
An approach to graph-based analysis of textual
documents

Antoon Bronselaer1 Gabriella Pasi2

1Department of Telecommunications and Information Processing, Ghent University
2Department of Informatics, Systems and Communication, Universitá degli Studi di Milano Bicocca

Abstract

In this paper a new graph-based model is pro-
posed for the representation of textual documents.
Graph-structures are obtained from textual docu-
ments by making use of the well-known Part-Of-
Speech (POS) tagging technique. More specifically,
a simple rule-based (re)classifier is used to map
each tag onto graph vertices and edges. As a re-
sult, a decomposition of textual documents is ob-
tained where tokens are automatically parsed and
attached to either a vertex or an edge. It is shown
how textual documents can be aggregated through
their graph-structures and finally, it is shown how
vertex-ranking methods can be used to find relevant
tokens.1.

Keywords: Text Analysis, Graph model, Multi
Document Summarization

1. Introduction

In the past decades, the automatic analysis of texts
has become an important and challenging topic
in several research areas such as Information Re-
trieval (IR), Natural Language Processing (NLP)
and Computational Linguistics (CL). Related to
these fields of research, a variety of tasks has been
addressed, including text clustering, text classifica-
tion, topic extraction, text filtering and text index-
ing. At the basis of the solutions to these tasks lies a
narrow range of commonly accepted representation
models.

In Information Retrieval, text representation is
usually based on keyword (or n-gram) association
and weighting, thus producing the classical bag-of-
words approach. Well-known weighting schemes are
Tf*Idf [1] and BM25 [2]. The bag-of-words model
has led to effective solutions to several problems in
the past; however, it is commonly recognized that
it has some limitations that deserve attention. An
important issue with the bag-of-words model is that
it omits the syntactic structure of text to a large
extent. More specifically, the order of terms in
sentences is ignored, boundaries between terms are
quite arbitrary, and connections between terms are
not represented. In addition, semantic aspects are
not represented in the bag-of-words model.

1Acknowledgment: This work is supported by the
Flemish Fund for Scientific Research (FWO-Vlaanderen).

The aim of this paper is to propose an alternative
representation of textual documents to the aim of
modeling (at some extent) the syntactic structure
of texts. This alternative model originates from the
idea that a text carries several concepts, and that
these concepts are related to one another; to take
into account these relations, in this paper a model of
a text as a graph is proposed. Like the approach in
[3], the purpose is to create a graph that is labeled
with n-grams of variable length. However, whereas
the approach in [3] uses a set of predefined gram-
matical patterns, this premise is not valid here; in
fact, the proposed method discovers these patterns.
The proposed approach is, to the authors’ knowl-
edge, the first approach that avoids the usage of an
external knowledge base to produce a labeled graph.

It will be shown that each textual document can
be transformed into a graph by means of a four-
steps procedure. The semantics of several opera-
tions such as graph union will be analyzed. Atten-
tion will be paid to finding relevant subgraphs in
order to identify and represent the main topics of
one or more texts. Therefore, vertex rank methods
will be mutually compared in terms of the similarity
between the subgraphs they imply.

The remainder of this paper is structured as fol-
lows. In Section 3, some preliminary concepts in-
volving graph theory and Part-Of-Speech (POS)
tagging are explained. In Section 4, an algorithm
is presented to transform textual documents into
graphs; the (dis)advantages of our approach are also
discussed. In Section 5, some graph operations are
introduced, and it is shown how they can be used
in text analysis. In Section 6, some experiments
related to these graph operations are reported. In
Section 7, future work is discussed and finally, in
Section 8, the most important contributions of this
paper are summarized.

2. Related work

To the aim of representing texts in a more semantic
oriented way, several approaches have been recently
proposed based on a network structure to represent
a text. The most important of these contributions
are reported in this section.

