximum shifts to lower values

when T rises, as expected for a thermally activated process. Below 31 K there is no

further shift of the maximum. However, the amplitude is temperature-independent in

the whole temperature range. One can thus conclude that this type of emission affects

all Co centers of this type (substitutional Co), not only those in a certain region or

specific defect configuration. This yields two parallel emission paths for the holes: the
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“usual” thermal emission (eth) and a second, temperature-independent emission (ec).

The total measured emission rate can be written as

emeas = eth + ec (2)

with the thermal emission rate given by

eth = KTT
2exp

(−Ea
kBT

)
(3)

with kB the Boltzmann constant. KT , the pre-exponential factor and Ea, the apparent

activation energy, constitute the signature of the defect level. The measured time

constant τmeas can be written as:

τmeas =
τcτth
τc + τth

(4)

with τc = e−1
c , the temperature-independent time constant, and τth = e−1

th .

The full lines in figures 1(b) and (c) represent calculated fits to the experimental

spectra, corresponding with b1-Fourier transforms of single exponential capacitance

transients with a time constant as in equation 4. The signature (KT , EA) values were

found from fitting and agree within experimental accuracy with those obtained from

Arrhenius diagrams. [9] The excellent agreement with the experimental data justifies

the analysis procedure and τc = 7.3±0.7 s is found. This agreement also applies to

other an and bn Fourier components with the same value of τc, demonstrating the

closely exponential nature of the emission transient.

The extra emission component from a certain defect level can only be observed (at

temperatures below the thermal peak of that level) when tW is sufficiently close to τc
(up to about one order of magnitude different). For tW up to 25 s, no extra emission

component was observed for the Co0/− level. We estimate that if such emission would

occur from this level, its time constant τc should exceed 300 s.

Our previous DLTS study of Ge:Co has shown that capture kinetics of the Co+/0

level are sufficiently slow to allow for accurate determination of the capture cross

section σ. The observation of an additional emission hence widens the temperature

range in which σ can be studied. Between 20-30 K, we found a fairly constant value

of (4.2±0.5)×10−14 cm2, in very good agreement with the values extracted from the

thermal emission component. At these low temperatures, the capacitance transients

need to be measured over long times (∼ 1 min), making these measurements more

susceptible to noise and at the same time limiting the number of data points that can

be taken for determining σ. As a result, the error on σ is considerably larger than when

measured via the thermal emission component. [21]

3.2. EMISSION FROM TWO LEVELS OF THE SAME DEFECT

In the previous section the additional temperature-independent emission from one defect

level was observed (Co+/0). In this section we show that observation of this athermal

emission from multiple levels allows to obtain additional information about the relation
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between the levels, in particular whether or not they arise from the same defect. For

this purpose, Cr implanted p-type Ge has been studied. Substitutional Cr can occur

in 4 charge states in p-type Ge [8], corresponding to three defect levels: Cr+/0 (EA=15

meV, KT=1.7×106 s−1K−2), Cr0/− (EA=46 meV, KT=3.9×107 s−1K−2) and Cr−/2−

(EA=92 meV, KT=1.6×108 s−1K−2). Right after the filling pulse VP , all Cr in the

depletion region at VR is in the Cr+-state. By gradual emission of 3 holes it evolves to

the Cr2−-state. At 15K, thermionic emission from the Cr+ level is so fast that it may

be considered as instantaneous (e−1
th << t0) and the starting state for analysis is Cr0. In

principle at even lower temperature the Cr+/0 transition can also be investigated, but

as it is close to the hole freeze-out this was not attempted here. The DLTS spectrum

of Cr-implanted Ge in the 15-55 K range is presented in figure 2(a). Even for a short

tW (5 ms) an extra emission component precedes the thermal peak of the Cr0/− level.

