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Abstract—Today’s centralized cloud-computing infrastruc-
tures have not been designed with geo-localized, personalized,
bandwidth/processing-intensive, real-time applications in mind.
High network delay and low throughput can have a significant
impact on the user experience. Instead, such services could be
deployed in distributed service nodes at the edge of the network,
closer to the user. In this paper we focus on composite services of
which the components are running in different service nodes. We
present a two-layer framework that provides service orchestration
and instance selection. We present the orchestration mechanisms
to enable the flexible re-use of components across different
composite services. For the resolution layer of our framework,
we present two modes of operation that combine network and
service availability information for efficient per-request instance
selection among a multitude of service replicas.

I. INTRODUCTION

Despite the advantages of elasticity and cost efficiency
brought by the cloud paradigm, the requirements of many
innovative services do not match well with a deployment
in today’s cloud infrastructure. The high, variable network
delays [1] and low throughput [2], [3] to a relatively small
number of data centers deep in the network can have a serious
impact on the QoE experienced by many users of resource-
demanding multimedia interactive services like personalised
real-time video and games. Real-time analysis of the big data
produced by the billions of sensors and devices in the Internet-
of-Things is an enabler for a new generation of services that
provide geolocalized and/or personalized results. The contin-
uous transfer of this sensor data stream to centralized clouds
would simply congest the network. A much better approach is
to bring the computational application logic closer to the user
and to the input data.

Essentially, these services with low-latency, high-
throughput requirements must be deployed on a collection of
distributed, smaller clouds at the network edge. This concept
has been proposed in the literature under a variety of names:
edge computing [4], fog computing [5] or cloudlets [6].
Already today, we see a number of commercial efforts and
trends that introduce service execution capabilities in ISP
networks. Relatively small data centers in the ISP network
previously only used for ISP-specific services like IPTV and
network management are already being exposed as virtualized
resources, e.g. to CDNs [7]. In the context of Network
Function Virtualization, network management functions are
being aggregated on general purpose hardware deployed at
central offices and customer premises [8]. Even traditional

network elements are being equipped with computing
resources and storage capacity. Services can now run at
LTE eNB base stations [9] or on IP routers [10]. Compared
to over-the-top players, operators can leverage the unique
position of this distributed cloud infrastructure in the network
for providing better QoS to demanding applications.

We thus arrive in a situation where replicas of the same
service are deployed in many nodes - in this paper referred to
as execution zones - spread over the network. In this paper,
we focus on the challenges for orchestration and instance
selection for composite services in such an environment. Each
component of this service is subject to particular deployment,
orchestration and management rules and is potentially provided
by different entities . An example composite service is an
interactive multimedia dashboard, combining different media
like photos, private videos, video-on-demand mash-ups and
video chats into a personalized video stream. This application
involves multiple decoders, encoders, streamers and applica-
tion logic. Other examples can be found in the domain of the
Internet-of-Things where data from geographically distributed
sensors must be combined with application logic.

Our goal is to realize a flexible ecosystem in which
individual service components can be part of multiple com-
posite services. This introduces challenge for the orchestration
(deployment, scaling) of the individual components. Moreover,
when a client wants to connect to a composite service, we need
to find a suitable instance of each components. It is unlikely
that all components of a composite service are available in
a single execution zone, e.g. because the limited edge node
capacity is fully occupied by already connected users or
because necessary hardware (GPU, input sensor) for some
components is not present on all nodes.

