UNIVERSITEIT
GENT

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all
UGent research publications. Ghent University has implemented a mandate stipulating that all
academic publications of UGent researchers should be deposited and archived in this repository.
Except for items where current copyright restrictions apply, these papers are available in Open

Access.

This item is the archived peer-reviewed author-version of:
Educational Virtual Game Scenario Generation for Serious Games
Olivier Janssens, Koen Samyn, Rik Van de Walle, and Sofie Van Hoecke

In: 3rd International Conference on Serious Games and Applications for Health, 1-8, 2014.

To refer to or to cite this work, please use the citation to the published version:

Janssens, 0., Samyn, K., Van de Walle, R., and Van Hoecke, S. (2014). Educational Virtual Game
Scenario Generation for Serious Games. 3rd International Conference on Serious Games and

Applications for Health 1-8.

Educational Virtual Game Scenario Generation for
Serious Games

Olivier Janssens*, Koen Samyn', Rik Van de Walle ¥ and Sofie Van Hoecke*

*Electronics and Information Technology lab, ISP, Ghent University
Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium,
Telephone: + 32 56 24 12 52; email: odjansse.janssens @ugent.be

TDigital Arts and Entertainment, University College West-Flanders

fMultimedia Lab, ELIS, Ghent University - iMinds

Abstract—In order to help youngsters who are confronted
with cyberbullying, the Friendly ATTAC project aims to develop
a serious game. In this paper the novel virtual game scenario
generation process for this serious game is presented. The goal
of the process is to allow non-technical users to model virtual
scenarios. After writing the scenarios, the scenarios can be
modelled in ATTAC-L and afterwards translated in computer
interpretable XML. This XML is then used to automatically build
the scenario within the game engine so that it can be played.
This paper details the ATTAC-L scenario generation and how it
is translated to an in game scenario. Thanks to the presented
tools and methods, it is possible to transform a written scenario
into an in game virtual game scenario.

I. INTRODUCTION

Cyberbullying (bullying via electronic communication
tools) is a relatively recent phenomenon that especially occurs
among early adolescents (12-15 year olds). As cyberbullying
may have a serious impact on the mental (and physical) well-
being of victims, many societal actors are currently involved in
anti-cyberbullying initiatives. They strongly plea for evidence-
based, appealing, ICT-related intervention tools that empower
youngsters confronted with cyberbullying.

The Friendly ATTAC project [1] studies and develops an
innovative serious game to help youngsters deal with cyber-
bullying issues. By means of highly personalized virtual expe-
rience scenarios, providing players with immediate feedback
in a safe computer-mediated environment, the project attempts
to modify behavior patterns of bullies, bystanders and victims.
This is done by allowing youngsters, through the use of the
virtual scenarios, to experience different roles (bully, victim,
or bystander) in cyber bullying incidents during the game, to
react to those experiences, and to get adjusted feedback based
on their individual reactions. This will increase their empathy,
enhance their social skills or teach/train them relevant coping
strategies.

The scenarios and interactions within the serious game
are based on theoretical and empirical knowledge regarding
personal and contextual determinants of cyber bullying that are
obtained by performing a well-established intervention method
from the field of health psychology: Intervention Mapping
am [2].

One of the challenges of the project is to translate these
theoretical and empirical knowledge regarding personal and
contextual determinants and causes of cyber bullying into
attractive virtual scenarios for youngsters. As the scenarios are
developed by social scientists, health psychologists, computer
scientists, people working in the field, and game designers, the
interdisciplinary collaboration requires tools and methods that
can be easily used and understood by all parties involved, also
non-technical users. These tools can be used to develop new
scenarios and game levels and semi-automatically create the
actual game. This is not only important in the context of the
project, but also later on (after the end of the project) when
new scenarios need to be developed for the same or a related
domain.

To achieve this, a domain-specific modeling language is
developed to accommodate domain experts in the design
process of these scenarios/games. They can use this domain-
specific modeling language, called ATTAC-L, to write down
their game scenarios and have it automatically translated to an
XML file, which can be used in the code generator to translate
the scenario into actual game moves.

