CONCRETE: A benchmarking framework to CONtrol and Classify REpeatable Testbed Experiments

Stratos Keranidis*

Wei Liu, Michael Mehari, Pieter Becue, Stefan Bouckaert, Ingrid Moerman, Thanasis Korakis*, Iordanis Koutsopoulos* and Leandros Tassiulas*

> University of Thessaly and CERTH, Greece* Ghent University - iMinds, Gent, Belgium

Introduction

The Problem:

- During experimentation in networking testbeds several different factors may impact the monitored performance of networks under consideration.
- As a result high variation exists among several executions of the same experiment.

➤ The Need:

Stable experimental conditions have to be guaranteed, in order to arrive at solid conclusions.

Our Solution:

The novel **CONRETE** benchmarking framework that provides for evaluation of experimental stability.

- Related Projects
- Basic Experimental Scenario
- Interfering Factors
- Building Blocks
- CONCRETE Benchmarking Framework
- Insights and Future work

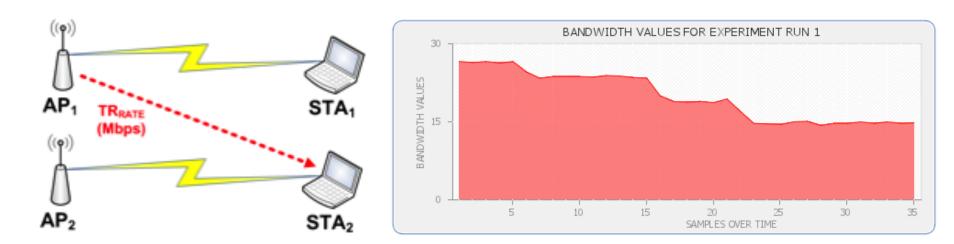
Related Projects

CREW

Establishes an open federated test platform, which facilitates experimentally-driven research on advanced spectrum sensing, cognitive radio and cognitive networking strategies in view of horizontal and vertical spectrum sharing in licensed and unlicensed bands.

> OPENLAB

- Delivers control and experimental plane middleware to facilitate early use of testbeds and exploiting proven technologies, developed in the OneLab and Panlab initiatives.
- OPENLAB CREW Collaboration
 - In order to improve the reproducibility of wireless experiments, OpenLab is interested to augment the OpenLab facilities with the CREW spectrum sensing benchmarking scenarios.



Basic Experimental Scenario

- Interfering Factors
- Building Blocks
- CONCRETE Benchmarking Framework

Insights and Future work

Basic Experimental Scenario

- 2 pairs of nodes contending for channel use.
- AP2 > STA2: saturated traffic conditions
 AP1 -> STA1: varying traffic rate (TR_{RATE}) conditions
- We monitor the throughput performance of the AP2-STA2 pair

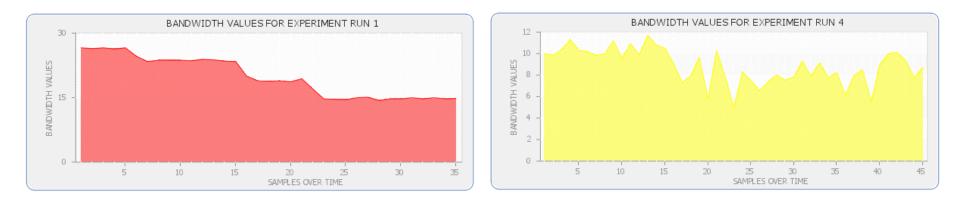
Related Projects

Basic Experimental Scenario

- Interfering Factors
- Building Blocks
- CONCRETE Benchmarking Framework

Insights and Future work

Interfering Factors (1/5)

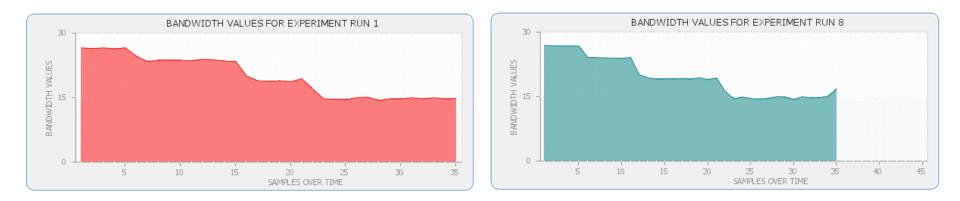


Specific executions of the same experiment may present different performance, due to:

Internal Interference

generated by testbed nodes, operated by other experimenters, which simultaneously transmit on the same or overlapping frequencies.