In the context of the FP7 FUSION project [11], we
investigate how service-request resolution capabilities can be
natively embedded in the network to address these challenges.
In this paper, we present the necessary key concepts to
realize flexible re-use and selection of service components
for composite services. We introduce the concept of session
slots as service availability metric and present early results on
efficient selection between multiple instances that are deployed
in geographically distributed execution zone. The remainder
of this paper is structured as follows. In section II, we
discuss the overall architecture of our two-layered service-
centric overlay framework. In section III, we elaborate on the
orchestration layer of the framework. In section IV, we discuss
the instance selection provided by the resolution layer. Early
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Fig. 1. Schematic overview of the FUSION architecture. The distributed execution zones of the edge cloud are grouped logically in service resolution domains.
Execution zones report to the service resolver of their domain on service availability. Users send a location-agnostic service identifier to their local resolver,
who returns the locator (IP/port) of the best currently available service replica.

experimental results indicate the benefits of taking into account
the overall composite service structure in the design of service
selection algorithms. Related work in this domain is presented
in section V.

II. ARCHITECTURE

The main functional blocks of the FUSION architecture
are illustrated in Figure 1. Application developers register
their service with an orchestrator, which takes care of the
deployment, provisioning, placement and scaling of service in-
stances in a number of execution zones that are geographically
distributed in the edge cloud. An execution zone is the logical
representation of physical computational resources in a specific
location where services are deployed in virtual machines or
containers. The main primitive of the service resolution layer is
to resolve service requests to the locator of the “best” instance
among many replicas of the same service component running
in execution zones throughout the Internet. This fine-grained
resolution capability is performed on the grounds of network
metrics, service performance metrics and service instance load.

We refer the reader to [11] for a more in-depth discussion
on the motivation and structure of the FUSION architecture.
In the remainder of this section, we briefly describe two
architectural aspects relevant to the scope of the current paper.

A. Name-based service request resolution

The service resolution layer is conceived as an overlay of
the IP layer. In an anycast-style process, clients send a service
ID to their closest service resolver. Following the principles of
name-based networking, these service IDs are agnostic to the
network location of the corresponding services. The resolution
layer selects one or more replicas of the specified service,
taking into account resolution metrics, service availability and
network metric constraints (e.g. maximum latency). The client
is returned with a list of one or more locators (IP address and
port) of the selected instances. Clients subsequently connect

to a service component instance, beyond the control of the
service resolution layer.

Execution zones are grouped in multiple administrative do-
mains. Each resolution domain is governed by one (logically)
centralized service resolver that applies an internal resolution
policy. Service state information is exchanged between the
different domains, possibly subject to particular advertisement
policies. One particular business model is where resolution
domains coincide with today’s Autonomous Systems. In such
a scenario, each Internet Service Provider is operating one
logical service resolver that peers with service resolvers of
other ISPs. Service resolvers will first try to resolve requests
to an instance running in one of their local execution zones. If
no suitable instance is available, and if allowed by the service
QoS requirements and deployment policies, the request can be
resolved to an instance running in another domain.

Service resolvers need to combine network metrics with
service availability information to select the best replica on
a per-request basis. Each resolution domain builds its own
database with information on end-to-end network metrics,
e.g. using the Archipelago measurement infrastructure [12].
Service availability information is expressed by means of the
concept of resource session slots, as discussed below.

B. Advertising service availability through session slots

Service instances typically can handle a number of requests
in parallel with sufficient performance, depending on the
allocated resources and the service characteristics. Since we
are targeting services like monitoring and multimedia where
active connections have durations in the order of minutes or
even hours, using a queuing model would lead to unacceptably
long waiting times. Moreover, the smaller infrastructure of exe-
cution zones in the edge cloud, compared to clouds, drastically
reduce scaling opportunities to provide additional capacity. For
these reasons, service resolvers should be provided with up-to-
date information on service availability to ensure that service



requests are optimally resolved. Service availability is however
a complex metric that is influenced by many factors.

First, service availability can only be assessed by instances
at runtime because the capacity of a single instance in terms
of concurrent requests that can be served is not a direct
function of the resources that were allocated to it. Underlying
hardware differences, multi-tenancy resource contention and
varying data center network topology are only a few causes
of performance variation of the same instance [13]. Therefore,
each instance deployed in the FUSION architecture must report
at regular intervals on its service availability to the gateway
component of each execution zone.