The remainder of this paper is as follows. The next section
outlines serious games and the general concept of our solu-
tion to semi-automatically translate theoretical and empirical
knowledge into attractive virtual scenarios. Subsequently, in
Section III we define the features of the domain-specific
modeling language, ATTAC-L, and in Section IV how it is
translated into an XML file. Section V covers the scenario code
generator that translates the scenario into actual game moves.
Next, Section VI describes the resulting game, while Section
VII covers the testing framework. Finally, in Section VIII we
summarize the most important conclusions of our work and
our plans for the future.

II. GENERAL CONCEPT

Serious games are computer or video games that are not
only designed for fun, but also have an educational purpose. It
is however essential and challenging to maintain the ballance
between the game element and the learning aspect, otherwise
the desired effect (e.g. impact on health behavior, enhancing
social skills) is missed.

The choice for a tailored serious game to promote health
to youngsters is certainly supported by scientific evidence
[3]. Tailoring, also called personalised advice, refers to cre-
ating custom health messages for each person to make these
messages more relevant. For each learning outcome, different
game features lead to different effects. For example, for teach-
ing skills and increasing self-efficacy, simple games without
storyline are better suited. On the other hand, for teaching
knowledge and attitudes, both simple and complex games can
be used. This implies that a game aiming for different learning
outcomes should be best divided into several subgames so the
right style can be chosen for the learning objective.

For the Friendly ATTAC serious game, focussing on help-
ing youngsters dealing with cyberbullying issues, the school
context seems feasible. This way, on one hand, the likelihood
increases that also poorly motivated youngsters are reached
to adapt their social behavior, and on the other hand, a
pretty simple game can be developed to draw their attention.
Moreover, the game can be plugged into the curriculum as the
involvement of schools is a key factor in addressing bullying.

Scenario/level generation is often done via procedural
content generation (PCG), which refers to creating game
content automatically, through algorithmic means [4],[5]. In
this research several steps have to be followed in order to
generate a scenario for the serious game. The steps can be
seen seen in Figure 1. Firstly, social scientists have to write a
scenario which incorporates their theories and hypothesis they
want to test or model. Secondly, via an authoring tool they
can translate their written scenario into an ATTAC-L scenario.
The ATTAC-L language is a graphically illustrated modeling
language for educational virtual scenarios, understandable by
non-technical people. The third step consists of the XML file
generation based on the ATTAC-L scenario. By using XML,
it is possible for a computer to read and interpret the scenario.
The fourth step takes the XML file and translates it into actual
game moves.

A

= =
¥ o
é A EE L o amn || B0 L g
T ey Java
. Code
Game scenario Attac-L XML generator Game

Fig. 1: General concept of process to generate game scenarios

The different tools and methods have been implemented
and are currently used to build the different levels of the serious
game for the Friendly ATTAC project. In the next sections, the
different steps of the process are described in more detail. In
order to illustrate the entire process, a use case is provided
throughout this paper.

Use case

Setting: There are three people namely the player, John
Smith (non-playable character) and Kate Johnson (non-
playable character). Kate is 16 years old and female. John
is 15 years old and male. They all go to school together
and all know each other, but only the player and John are
friends and respect each other. Both the player and John

do not like Kate since she is a bully, and therefore they do
not respect her.

Situation: Kate sends a tweet to John saying he better not
show his face tomorrow at school or bad things will happen.
Luckily the player is brave and tells Kate to shut up and
John to ignore the tweets. Kate is angry and warns them
both to watch out tomorrow because bad things will happen.
Now the player gets a choice to ignore the tweet or respond
with the text “Bring it on”. Depending on the chosen
response Kate won’t tweet anything or tweet “HAHAHA”.

III. ATTAC-L

Rather than resorting to natural language to specify the
scenarios, a more formal approach is used, which has the
advantage over natural language of not being ambiguous and
allowing to a certain extent the semi-automatically creation of
the actual games.