At larger window times (512 ms) also below the thermal peak of the Cr−/2− level an

additional component is detected.
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Figure 2. (a) DLTS spectrum of Cr in p-type Ge at different tW . (b) DLTS spectrum

for tW =1 s with spectrum simulations for the case of the coupled and uncoupled levels

(VR=-1 V, VP =-0.2 V).

Figure 3. tW dependence of Ge:Cr. VR=-1 V, VP =-0.2 V. The ordinate represents

tW /1.41 in order to allow direct evaluation of τmeas.
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Like for Co, isothermal DLTS spectra have been recorded as a function of

temperature and in figure 3 the b1-Fourier amplitude is plotted in grayscale as a function

of window time and temperature. At T<20 K, the DLTS spectrum is temperature-

independent. It is a superposition of two peaks with equal amplitude corresponding

to non-thermal emission from the two considered Cr levels. The spectrum at these

temperatures easily allows extracting the τc values, being 0.08±0.01 s (Cr0/−) and

0.9±0.1 s (Cr−/2−). At higher temperatures (20 K<T<37 K), the thermal emission

rate of the first peak becomes important, thus shifting this peak towards lower tW ,

while the amplitude does not change. The second peak, however, still stays at the

same position up to T=37 K. A further increase of the temperature causes also this

second peak to shift towards lower window times, as the thermal emission rate becomes

dominant also for that peak.

The analysis so far allows two interpretations of the observed spectra. The

two DLTS peaks can arise from two different defects with the same (or very close)

concentration(s) or from two levels of the same defect, e.g. 0/- and -/2- levels for Cr.

Here we label these 2 possibilities as “uncoupled” and “coupled” respectively, referring

to the rate equations describing them. When calculating the spectra of these two cases,

a clear difference is obtained, which allows to distinguish between them, as discussed

below. We first describe the situation of coupled levels as applies to the case of Cr.

Figure 4. Model for hole emission from two acceptor levels related to the same defect.

As explained above, at the start of the capacitance transient measurements (t0
after the pulse) all Cr defects are assumed to be double occupied by holes (Cr0). The

subsequent hole emission processes are summarized in figure 4. The concentration of

neutral centers N0
T decays by hole emission with emission time constant τ1

d

dt
N0
T (t) = − 1

τ1
N0
T (t)

⇒ N0
T (t) = NT e

−t/τ1 (5)

As a consequence of the decay of N0
T by emission of holes, single negatively charged
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centers are formed, which at their turn disappear by emission of a second hole:

d

dt
N−
T (t) =

1

τ1
N0
T (t)− 1

τ2
N−
T (t)

⇒ N−
T (t) = NT

τ2
τ2 − τ1

(e−t/τ2 − e−t/τ1) (6)

Finally, the concentration of defects in the double negative state is

d

dt
N2−
T (t) =

1

τ2
N−
T (t)

⇒ N2−
T (t) = NT

[
1

τ2 − τ1
(τ1e

−t/τ2 − τ2e−t/τ1) + 1
]

(7)

The change in the charge density on the acceptors responsible for the measured

capacitance transient (change of depletion width) in the observed window time is

N−
T (t) + 2N2−

T (t) = 2NT −
NT

τ2 − τ1

[
(τ2 − 2τ1)e

−t/τ1 + τ2e
−t/τ2

]
(8)

For two uncoupled defect levels, on the other hand, the change in charge

concentration on the acceptors is the sum of the two independent emission components:

2NT −NT

[
e−t/τ1 + e−t/τ2

]
(9)

which have here been given the same NT trap concentration, as can be established

from the ratio of their thermal peak amplitudes at small window times. The Fourier

component DLTS signal P for the uncoupled system (PU) is simply the sum of the two

single DLTS signals:

PU = P1 + P2 (10)

For the coupled system, however, this is:

PC = (2−X)P1 +XP2 (11)

with

X =
τ2

τ2 − τ1
(12)

The computed relative difference between the system with coupled and uncoupled rate

equations for different window times is shown in figure 5. Based on this figure, we can

analyse the situation for Ge:Cr. It is reasonable to assume that τ1, the emission time

constant for the shallower of the two defect levels, is at any temperature smaller than

τ2, therefore only the coloured region of figure 5 is taken into account. A significant

difference between the coupled and uncoupled model is observable above the white

dashed line. At temperatures below 23 K, both τ1 and τ2 are approximately equal to

the (constant) emission times τc,1 (=0.08 s) and τc,2 (=0.9 s). The full white line in

figure 5 corresponds to this situation for variable tW .

