Luminescence of CaGd_{2(1-x)}Eu_{2x}(WO₄)₄ scheelites

<u>Katrien W. Meert</u>^{a#}, Philippe F. Smet^a, Anne Bertha^b, Joke Hadermann^b, Dirk Poelman^a,

^aLumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1,9000 Gent, Belgium

Center for Nano- and Biophotonics (NB Photonics), Ghent University, Gent, Belgium

^bEMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium

Scheelites are ABO₄ compounds (A = alkali, alkaline-earth or rareearth element; B = Mo, W) with the most well-known scheelite being CaWO₄. In scheelite related compounds there is a partial substitution of the A and/or B cation and crystals can be aperiodic in 3dimensional space. The advantage of this so-called incommensurate modulation is that varying the composition results in various order patterns which yield a wide range of materials with often good optical properties, good stability and a relatively simple preparation method [1]. Since the order directly affects the position of the luminescence centers, and thus the efficiency of the phosphor, there could be a relation between this order and the optical properties. Here, the main focus will be on the optical properties of CaGd_{2(1-x)}Eu_{2x}(WO₄)₄. The

luminescence and decay pathways of the materials are investigated over a wide concentration range. In this way the potential of the

temperature-dependent

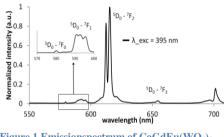


Figure 1 Emissionspectrum of CaGdEu(WO₄)₄

materials as LED-phosphors or even as thermometric phosphors are evaluated.

[1] C. Guo, H.K. Yang, and J.-H. Jeong, *Preparation and luminescent properties of the phosphor* $MGd_2(MoO_4)_4$: Eu^{3+} . Journal of Luminescence, 2010. **130**: p. 1390-1393.