To achieve this, a domain-specific modeling language,
called ATTAC-L is developed to accommodate domain experts
in the design process of these scenarios/games. A domain-
specific modeling language [6] is a language that uses a
dedicated vocabulary and provides abstractions that make
the specifications of solutions easier and more accessible
for domain experts. The domain-specific modeling language
is implemented as a graphical language as these graphical
specifications are easier for the communication with non-
technical people. These graphical or visual specifications are
easier for the communication with non-technical people than
textual languages; they are also helpful for conveying complex
models and designs as they can help people to grasp large
amounts of information more quickly than large listings of
text.

The general idea of ATTAC-L is to express the story
of a game in a way as intuitive as possible. Therefore, a
combination of flowcharts and natural language like syntax
is used. The natural language like syntax is used to specify
the individual game moves in the game, while the flowchart
approach is used to express the chronological order between
the game moves. By a natural language like syntax, we mean
that sentences are used that look/read like simple natural
language sentences but actually have a strict syntax to make
them understandable by the computer. The sentences are also
not expressed as text but by means of a graphical notation
using bricks.

Bricks are the basic building blocks for specifying game
moves, i.e. the actual steps that will be performed in a game.
The bricks are organized in different categories, indicated by
mean of a color, and can be connected to each other according
to certain rules that are influenced by the grammatical rules
from the natural language syntax. The result is a construct
that unambiguously describes a game move, expressed in a
human-readable form.

Creating an Non-Playable Character (NPC)

Besides using ATTAC-L for specifying the player’s game
moves, it is important to have other characters apart from the

player as well. ATTAC-L can also be used to create these Non-
Playable Characters (NPCs).

For the presented use case, two NPCs are created, i.e. Kate
and John. The NPC character creation using ATTAC-L for the
presented use case can be seen in Figure 2).

(— —
Kate])
person name: Kate Johnson!
jage: 16 i
gender: female
Knows player
Knows John
L—))
—)
John . —
person name: John smith i
jage: 15 |
gender: male '
Knows player
Knows Kate
respects player
respects not Kate
L—) —

Fig. 2: Non-playable character creation via ATTAC-L

As can be seen in this figure, both Kate and John get de-
fined as a person with certain properties. Also the relationships
between the NPCs are defined in this declaration.

Communication

As the Friendly ATTAC serious game is a game against
cyberbullying, it is important to have communication between
the characters in the game. An example of the player sending
a tweet to NPC Kate can be found in Figure 3.

Plaver Sends Tweet | Hi

to Kate

Fig. 3: ATTAC-L example of sending a tweet

Sequence

A sequence is used to indicate a sequential order between
game moves and is graphically represented by a sequence brick
in ATTAC-L. A sequence brick is represented as an empty
gray block connecting the ending and starting brick of the two

consecutive game moves. Figure 4 presents the player sending
a tweet to Kate, who subsequently tweets back to the player.

Player Sends Tweet | Hi

to Kate

Tweet | Hello

to Player

Fig. 4: Example of a sequence in ATTAC-L

Choice

A choice defines a point in the scenario where this scenario
is split into two or more alternative paths and a decision has
to be made on which path to follow. To indicate the choice,
a choice brick is used in ATTAC-L. Figure 5 gives the player
the choice between two tweets to be send to Kate.

=0 -
Player \
Sends Tweet Hi |
L
to Kate
o,
Does Tweet i Hello
: i
nothing Kate
L]

Fig. 5: Example of a choice in ATTAC-L

Concurrency

Apart from a choice, concurrency is also possible. A
concurrency structure encapsulates two or more paths that are
followed concurrently at the same time. The different paths
are started together but are not required to end together. An
example can be seen in Figure 6 where the player concurrently
tweets Hi and Hello to Kate.