For Cr, no significant difference between the coupled and uncoupled situation is

predicted for tW=512 ms. A marked difference between the coupled and uncoupled

situation is expected for tW=5 ms, 51 ms and 1 s. At the smaller window times,
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Figure 5. Relative intensity difference between the coupled and uncoupled system

(PC-PU )/PU (see text).

the additional components become small and although the relative difference between

coupled and uncoupled cases is large, the measured absolute difference lies within the

noise level. The difference between both models for tW=1 s is seen in figure 2(b) at

temperatures below 23 K. It is clear that the simulation for the coupled levels case fits

the data much better: the two DLTS-peaks measured in the specimen with Cr arise

from the same defect. One should remark that although the presence of non-thermal

emission is not strictly required for making this distinction, it is necessary to observe

emission from the two levels at the same temperature, which is greatly facilitated when

it does occur.

3.3. ORIGIN OF THE NON-THERMAL EMISSION

The observed non-thermal emission can in principle originate from three sources: direct

tunneling, recombination and photo-excitation. Each of these possibilities is discussed

below.
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In the DLTS spectra of certain quantum wells and dots a similar low-temperature

non-thermal emission component has been observed and explained as the result of direct

tunneling of a carrier out of the quantum well. [12–19] Other tunneling mechanisms

that have been proposed for carriers out of defects or quantum wells, in particular

phonon- and thermally assisted tunneling, are essentially thermally activated processes

and cannot explain the current observations. In the case of direct tunneling, a strong

dependence of τc on electric field is expected, as the field determines the width of the

tunnel barrier and it may in addition lower the barrier height for attractive centers

(Poole-Frenkel effect). For a square well potential one calculates [16]

τ−1 =
eF

4
√

2m∗Ei
exp

−4

3

√
2m∗E

3/2
i

eh̄F

 (13)

with F the electric field, Ei the binding energy, m∗ the effective mass and e the

elementary electric charge.

The electric field dependence for the three levels described in the previous

subsections is shown in figure 6. It is obvious that none of these follow the expected

strong field-dependence for direct tunneling. For Co+/0 τc is practically independent

of electric field, for Cr0/− it shows a weak dependence and for Cr−/2− it is somewhat

stronger. These dependences rather appear to follow the trend in Poole-Frenkel shift

that these levels exhibit. [8,9] Moreover the non-thermal emission is already observable

at very low fields: in the case of a simple square well potential, the barrier width for

hole tunneling from Co+ at 1 kV/cm is estimated at 830 nm, which seems unrealistic

for allowing tunneling. Hence we may exclude direct tunneling from the defect level to

the valence band as a mechanism.

Recombination with conduction band electrons also seems very unlikely, as it occurs

in a layer depleted of free carriers. One might still consider recombination with electrons

tunneling from interface states at the metal-semiconductor junction as a mechanism. [22]

However, in all our experiments the minimal distance between the junction and the

probed semiconductor region is at least 4 µm, rendering such a tunnel mechanism even

less plausible than direct hole emission tunneling to the valence band.