In [3] a method is proposed to infer conceptual
graphs from textual documents. In this approach,
each sentence is first analyzed in order to discover
the different semantic roles it contains. The seman-

8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013)

© 2013. The authors - Published by Atlantis Press 634

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55827970?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tic role of a token within a sentence describes its
function with respect to the central verb. The iden-
tification of semantic roles is based on semantic pat-
terns available in VerbNet and WordNet. Based on
the identified semantic roles and on a set of rules
a graph is produced. In [4], the proximity of fea-
tures (i.e. tokens) is modeled in a graph by labeling
its vertices with features, and by drawing edges be-
tween the features that appear close to each other
in a document. Closeness is here determined by a
window of fixed size that is slid over the stream of
tokens. The edges are then annotated with features
that describe the strength of the relationship be-
tween related concepts. Several such features (e.g.,
co-occurrence frequency and transition probabili-
ties) are proposed. A similar idea is exploited in
[5], where such a model is applied for text simi-
larity assessment. In [6], a graph model for docu-
ments is exploited in the field of document classi-
fication. Similar to the approach in [3], the gram-
matical structure of textual documents is taken into
account when producing the graph. Finally, in [7],
an approach is presented to construct a document-
concept bipartite graph by using Wikipedia as an
external knowledge resource.

3. Preliminaries

3.1. Graphs

A graph G is represented as a pair (V,E) where V
denotes a set of vertices and E denotes a set of edges
having that E ⊆ V × V . In several applications
of graph theory, edges are associated with features
(e.g., weights, capacity, vertex distance...). To this
aim a function φ is defined that maps edges onto a
feature space F . Formally:

φ : E → F.

The function φ will be used to annotate edges with
a character string that represents a specific rela-
tionship between two vertices in the graph. In Sec-
tion 4.4, the construction of φ will be explained in
detail. If we have for G = (V,E) that E is a mul-
tiset rather than a set, G is called a multigraph.
Informally, a multigraph is a graph where multiple
edges between two vertices can occur. In the fol-
lowing, the more general case of multigraphs will
be considered.

3.2. Part-Of-Speech tagging

At the basis of our approach for text analysis lies
the mechanism of Part-Of-Speech tagging. The pur-
pose of POS tagging is to assign the correct lex-
ical category (e.g., noun, verb, article...), to each
word in a text. The main difficulty with POS tag-
ging is that the assignment of a word class is of-
ten an ambiguous task as the lexical category of a
word usually depends on the context in which it is
used. For example, the word “store” can be used

as a both noun or a verb. To deal with this ambi-
guity, POS taggers usually consider sequences of n
words in order to derive the context in which words
are used. The two main approaches for POS tag-
ging are rule-based methods [8, 9] and probabilistic
methods [10, 11, 12, 13].

4. Graph-based text representation

In this section, the proposed graph-based represen-
tation model for textual documents is described. In
the following it is assumed that a set of documents
is available; this set is also called the corpus and it
is denoted as:

D = {d1, ..., dn}.

Each document is assumed to contain a finite se-
quence of characters; the approach for transforming
a document d ∈ D into a graph consists of four
simple steps:

• Tokenization
• Part-Of-Speech tagging
• Reclassification
• Graph generation

Basically, to generate a graph representation of a
text, the text is first tokenized. Next, each of the to-
kens is assigned a Part-Of-Speech tag. The novelty
of the approach presented in this paper lies is the
reclassification of tags: in order to generate a graph
structure, a simple rule-based algorithm is applied
that observes tokens (paired with tags) and reclas-
sifies each token in one of the following classes: Ver-
tex, Edge, Ignore. The final phase of our method,
i.e. the graph generation, generates a graph by only
using the classes generated during the reclassifica-
tion. Figure 1 schematically illustrates the proposed
approach.

4.1. Tokenization

The first step of the approach proposed in this paper
is simple tokenization. Within the scope of this pa-
per, tokenization uses white spaces and punctuation
signs as delimiters to split of tokens. It transforms a
text into a list of tokens, which can be processed by
the POS-tagger. In the following, the set of tokens
will be denoted as T .