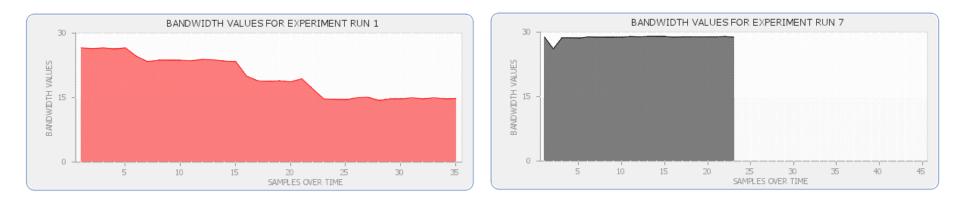
Interfering Factors (2/5)



Specific executions of the same experiment may present different performance, due to:

External Interference

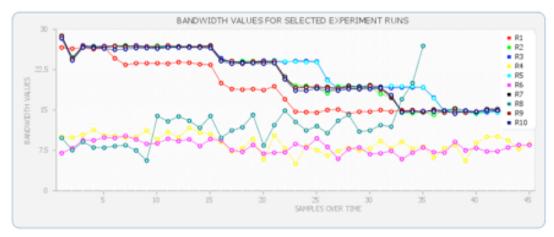
generated by collocated commercial devices belonging to external networks, which simultaneously transmit on the same or overlapping frequencies.

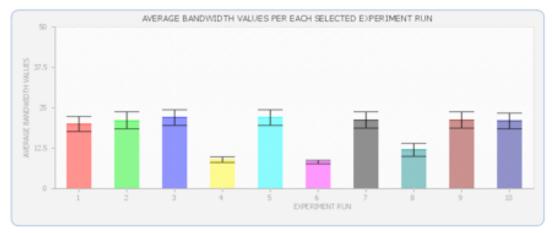

Interfering Factors (3/5)

Specific executions of the same experiment may present different performance, due to various factors, such as:

stopping of normal execution due to hardware or software failure

Interfering Factors (4/5)

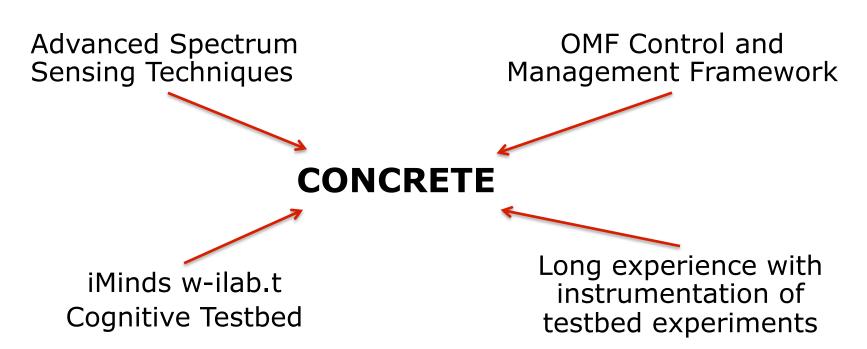



Specific executions of the same experiment may present different performance, due to various factors, such as:

Different node positioning (etc. mobile nodes behind obstacles)

Interfering Factors (5/5)

The Result


- Related Projects
- Basic Experimental Scenario
- Interfering Factors
- Building Blocks
- CONCRETE Benchmarking Framework

Insights and Future work

Building Blocks

Building Blocks – Correlation

$$\rho_{X,Y} = corr(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$
$$r = \frac{1}{(n-1)} \sum \frac{(X-\mu_X)(Y-\mu_Y)}{\sigma_X \sigma_Y}$$

- The well known measure of dependence is Pearson's correlation, which indicates the extent to which two random variables covary.
- > The μx and μy represents the mean of the data set X and Y respectively.
- The σx and σy represents the standard deviation of the data set X and Y respectively

- Related Projects
- Basic Experimental Scenario
- Interfering Factors
- Building Blocks
- CONCRETE Benchmarking Framework
- Insights and Future work

CONCRETE Benchmarking Framework CONtrol and Classify REpeatable Testbed Experiments

The 6 main functionalities that are currently supported, are:

- 1. Scheduling the execution of several runs for the same experiment
- 2. Visualization of prevailing Channel Conditions before each run and moreover visualization of the Performance achieved in each run
- **3.** Estimation of Correlation among the different runs, in order to provide an appropriate benchmarking score that describes the stability of each run
- Calculation of average performance and st. deviation values for each run
- 5. Automatic mechanism that selects the most stable runs, based on their correlation score
- 6. Calculation of performance over all executed rounds in comparison with the performance achieved only in the subset of selected rounds.