For photo-excitation or -ionization to be observed, a sufficient flux of photons Φ of

the right energy should be present. In that case, the release of holes from a defect with

charge q at a temperature where thermal emission is negligible may be modeled as

dN q

dt
= −σPIΦN q ⇒ τc = (σPIΦ)−1 (14)

with σPI the cross-section for photoionization. As origin of the photon flux one can

consider black-body radiation from hotter parts of the cryostat, that is not completely

blocked by the heat shields. For Ge:Co, an estimation of the size of the photo-excitation

effect can been made. Barnik et al. have shown that photons with an energy between

100 meV and 230 meV have the largest contribution to the photoionization of Ge:Co

(which is much larger than the activation energy of 83 meV due to the donor nature of
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the Co+/0-level). [23] For a black body at 300 K, a photon flux of 3.5×1018cm−2s−1 is

expected in this energy range. Considering the peak cross section for photoionization

of 4.6×10−16 cm2 [23], in the range of photoionization cross sections for other deep and

shallow levels in Si and Ge (10−17-10−14 cm2) [24–26], such fluxes may be sufficient to

yield emission time constants in the order of 1 s, as observed for the Co donor level,

even if a partial blocking by the heat shields is taken into account. A black body at a

considerably lower temperature of 200 K produces a photon flux of 2.8×1017cm−2s−1),

which may still be sufficient to yield temperature independent time constants in the

right order of magnitude. In order to verify this possibility an experiment was carried

out in which the sample space was covered by aluminium foil, as an extra heat shield.
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Figure 7. DLTS spectra of Ge:Co with (Shielded) and without (Unshielded)

aluminium foil cover

The results of a measurement with and without this additional heat shield are

shown in figure 7, clearly demonstrating that the non-thermal emission component can

indeed be assigned to photoionization by black-body radiation in the cryostat.

The fact that the time constant for hole emission at low temperature is independent

of temperature, demonstrates that this effect is dominated by photoionization and that

photothermal ionization plays an insignificant role. Related to this, it has been shown

that the oscillator strength for internal transitions in shallow donors and acceptors

in Ge decreases with increasing binding energy. [27] If the latter also applies to the

photoionisation transitions, it may explain the absence of non-thermal emission from

the deeper Co0/− level, together with a lower photon flux above 254 meV. It is reasonable

to assume that the same mechanism applies to Ge:Cr. For these acceptor levels the peak

in σPI is expected to lie much closer to the activation energy for thermal emission, which

explains why observed τc values are considerably smaller. In spite of considerable efforts

we were unable to identify the source of the black-body radiation in the cryostat and

hence its spectrum (effective black body temperature) remains unknown. As a result,

we were unable to extract σPI values for the Cr acceptor levels via comparison of their

τc values with that of the Co donor level.

Finally, the determination of the carrier cross-section in section 3.1 - in the presence

of a source of radiation, not taken into account in previous analyses - deserves some

further attention. The method used to analyze the increase of the DLTS signal as
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a function of filling pulse not only takes into account the slow capturing regime but

also the effect of emission. This correction may thus also include an emission rate due

to photoionization, as long as it remains much slower than the observed capture rate

(cpp). The requirement in the model that the capture rate is faster than the emission

rate, is automatically fulfilled (by thermodynamics) in the absence of photoionization,

and remains valid with photoionization at this low light intensity. Since we have

experimentally observed that cpp � 1/τc (cpp ∼ 106 s−1, ec ∼ 0.14 s−1), no effect

on the determination of the capture cross-section is expected.

4. CONCLUSIONS

In this paper, we showed via DLTS experiments on transition-metal doped Ge that

in addition to thermal emission, a second, non-thermally activated path for carrier

emission from deep-level defects may exist. Photo-ionization by far-infrared photons

due to black-body radiation in the cryostat lies at the origin of this extra emission

pathway. We observed this non-thermal emission as a low-temperature tail in the DLTS

spectra for the Co+/0, Cr0/− and Cr−/2− levels in Ge. As the spectrum of the radiation

is not known, no direct information on the photo-ionization of the Cr acceptor levels can

be obtained from comparison with the known values for the Co donor level. The non-

thermal emission does allow to determine carrier capture cross-sections for the defect

states at low temperature and to establish unambiguously whether or not defect levels,

for which it is observed, belong to the same defect.
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