4.2. Part-Of-Speech tagging

In the second step, the obtained stream of tokens
is annotated by the Part-Of-Speech tagger. This
implies that each token is associated with a tag
that indicates the grammatical function of the to-
ken within a sentence (e.g. verb, noun, article...).
To this aim we use the probabilistic TreeTagger
[13] because of the many languages that it supports
with high effectiveness. The TreeTagger provides
for each token both the POS-tag and the stem of
the token.

635



Figure 1: The graph conversion process

4.3. Reclassification

In the third step, the identified POS-tags are reclas-
sified. The purpose of reclassification is to simplify
the grammatical knowledge about the text, so that
it can be easily mapped onto a graph structure. The
general idea behind the approach proposed in this
paper is that each sentence consists of concepts that
are mutually linked by some relationship. In addi-
tion, some tokens are irrelevant to the content of
the text, and as such they can be excluded from the
representation. In this paper, we propose a reclassi-
fier for the English language that downscales tags of
the Penn treebank tagset [14]. Therefore, a class set
C = {V ertex,Edge, Ignore} is considered. Each of
these classes is explained in more detail below.
The first class that is used by the reclassifier is

“Ignore”, which is used to mark tokens that should
be excluded from the graph because of their irrel-
evance. The tokens that are tagged as determiner
(e.g., “the”), pronoun (e.g., “me”) and adverb (e.g.,
“extremely”) are mapped to this class. The rea-
son for removing irrelevant tokens this way instead
of using a stopword filter is two folded. First, re-
moving stopwords before POS-tagging would signif-
icantly decrease the performance of the POS-tagger
because removing stopwords implies removing con-
text from the sentences. Secondly, the language
model underlying a POS-tagger provides a more
complete view on irrelevant tokens than does an ex-
haustive list of stopwords.

The second class is “Edge” and it is used to label
tokens that identify a relationship within a sentence.
In this paper we consider three types of relation-
ships:

• Conjunction
• Preposition
• Verb

A conjunction is (as the term indicates) a connec-
tion between (sequences of) words in a sentence (e.g.
John and Paul) that are therefore clearly related.
Prepositions are alternative parts of speech to indi-
cate relationships (often spatial in nature, but not
exclusively) between words (e.g. John is in Milan).
Finally, verbs indicate actions undertaken by a sub-
ject, and they are also clearly relational in nature
(e.g. John is young). Tags belonging to any of the
above three classes are reclassified as “Edge”. The
graph generation algorithm associates then the cor-
responding tokens with edges in the graph.

The third class generated by the reclassifier is
“Vertex”. This class is used to identify conceptual
information and the corresponding tokens are at-
tached to vertices in the graph. By default (i.e. if
a token/tag pair does not match any of the classi-
fication rules) a token is assumed to be of the class
“Vertex”. This assumption avoids the consideration
of too numerous semantic patterns for the discovery
of conceptual information as proposed in [3].

It is worth to notice that the rule set used within
the scope of this paper has an extremely simple and
intuitive structure. Although only designed for the
English language, it is emphasized that an equiv-
alent rule set can be easily constructed for other
languages. Given the fact that (a) the TreeTagger
has a rich variety of trained parameter models and
(b) the proposed approach does not rely on external
knowledge such as WordNet, VerbNet or YAGO, it
can be seen that the representation model can be
easily applied on many different languages.

4.4. Graph generation

Based on the reclassified set of tokens, an algorithm
has been defined that generates a graph containing
concepts as vertices and relationships between those
concepts; the algorithm’s outcome is a graph G =
(T , E). As such, each vertex is equal to a token
from T . Each edge e ∈ E indicates a relationship
between two vertices. In addition, a function φ with
feature space F = T is used. Formally:

φ : E → T .