CONCRETE Benchmarking Framework (1/6)

1. Scheduling the execution of several runs for the same experiment

CONCRETE - CONtrol and Classify REpeatable Testbed Experiments									
Provide your Experiment Details:									
Username: stratos Experiment_Name: CON_DEMO2 Rounds: 10 Table: iperfwrap_iperfmp Metric: bandwidth									
Correlation Threshold: Filter: Value:									
Online Execution: V Path and name of Experiment Description: experiments/contention/iperfED_BW.rb									
Interference Estimation: 🗹 Frequency (MHz): 2462									
SUBMIT YOUR EXPERIMENT DETAILS									

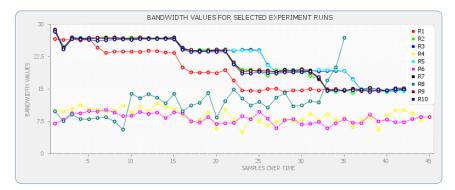
CONCRETE Benchmarking Framework (2/6)

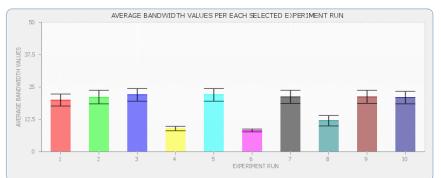
2. Visualization of Channel Conditions before each run and moreover visualization of the Performance achieved in each run

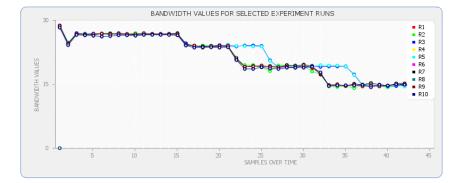

CONCRETE Benchmarking Framework (3/6)

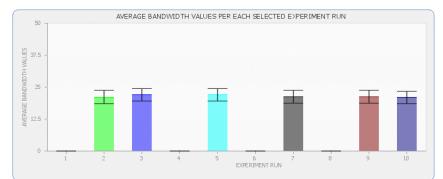
3. Estimation of Correlation among the different runs

	CORRELATION MATRIX										
ID	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	
R1	1	0.9076	0.8738	0.7706	0.8802	0.5732	0.9127	-0.5042	0.9151	0.9178	
R2	0.9076	1	0.9191	0.6533	0.9214	0.5852	0.9966	-0.6115	0.9973	0.9959	
R3	0.8738	0.9191	1	0.6086	0.9987	0.6736	0.9127	-0.5077	0.9189	0.9131	
R4	0.7706	0.6533	0.6086	1	0.6214	0.4738	0.6661	-0.2388	0.6673	0.6799	
R5	0.8802	0.9214	0.9987	0.6214	1	0.6591	0.9148	-0.5007	0.9212	0.9154	
R6	0.5732	0.5852	0.6736	0.4738	0.6591	1	0.5808	-0.308	0.5888	0.5869	
R7	0.9127	0.9966	0.9127	0.6661	0.9148	0.5808	1	-0.6226	0.9987	0.9982	
R8	-0.5042	-0.6115	-0.5077	-0.2388	-0.5007	-0.308	-0.6226	1	-0.6177	-0.6071	
R9	0.9151	0.9973	0.9189	0.6673	0.9212	0.5888	0.9987	-0.6177	1	0.9986	
R10	0.9178	0.9959	0.9131	0.6799	0.9154	0.5869	0.9982	-0.6071	0.9986	1	


CONCRETE Benchmarking Framework (4/6)


4. Calculation of AVG performance and ST. DEV. for each run




CONCRETE Benchmarking Framework (5/6)

5. Automatic mechanism that selects the most stable runs, based on their correlation score

CONCRETE Benchmarking Framework (6/6)

6. Calculation of performance over all executed rounds in comparison with the performance achieved only in the subset of selected rounds.

AVERAGE AMONG ALL SUCCESFULL RUNS: 17.656495238095 STDEV AMONG ALL SUCCESFULL RUNS: 4.0677154655928

CALCULATE BASED ON SET OF SELECTED ROUNDS

YOU SELECTED 6 Round(s): 2 3 5 7 9 10

AVERAGE AMONG SELECTED RUNS: 21.30111111111 STDEV AMONG SELECTED RUNS: 4.9083900551418

CORRELATION MATRIX

ID	R2	R3	R5	R7	R9	R10
R2	1	0.9426	0.9422	0.9977	0.998	0.9971
R3	0.9426	1	0.9991	0.9415	0.9444	0.9412
R5	0.9422	0.9991	1	0.9409	0.9442	0.9408
R7	0.9977	0.9415	0.9409	1	0.9987	0.9984
R9	0.998	0.9444	0.9442	0.9987	1	0.9988
R10	0.9971	0.9412	0.9408	0.9984	0.9988	1

MINIMUM CORRELATION AMONG ALL SUCCESFULL RUNS: -0.6226 MINIMUM CORRELATION AMONG SELECTED RUNS: 0.9408

- Related Projects
- Basic Experimental Scenario
- Interfering Factors
- Building Blocks
- CONCRETE Benchmarking Framework

Insights and Future work

Insights and Future Work

Experimental Insights:

- Due to the high variation of wireless channel conditions there is a clear need for environment monitoring mechanisms
- ➤ that aid in arriving at CONCRETE conclusions.

Future Work:

- Enable channel monitoring during the experiment execution through Wi-Fi Monitor nodes.
- Implement Feature detection mechanism to enable detection of transmissions generated by devices using heterogeneous technologies
- Examine performance under various experiments and metrics (energy etc.) and propose possible enhancements

Thank You!