Second, it should be noted that service availability cannot
directly be derived from service utilization. Continuous utiliza-
tion metrics like average CPU percentage provide information
on the service load generated by connected clients, but provide
no indication on how many additional connections can be
served. We therefore introduce the concept of session slots,
as an abstract, non-service specific, discrete metric indicating
the number of new sessions that an instance can handle without
loss of service performance. Each running instance reports
at regular intervals its number of available slots to the zone
gateway. The gateway in turn reports to its resolver the sum
of the slots reported by running instances and the additional
maximal capacity that can be deployed if needed by booting
additional instances (e.g. up to a specified maximum cost).
An additional advantage is that zone-internal scaling policies
remain hidden to other entities.

By combining network metrics with service availability
information (session slots); service resolvers are able to select
the public service endpoint of the best matching execution zone
for a given client request.

III. COMPOSITE SERVICE ORCHESTRATION

A composite service is an abstract representation for a
collection of components that each provide part of the func-
tionality of the overall service. The communication links
between these components for implementing the composite
service can be modeled in a connected graph. Typically, the
connection with the client is handled by one of the nodes in the
graph, which we call the entry service. Examples of composite
services S and T are shown in the left hand side of Figure 2. In
this section, we will discuss the orchestration of such services.

Fig. 2. Component C is part of the service graph of composite services S
and T. At runtime, instance C3 serves users of both composite services.

A. Service registration using TOSCA

Service providers can register their application with the
FUSION framework by means of a manifest that specifies

the structure of the composite service, design time parameters
and deployment and scaling policies. In FUSION, we build on
the TOSCA specification language that enables inter-operable
description of application and infrastructure cloud services,
the relationships between service components and operational
behavior like deploy operations [14].

The structure of the composite service is described using
an XML-file in the service-template directory of the Cloud
Service Archive file. An example is provided in Listing 1.

The composite service is registered with serviceID
CompService at a FUSION orchestrator. The manifest states
that this service comprises two components: ServiceA and
ServiceB. The relationship between these components is de-
fined in RelationshipTemplates. Various types of Relationships
are defined, however in the scope of this paper we focus on
the connectsTo type, which denotes that the source element
will initiate the connection to the target element. One possible
means for the source element to get the locator of an instance
is to send a request to the FUSION service resolution plane
for service ID ServiceB.

Listing 1. FUSION manifest for a composite service with two components
< S e r v i c e T e m p l a t e i d =" CompService " ,

name=" Composi te S e r v i c e " >
. . .
<TopologyTempla te >

<NodeTemplate i d =" Serv iceA " name=" S e r v i c e A" t y p e ="FUSION
: component ">

</ NodeTemplate >
<NodeTemplate i d =" S e r v i c e B " name=" S e r v i c e B"

t y p e ="FUSION : Component ">
</ NodeTemplate >

< R e l a t i o n s h i p T e m p l a t e i d =" AtoBConnect ion "
t y p e ="my : c o n n e c t s T o ">

< SourceE lemen t r e f =" S e r v i c e A" / >
< T a r g e t E l e m e n t r e f =" S e r v i c e B" / >

</ R e l a t i o n s h i p T e m p l a t e >
</ TopologyTempla te >

</ S e r v i c e T e m p l a t e >

The orchestrator will parse the manifest and validate that
enough resource session slots are available by the already de-
ployed instances, e.g. because they were registered previously
in another manifest - either as standalone service or as part of
another composite service.

B. Multi-configuration of service components

A key feature of our flexible service ecosystem is that
service components can belong to multiple composite services,
each with their own set of instantiation and configuration
parameters. In the example of Figure 2, the composite services
S and T have service components A and C in common. Instead
of deploying instances of A and C that are uniquely assigned to
a single composite service, the FUSION orchestration supports
the sharing of instances between different composite services.