Thus, each edge e ∈ E is mapped onto a token
that represents a specific relationship observed in
the text. Algorithm 1 presents the graph generation
in pseudo-code. Basically, Algorithm 1 works in two
steps. In the first step, the list of token-class pairs
is reduced by merging adjacent pairs of the same
class together into one pair with concatenated to-
kens. At the same time, tokens of the class “Ignore”
are deleted. In the second step, the reduced list is
examined for Vertex-Edge-Vertex triplets. For each
such triplet, two vertices and an edge are added to
the graph. Both the vertices and the edge are la-
beled with the tokens that have been observed.

636



Algorithm 1 Graph generation pseudo-code
Require: L ⊆ (T × C)k

Ensure: G = (T , E)
1: for all (ti, ci) ∈ L do
2: if ci =Ignore then
3: delete(L[i])
4: else
5: while ci = ci+1 do
6: ti := ti ⊕ ti+1
7: delete(L[i+ 1])
8: end while
9: end if

10: end for
11: for all (ti, ci) ∈ L do
12: if ci = ci+2 =Vertex and ci+1 =Edge then
13: addVertex(G, ti)
14: addVertex(G, ti+2)
15: addEdge(G, ti, ti+2, ti+1)
16: end if
17: end for

Example 1
In order to illustrate the transformation of a text
into a graph, we apply our method to the following
example text introduced in [15]:
“John and Bill wanted money. They bought ski-

masks and guns and stole an old car from a neigh-
bor. Wearing their ski-masks and waving their guns,
the two entered the bank, and within minutes left
the bank with several bags of $100 bills. They drove
away happy, throwing away the ski-masks and guns
in a sidewalk trash can. They were never caught.”

The application of our method produces the
graph shown in Figure 2. Hereby, the vertices are
tokens as prescribed by Algorithm 1. Similarly, the
edges between vertices are drawn in the graph and
they are marked with their label that defines the
relationship between the vertices.

A clear advantage of the graph generation method
is that it labels both vertices and edges with to-
kens that consist of a variable amount of words.
These tokens are identified because they consist of
parts of speech that are mapped to the same class in
C. As such, the advantage of the proposed method
is that relevant combinations of words are discov-
ered without the application of any probabilistic co-
occurrence model (e.g. [4]). Another advantage of
this graph-generation model is that it can be applied
to any language for which a POS tagging model is
available. An important observation with respect to
our method is that the computational complexity of
the method strongly depends on the complexity of
the POS-tagger. As this indeed can be a problem,
in the future we will investigate how the usage of
the POS-tagger can be reduced, by making for ex-
ample a selection of sentences to be tagged, rather
than tagging the entire text. However, experiments
with respect to the computational complexity of the
method are outside the scope of this paper.

Figure 2: Graph-model for robbery story

5. Graph operations

In this section, two well-known operations on graphs
are revised: graph union and vertex ranking. It will
be explained how these operations allow to exploit
the graph model as a solution to some known text
analysis problems.

5.1. Graph Union

The union of two graphs G1 = (V1, E1) and G2 =
(V2, E2) is denoted as G1 ∪ G2 and equals (V1 ∪
V2, E1 ∪ E2). Graph union can be seen as a way
of merging two graphs without any loss of informa-
tion (i.e., without excluding any vertices or edges).
It is therefore a useful operator to merge informa-
tion from multiple textual documents. Indeed, if
we consider the corpus D = {d1, ..., dn} and if Gi

denotes that graph-model corresponding to di, then
the combined information in the corpus is repre-
sented by:

GD =
n⋃

i=1
Gi.

Needless to say, this representation quickly leads to
an overwhelming amount of information (i.e., the
number of vertices grows quickly). Therefore, the
usage of graph union to merge textual documents
typically requires post-processing with an operator
that extracts relevant information from the com-
bined graph. One method to do this is by ranking
vertices according to their relevance. Such ranking
techniques will be discussed in the next section.