Player Sends Tweet l Hi i
to Kate

Player Sends Tweet
to Kate

Fig. 6: ATTAC-L example of concurrency

Tweet ;Vuu better watch

Player

Tweet You better watch out tomorrow, |

i bad things will happen.
|

{bad things will happen

Player TR)
Sends Tweet i Bring it on |
to Kate
O sends Tweet | HAHAHA |
to Player
)
Does
nothing
S—

Fig. 7: Use case translated to ATTAC-L

Kate Sends Tweet E‘mu better don’t show vour face tomorrow at school ‘
.]
to John
Player Sends Tweet
to Kate
Player Sends Tweet Ignore her ‘
Kate Sends
to
Kate Sends
to
Use case

By combining the above ATTAC-L structures, it is possible
to translate the complete use case to ATTAC-L. The declaration
of the NPCs in ATTAC-L is not repeated here as this can be
found in Figure 2; the rest of the use case scenario can be
found in Figure 7.

For more information on the ATTAC-L domain specific
modeling language, the reader is referred to [7].

IV. ATTAC-L To XML CONVERSION

Once a scenario is constructed in ATTAC-L using the
authoring tool, this scenario can be translated to an XML file,
using the same authoring tool. The authoring tool is web-based
and uses HTML, JS and CSS to let users easily construct the
scenarios. In the back-end, these scenarios are translated to
XML so they can be used by the code generator to translate
them into actual game moves.

In this section, the XML structures are given for the
matching ATTAC-L examples of the previous section.

Creating an Non-playable character (NPC)

The ATTAC-L creation of Kate and John, the NPCs in the
game, is translated into the following XML.:

Listing 1: Non-playable character creation via ATTAC-L

<defineObject type="person" name="Kate" actorid="1"
sex="female" age="16">
<verb type="know">

<who 1id="2" negate="false"/>
<who id="0" negate="false"/>
</verb>
</defineObject>

<defineObject type="person" name="John" actorid="2"
sex="male" age="15">
<verb type="know">
<who id="1" negate="false"/>
<who id="0" negate="false"/>
</verb>
<verb type="respect">
<who id="1" negate="true"/>
<who id="0" negate="false"/>
</verb>
</defineObject>

As in ATTAC-L, the XML structure has specific tags for
certain bricks such as the verb tag or the who tag. It is
important to note that both NPCs and the player get an id.
These ids allow to specify the involved characters for each
action. Eventually when this piece of XML is interpreted by
the code generator, an NPC is spawn in the game which has
connections to other characters.

Communication

The ATTAC-L example of NPC Claire sending a tweet to
the player, uses a new verb together with a new object. This
example translates into XML as:

Listing 2: XML example of a NPC sending a tweet to the
player.

<gamemove subject="0">

<verb type="sendto">
<mediaObject object-class="tweet">
<who id="1"/>
<property key="content" value="Hi"/>
</mediaObject>

</verb>

</gamemove>

The XML structure is similar to the XML structure to
create an NPC. However, the most outer tag now is the
gamemove tag, indicating who is executing the game move.
Under the gamemove tag, the verb tag can be found having the
type “sendto” and a new tag within for the mediaObject. The
mediaObject defines the type of object that will be sent. The
who tag defines who the tweet is directed to and the property
tag has an attribute key having the value content to define the
message that will be tweeted.

Sequence

To translate sequential ATTAC-L game moves to XML,
only two attributes need to be added to the XML structure:

Listing 3: Example of a sequence in XML.

<gamemove subject="0" id="twl" next="tw2">
<verb type="sendto">
<mediaObject object-class="tweet">
<who id="1"/>
<property key="content" value="Hi" />
</mediaObject>
</verb>
</gamemove>

<gamemove subject="1" id="tw2">
<verb type="sendto">
<mediaObject object-class="tweet">
<who id="0"/>
<property key="content" value="Hello" />
</mediaObject>
</verb>
</gamemove>

The gamemove tags now have a id and next attribute instead
of the subject attribute. The id attribute uniquely defines the
game move; the next attribute defines which game move should
be executed after the current game move. By adding these two
attributes, no major changes are required to the XML structure.
These two new attributes also support some control structures
to happen, such as the choice control structure.

Choice

The choice structure in ATTAC-L uses the id and next
attribute to define what should happen after the choice is made.
An example can be seen here:

Listing 4: XML example of a choice.