Such shared instances will be provided with multiple
configurations by the orchestration layer, one per composite
service. Each service configuration is mapped on a different
port. The instance knows to which composite service an in-
coming connection belongs by the port on which it is received.
The multi-configuration of instances remains hidden to the
resolution layer. In the example of Figure 2, the same IP but



different ports of an instance of C are advertised as endpoint
for composite services S and T.

Although each composite service is subject to proprietary
scaling rules, the budget of session slots of an instance must
be shared between all composite service configurations. To
comply with the different scaling policies, one suboptimal
approach is to fix the allocation of session slots between the
different configurations. Imagine that instance C0 in Figure 2
can provide 4 resource session slots. A straightforward ap-
proach is to fix the allocation of resource session slots between
configurations, e.g. 2 each for service S and service T. When
a third user requests an instance of composite service S, the
scaling rules force the orchestration to deploy an additional
instance of component C, although instance C0 can still handle
the third connection.

To allow for more advanced orchestration and more effi-
cient resource usage, we introduce the concept of virtual elastic
scaling. We mandate that each instance not only reports at
regular intervals its number of actively running connections per
configuration, but also the maximum number of connections
it can handle, depending on the amount of infrastructure
resources allocated to it. The latter number must be reported
only once, when the instance is first booted. The orchestrator
can now virtually overscribe this capacity by advertising to
the resolution layer more session slots for each composite
service than the running instance(s) can handle. Note that this
oversubscription can be done for any instance (not only entry
services). Instead of deploying or terminating instances, the
zone orchestration logic can adjust the virtual scaling over
the different configurations. This should lead to a more stable
environment, since there will be fewer instance deployment
and termination operations.

IV. SERVICE REQUEST RESOLUTION

Clients send a request with the service ID of the composite
service to their local resolver. This resolver is continuously
collecting information on the availability of service instances,
that is either received by reports from the zone gateways in its
resolution domain, or passed by resolvers of other domains.
Depending on the amount of information on the composite
service structure that is available in the resolution layer, more
intelligent instance selection algorithms can be applied. This
comes at the cost of increased complexity in the resolution
layer. We will detail this trade-off by means of Figure 3.

The left figure shows the deployment graph that is con-
structed from the TOSCA service manifest. The right figure

shows the instance graph. The nodes in this graph are the
instance of each component that has available session slots
at the time of the request. The weight edges reflect the cost
metric (e.g. latency, bandwidth) of the data path.

A. Resolution models

In the most basic resolution model, the structure of the
composite service is transparent to the service resolution layer.
In this scenario, the client is returned with the IP and port of an
instance of the entry service component. This role is assumed
by component A in Figure 3(a). When the client connects
to this instance, this will result in a cascade of requests and
subsequent data connections. In the example of Figure 3(a),
when the instance of A receives a connection from a user, it
will in turn request the service resolution layer for an instance
of component B. When A is connected to an instance of
B, the latter instance will similarly establish a connection to
the next component. In this scenario, which we refer to as
nexthop in the remainder of this section, the structure of the
composite service remains hidden to the service resolver, and
it will always return the instance with the lowest data path cost
from the requesting entity. Referring to Figure 3(b), the service
router would first return the IP and port of instance A1 to the
client. In turn, this instance would be provided with the locator
of instance B1, etc. This would result in a total instantiation
cost of 31 (10 + 15 + 3 + 3). However, the lowest subgraph
consists of (A2, B1, C1 and D2) and has an instantiation cost of
25 (15 + 5 + 2 + 3). This example shows that this heuristic may
lead to suboptimal instance selection, especially for composite
services with complex deployment graphs.

In this paper, we propose an alternative approach where the
structure of the composite service is registered at the service
resolver by the orchestration layer. In this model, which we
refer to as overall in the remainder of this section, the service
resolver is able to determine the subgraph of the instance
graph, that contains exactly one instance of each atomic service
and that has the lowest total edge cost. Note that in general,
shortest path algorithms cannot be applied since there is not
necessarily a single source and/or single sink node in the
composite graph structure. Moreover, the order and size of
the instance graphs grow rapidly with the number of instances
of each atomic service. If N instances of atomic service A are
deployed, and M instances of atomic service B, then the graph
will contain N × M edges since in principle each instance
of B can be reached from any instance of A. This model
might provide better selection results, but comes at the cost
of additional complexity in the resolution layer.

