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Goal of this presentation

• Consider multilevel data with binary outcome measures
→ e.g. Generalised Linear Mixed Models (GLMMs)

• Consider cluster size two
→ e.g. crossover studies, dyadic data, ...

• Compare the performance of different appropriate methods
→ Assess several available functions in R (R Core Team, 2013)

Why?

Settings with binary outcomes in small clusters have proven difficult
for the available methodologies (Xu et al., 2014)
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General difficulties

GLMMs are most widespread for handling binary multilevel
data, BUT:
• Statistical inference of GLMMs is hampered due to its random

effects (RE’s):
• Likelihood function involves integrating out these effects

from the joint density of responses and RE’s
• This is (except for a few cases) analytically intractable

• To tackle this intractability, numerous estimation methods have
been proposed:
• Likelihood-based approximation methods
• Bayesian estimation procedures
• Least Squares (LS) procedures in the Structural Equation

Modelling (SEM) framework
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Solutions (1/3)

Likelihood-based approximation methods:

1. Laplace approximation

• Approximates the intractable integrand by a quadratic
Taylor expansion
→ Closed-form expression of the maximizable likelihood

• in R: glmer (package lme4)

2. Penalised Quasi-Likelihood method (PQL)
(Breslow and Clayton, 1993; Schall, 1991; Stiratelli et al., 1984)

• Also an approximation of the integrand
• Considered an approximation of the GLMM by a LMM
→ estimation simplifies

• in R: glmmPQL (package MASS)
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Solutions (1/3)

Likelihood-based approximation methods:

3. Adaptive Gaussian Quadrature (AGQ)(Pinheiro and Bates, 1995)

• Approximates the integral by replacing it with a finite sum:
• regular Gauss-Hermite (GH) quadrature (e.g. (Naylor and Smith,

1982)) uses fixed set of nodes
• AGQ uses a different set of nodes for each cluster.
→ more efficient than GH quadrature

• in R: glmer (package lme4, option ’nAGQ>1’)
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Solutions (2/3)

Bayesian estimation procedures:

4. Markov Chain Monte Carlo (MCMC) methods
• Simulate the likelihood, rather than computing it
→ Calculate sample average of independently simulated
realisations of the integrand

• in R: MCMCglmm (package MCMCglmm)

5. Hybrid approach
• Uses an Integrated Nested Laplace Approximation (INLA)

of the posterior distributions
→ No need to simulate the likelihood
→ Steep decline in computational burden

• in R: inla (package R-inla)
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Solutions (3/3)

LS estimation in SEM:

• Different estimation techniques available:
• OLS, DWLS, GLS
• Diagonally Weighted Least Squares (DWLS)
→ more robust and accurate than OLS, GLS only for n > 10000.
→ only for probit link

• SEM theoretical background:
• Clustered binary outcome Yij represents crude

approximation of underlying continuous variable Ỹij .

• Ỹij is not directly observed (latent), where:

Ỹij = β0 + β1xij + bj + εij (1)

, with εij the residual variance ∼ N(0,σ2) and bj a random intercept ∼ N(0, τ).

• Yij = 1 ⇐⇒ Ỹij > c, with c a threshold value
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Solutions (3/3)

LS estimation in SEM:

• Two parameterisations:
6. In traditional literature, σ2 is fixed at one (εij ∼ N(0, 1))
⇒ Theta approach (Muthén and Muthén, 2010).

7. In SEM literature τ + σ2 is fixed at one (bj + εij ∼ N(0, 1))
⇒ Delta approach (Muthén and Muthén, 2010).

• They provide different estimates, convertible by a scaling factor
∆ (Muth et al., 2002) (here, ∆ = 1/

√
(τ + 1)).

• in R: sem (package lavaan, with option
’parameterization=theta/delta’)
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Simulations

Simulate binary outcome data of cluster size two, generated
with a probit link. We look at different settings for:

• Sample size: n = 25, 50, 100, 500

• Intracluster correlation: ICC = 0.1, 0.3, 0.5

• Measure for the exposure X :
• Binary/Gaussian (scale)
• Between-/Within- cluster (bw)

• Event rate: P(Y = 1) = 0.5 (0.1 in progress)

⇒ Compare all seven methods in terms of:

Bias - SE - MSE - Coverage - Convergence

Simulations 16 of 22



Goal Methods Simulations Results Conclusion References

Simulations

Simulate binary outcome data of cluster size two, generated
with a probit link. We look at different settings for:

• Sample size: n = 25, 50, 100, 500

• Intracluster correlation: ICC = 0.1, 0.3, 0.5

• Measure for the exposure X :
• Binary/Gaussian (scale)
• Between-/Within- cluster (bw)

• Event rate: P(Y = 1) = 0.5 (0.1 in progress)

⇒ Compare all seven methods in terms of:

Bias - SE - MSE - Coverage - Convergence

Simulations 17 of 22



Goal Methods Simulations Results Conclusion References

Results for β1

Method Bias Stand. error MSE Coverage Convergence

Laplace bw*scale*n bw*scale*icc bw*scale*icc icc + scale n

AGQ bw*scale*n bw*icc bw*icc n + icc n + bw

PQL bw*scale*n bw*scale*n bw*scale*n n + icc + bw bw*scale*n

MCMC
bw*scale*n icc*n icc*n n icc*n + bw*icc

bw*scale bw*scale bw*n + bw*scale

Hybrid
bw*scale*n scale*n + bw*n icc*n icc*n /

bw*scale

SEM-δ
scale*n + bw*n n + icc n + icc scale*icc + bw*icc scale*icc*n
bw*scale scale + bw bw*scale

SEM-θ
scale*n + bw*n scale*n + bw*n icc*n + scale*n bw*scale*n bw*scale*n
bw*scale bw*bin bw*n

*significant terms at the 0.14% significance level
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Conclusion
• Testing for factors (n, icc, bw & scale)

• Each factor is relevant!
• BUT some methods show more variance than others.
→ Nonsensical to compare methods in terms of significant
factors
→ Required: elegant way to compare all approaches...

• Graphical comparison
• For bias of β1: does seem to favour SEM-δ
• SEM-δ also performs well for SE, MSE and convergence

• Additional method: Pairwise Maximum Likelihood
• One-step estimation→ probably more efficient than LS
• Recently implemented in lavaan

• Additional factor: outcome prevalence
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