<options id="choicel">

<option next="optl">Tweet "Hi"</option>
<option next=" ">Tweet "Hello"</option>
</options>

<gamemove subject="0" id="optl">

<verb type="sendto">
<mediaObject object-class="tweet">
<who id="1"/>
<property key="content" value="Hi" />
</mediaObject>

</verb>

</gamemove>

<gamemove subject="0" id=" ">
<verb type="sendto">
<mediaObject object-class="tweet">
<who id="1"/>
<property key="content" value="Hello" />
</mediaObject>
</verb>
</gamemove>

Much of the previously defined structures are re-used here.
There is also the addition of the options and option tags that
define the choice that can be made and specify which game
move should happen when one is chosen.

Concurrency

Apart from a choice, concurrency is also possible to en-
capsulate two or more paths that can be followed concurrently.
Concurrency requires one tag to be added that encapsulates
multiple game moves:

Listing 5: Example of a concurrency in XML.

<concurrency>
<gamemove subject="0">
<verb type="sendto">
<mediaObject object-class="tweet">
<who id="1"/>
<property key="content" value="Hi" />
</mediaObject>
</verb>
</gamemove>

<gamemove subject="0">
<verb type="sendto">
<mediaObject object-class="tweet">
<who id="1"/>
<property key="content" value="Hello" />
</mediaObject>
</verb>
</gamemove>
</concurrency>

Use case

By combining the above XML listings, it is possible
to translate the complete ATTAC-L use case to XML. The
resulting XML to generate the NPCs can be found in Listing 1,
while the rest of the scenario can be found in Listing 6.

Listing 6: Use case translated to XML.

<gamemove subject="1" next="conl">
<verb type="sendto">
<mediaObject object-class="tweet">
<who id="2"/>
<property key="content" value="You better don’t show your
face tomorrow at school" />
</mediaObject>
</verb>
</gamemove>

<concurrency id="conl" next=" ">
<gamemove subject="0">
<verb type="sendto">
<mediaObject object-class="tweet">
<who id="1"/><property key="content" value="Please
shut up"/>
</mediaObject>
</verb>
</gamemove>
<gamemove subject="0">
<verb type="sendto">
<mediaObject object-class="tweet">
<who id="2"/><property key="content" value="Ignore her"/>
</mediaObject>
</verb>
</gamemove>
</concurrency>

<concurrency id=" " next=" ">
<gamemove subject="1">
<verb type="sendto">
<mediaObject object-class="tweet">
<who id="0"/>
<property key="content" value="You better watch out
tomorrow, bad things will happen" />
</mediaObject>

</verb>

</gamemove>

<gamemove subject="1">
<verb type="sendto">

<mediaObject object-class="tweet">
<who id="2"/>
<property key="content" value="You better watch out
tomorrow, bad things will happen" />
</mediaObject>
</verb>
</gamemove>
</concurrency>

<options id=" ">

<option next="optl">Tweet "Bring it on"</option>
<option next=" ">Tweet "HAHAHA"</option>
</options>

<gamemove subject="0" id="optl">

<verb type="sendto">
<mediaObject object-class="tweet"> <who id="1"/>
<property key="content" value="Bring it on" />
</mediaObject>

</verb>

</gamemove>

<gamemove subject="0" id=" ">

<verb type="sendto">
<mediaObject object-class="tweet">
<who id="1"/> <property key="content" value="HAHAHA"/>
</mediaObject>

</verb>

</gamemove>

V. SCENARIO CODE GENERATOR

For the implementation of the ATTAC-L system in the
game engine, a scenario code generator is created. This sce-
nario code generator ensures that the correct scenarios and
game moves are activated or executed based on the input and
actions of the player. For example, in the use case when the

player selects the option to send the tweet “Bring it on” to
Kate, the scenario system generates a tweet back to the player.

Another goal of the scenario code generator is to hide the
implementation details of the virtual world from the scenario
writers. However, it is still necessary for the writer to provide
the system with some basic information, for example, the
positioning of game characters and the location of important
objects.