A B D 

C 

(a) Deployment graph
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(b) Instance graph at request time

Fig. 3. The illustrated composite service graph consists of 4 components. Per request, the optimal combination of available instances must be selected.



B. Experiment set-up

To evaluate the benefits of embedding the structure of
composite service graphs in the resolution layer, we have
built a simulator using the discrete event simulation library
MASON [15]. Instead of using artificially generated network
topologies, we decided to perform simulations on the CAIDA
IP router-level topology that is continuously collected and
updated by a set of globally distributed probes [16]. Since we
assume that service routing domains are approximately aligned
to Internet AS, we reduced the dataset to the routers that were
geo-located in France, the largest country in the European
Union. IP routers with the same geographical coordinates
in the dataset were aggregated, and only links between the
reduced set of nodes were maintained. The resulting topol-
ogy comprised 77 nodes and 98 edges. The link cost was
set to the geographical distance between the resolvers. The
edge cost in the instance graph is the total path cost of the
shortest path between these instances. It has been shown that
the geographical distance is an acceptable approximation of
network latency [17]. Note however that any cost metric can
be used.

Service requests are generated from 16 randomly selected
client nodes and served by an instance running on any of the
other 61 server nodes. From each client node and for each
service, requests are generated following a Poisson distribution
(mean λ) with exponentially distributed request inter-arrival
times. Each client node thus contributes equally to the demand,
which is in line with the fact that we are using a network
topology of a medium-sized country where service popularity
or diurnal patterns are likely to be homogeneous across the
country. We generated 10 composite service structures by
generating graphs with 2 components, randomly selected from
a set of 10. Each instance is provided with 10 session slots and
placed on a randomly selected server node. In the simulation,
each connection lasts for a fixed period T = 40. Some early
results are presented in Figure 4. The cost metric in this figure
refers to the sum of the data path link costs between the
instances that were selected as reply to a particular service
requests.

Fig. 4. Average cost of all instantiations for requests from one client node,
grouped per composite service, and generated following a Poisson distribution
with mean λ = 0.1.

Figure 4 compares the average cost of composite service in-

stantiations for both resolution models, for requests generated
from one client node in our topology and for each of the 10
composite services. The average cost of the nexthop resolution
is between 6 % and 201 % higher than overall resolution. We
expect even higher gains for larger composite services.

V. RELATED WORK

Several distributed service management architectures such
as IRMOS [18] or NGSON [19] have been proposed in
recent years. In contrast to FUSION, IRMOS is based on
pre-allocation in managed networks for providing strict QoS
guarantees. We augment the NGSON paradigm by providing
a powerful service orchestration layer that is capable of allo-
cating and load balancing service instances through dynamic
cooperation with a distributed execution environment.

In the domain of instance selection algorithms, Malik et
al. [20] present an algorithm that divides execution nodes in
mutually exclusive groups, based on incomplete inter-node
latency information. In [21], the authors use a locality-sensitive
hashing scheme that relies on a node coordinate system for
network-aware instance selection. The feasibility of these
algorithms for the FUSION framework and how they can be
extended to include session slot information is subject to future
work.

VI. CONCLUSION

This paper introduces the architectural aspects of the
FUSION framework related to the orchestration and service
selection for composite services. These new concepts can en-
able the flexible deployment of demanding applications across
distributed execution environments in distributed edge clouds.
Current and future work include the further design of instance
selection algorithms, both inside a single execution zone, as
across execution zones. This involves extensive simulation
with more heterogeneous demand patterns, as well as building
an integrated prototype.
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