A general overview of the scenario system is given in
Figure 8.

—" Game Loop

for eacl

h
scenario

activate
scenario?

add to active
scenario list

for each
active
scenario
no

update
scenario

Fig. 8: Scenario system

remove from active

scenario yes
scenario list

completed?

The game loop is executed a number of times per second
(typical games aim for sixty frames per second). At the start
of each frame, the scenario system will run its update method
which will update the active scenarios, check if a new scenario
must be activated or remove a scenario from the active list. The
update process of the active scenario executes game moves
and in the case of sequential game moves also checks if a
game move has been completed. In Figure 9, it is also shown
that a game move can be executed on another thread, for
example when an audio file is played. In that case the scenario
update thread will check for the completion of the audio on
regular time intervals. For short game moves (such as sending
a tweet) the game move can be executed on the scenario update
thread itself. A special case is the wait game move, which will
disallow any other game move during its execution.

start start send
audio wait tweet
I H H
1 ! H
1 ! !
-{—|—}—+—|—|—+—|—M—|— Scenario update thread
---------------------------------- {play audio Audio thread
wait
completed
audio send tweet
completed completed

Fig. 9: Sequential game moves

For a concurrency block the situation is similar, but every
game move will be executed on a separate thread. The update

process of the concurrency block will then check for the
completion of all the game moves that are children of this
block. In the example in Figure 10 the concurrency block sets
three characters on a path. The scenario will only continue
when the three characters reach their distination. This allows
a large amount of flexibility, for example the scenario will
still work when one of the characters is placed in a different
starting location.

set characters
on path

} 11— Scenario update thread

character A) Character A thread
............ i character B) Character B thread
............ s character C). Character C thread

Fig. 10: Concurrent game moves

A scenario can be activated when any number of conditions
is met. For example, it is possible to activate a scenario
when a player enters a predefined area of the virtual world,
such as a classroom. Another activation possibility is when a
game character “sees” (defined by a field of view and range)
another character or the player himself. Finally, it is possible
to schedule a scenario for later activation, by defining either a
relative or absolute time for the activation.

Once a scenario is activated, the game moves in the
scenario are executed, and the scenario is updated each frame.
During the update process, the state of the current game move
is checked. If the game move has completed, the next game
move will be started. For example, if audio is used in a game
move, the next game move will only be executed once the
audio clip has completed. The update process is somewhat
different in a concurrency block. In such a block all game
moves will be started simultaneously, and the system will
check of all the game moves in the concurrency block have
completed. If this is the case the next game move block will
be executed.

VI. RESULTING GAME

The following screenshots clarify how the connection with
the game world is made. The choice was made to create a
3D game, though the concepts explained here are independent
of the type of game. As a result of the non-playable character
creation process, shown in Figure 2, two characters are created
in the virtual world, namely John and Kate, as shown in Figure
11. The female character in the center is the player avatar.

In the presented use case, the scenario starts when the
player (the female character in front) is close to John. The
non-playable character John receives a tweet from Kate and
in this case the avatar responds without user input, see Figure
12.

After a couple of exchanges, the player is then presented
with a choice, as defined in the options block in Listing 6.
This is shown in Figure 13

Fig. 11: In game - character creation

Fig. 12: In game - start of scenario

Fig. 13: In game - choices

In the last screenshot (Figure 14) the last game move has
finished, and the scenario is done.

In this scenario the choice was made to use the “seen
by” condition, however this can be easily replaced by another
condition.

Fig. 14: In game - end of scenario

VII. TESTING FRAMEWORK

With the aim of highly personalized virtual experience
scenarios, it is critically important to create a suitable test
framework for these scenarios. Throughout the game the player
can select individual responses to situations within scenarios.
These responses can change the outcome of the current sce-
nario, and can also influence the unfolding of situations in later
scenarios. However, during development it is also necessary to
test a scenario in isolation. For example, if a scenario takes
place after thirty minutes of gameplay, it is not feasible or
practicle to play the game only to test one particular scenario.
To tackle this problem, two testing solutions are provided: save
games and rewind. Save games are important for the initial
development of a scenario, while rewind is more important
for the exhaustive testing of a given scenario.

The save game is a well understood mechanism to store
the current state of the game. While developing and testing
a particular scenario, the social scientist can simply create a
save game that will store the internal states of the player and
all the in-game characters. When a problem with a scenario is
detected, the ATTAC-L scenario structure can be adapted, and
the game can then simply be rerun from the saved game. The
saved game is also defined in XML and will run silently before
the 3D world is shown to the player. Today, this mechanism
is allready fully implemented in the scenario code generator.

The choices of the player influence the logical flow of
the scenarios. It is therefore necessary to test all the logical
pathways (or as many as possible) before the game can be
released. Restarting the game to follow another path in a
given scenario is not efficient during this exhaustive test, so
a mechanism must be provided to “rewind” the game. After
the completion of a given scenario, the developer can rewind
the game to the beginning of the scenario and follow other

paths within the scenario. This rewind mechanism is ongoing
work, but can be implemented by reusing the current save
game mechanism. If rewinding is enabled during testing of
a scenario, alle game state changes are saved in an XML
definition file, and are linked to the game move element that
caused the state change. When the developer rewinds the game,
the game state changes are undone. The rewinding process
includes resetting the next game move or concurrency block
that will be executed.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a virtual game scenario generation
process for serious games. By using this process it is possible
for non-technical people to model virtual scenarios in the
serious game. Technical details are provided on how the
scenarios can be modelled in ATTAC-L and afterwards be
translated in computer interpretable XML. This XML is then
used to automatically build the scenario and game moves
within the game engine so that it can be played. In order to test
the scenario, a testing framework is also provided. Thanks to
the presented tools and methods, it is possible to transform a
written scenario into an in game virtual game scenario without
having technical or game programming skills.

Future work consists of extending ATTAC-L. The current
version of ATTAC-L has limited pre-defined verbs, resulting
in a limited amount of pre-defined actions in the scenario
code generator. In the future the vocabulary of verbs will be
expanded, matching the story behind the serious game and
allowing more actions to become possible in the game.

ACKNOWLEDGMENT

This work was funded by the IWT SBO Friendly ATTAC
project (http://www.friendlyattac.be/), a project of the Institute
for the Promotion of Innovation through Science and Technol-
ogy in Flanders IWT).

REFERENCES

[1] Friendly Attac. Available: http://www.friendlyattac.be/en/.

[2] L. K. Bartholomew, G. S. Parcel, en G. Kok, “Intervention mapping:
a process for developing theory- and evidence-based health education
programs”, Health Educ Behav, vol. 25, nr. 5, pp. 545-563, okt. 1998.

[3] Friendly Attac, “Computergestuurde interventies voor de bevordering
van gezondheid bij jongeren: programmas op maat en het gebruik van
videospelletjes”, http://www.friendlyattac.be/publicaties, 2013

[4] G. N. Yannakakis and J. Togelius, “Experience-driven Procedural Content
Generation”, IEEE Transactions on Affective Computing, vol. 2, issue
3, pp. 147-161, 2011

[5] J. Togelius, G. N. Yannakakis, K. O. Stanley and C. Browne, “Search-
based Procedural Content Generation: A Taxonomy and Survey, IEEE
Transactions on Computational Intelligence and AI in Games, Special
Issue on Procedural Content Generation vol. 3, issue 3, pp. 172-186,
2011.

[6] J.Luoma, S. Kelly, en J.-P. Tolvanen, “Defining Domain-Specific Model-
ing Languages: Collected Experiences”, Proceedings of the 4th OOPSLA
‘Workshop on Domain-Specific Modeling (DSM 04), 2004.

[71 FE. Van Broeckhoven and O. De Troyer, “ATTAC-L: A Modeling Lan-
guage for Educational Virtual Scenarios in the Context of Preventing
Cyber Bullying”, IEEE 2nd International Conference on Serious Games
and Applications for Heath, 2013.