637



5.2. Vertex Ranking

Let us assume now a corpus D of documents cen-
tered on a same topical domain, and let us suppose
we wish to model the topic(s) covered by these doc-
uments. As previously discussed, it is possible to
represent all documents in D in one graph by ap-
plying the graph union operator to each single docu-
ment graph. Let us denote that graph GD. In order
to model the topic(s) covered by the documents in
D, a subgraph G•(k) ⊆ G must be constructed that
contains only the top-k most relevant vertices from
GD. In order to find such a subgraph G•(k), a ver-
tex rank [16] method will be applied to find the k
most important vertices. Next, the graph GD will
be projected by only retaining these k vertices, thus
producing a subgraph G•(k). Note that this projec-
tion of GD can lead to a subgraph G•(k) that consists
of several (mutually non-connected) components.

Definition 1 (Vertex rank)
Given a graph G = (V,E), an L-valued vertex rank
method is defined by a function:

r : V → L

where (L,≤) is a totally ordered lattice. The func-
tion r implies an order relation on V , denoted ≤r
that satisfies (using infix notation):

∀(v1, v2) ∈ V 2 :
(
v1 ≤r v2

)
⇔
(

r (v1) ≤ (r v2)
)
.

In practical settings, L is instantiated with R, N
or [0, 1]. The simplest example of vertex ranking is
based on the degree of the vertex, which is based
on counting for each vertex v ∈ V , the number of
neighbors of v. More formally:

deg : V → N

where:

deg(v) =
∣∣∣{v′|v′ ∈ V ∧ ∃(v, v′) ∈ E}∣∣∣.

The function deg assigns more importance to ver-
tices that have many neighbors. This means that a
vertex is important if its token is related to many
other tokens. A second and more advanced vertex
rank method is called closeness and is defined by:

cls : V → R

where:
cls(v) =

∑
v 6=v′∈V

1
dsp(v, v′)

and where dsp(v, v′) is the shortest path distance
between v and v′. The function cls assigns more
importance to vertices that are close to all other
vertices in the graph. Given a vertex rank method
r, it is possible to select the k highest ranked vertices
and retain only the part of GD that contains these
vertices. This leads to the following definition.

Definition 2 (Top-k projection)
Given a graph G = (V,E), a vertex rank method r
and a natural number k ≤ |V |, the top-k projection
of G is a subgraph G•(k) = (V ′, E′), such that V ′
contains the k highest ranked vertices from V and
E′ contains all edges from E between vertices in V ′.

Informally, the top-k projection of a graph main-
tains only those k vertices in the graph that are
ranked highest according to a vertex rank method
r. In addition, only edges between two vertices from
the top-k are preserved. An example of top-k pro-
jection with k = 5 and r = deg is shown in Figure 3
where the top-5 ranked vertices are colored in dark
grey.

Figure 3: Graph G and its top-5 projection with
r = deg

6. Experiments

In this section, two experiments involving the pro-
posed graph-model are reported. In the first ex-
periment the impact of the graph composition
(weighted vs. non-weighted edges, directed vs. non-
directed edges) is investigated. In the second exper-
iment our graph-model is evaluated in a setting of
Multi-Document Summarization (MDS). Both ex-
periments are conducted on a dataset provided by
the Document Understanding Conference (DUC)2.
More specifically, we use the DUC-2002 dataset.
The dataset consists of 59 clusters of documents,
where documents in the same cluster are describ-
ing a common event or person. On average, each
cluster contains about ten documents. In the ex-
periments reported below, we consider each cluster
separately as a corpus D = {d1, ..., dn} and we cal-
culate the graph GD as the union of the graphs of
all documents (see Section 5.1). Next, we will de-
rive a subgraph G•(k) from GD with an appropriate
choice of k.

2See http://duc.nist.gov

638



6.1. Vertex Rank Similarity

In the first experiment, the impact of the graph
composition of GD on G•(k) is studied. More specif-
ically, it is investigated how the design choices to
generate the graphs Gi (and as a consequence also
the graph GD) influence the resulting subgraph
G•(k). We therefore consider the following two al-
ternative design choices:

• Edge weighting The first design choice is
whether or not to weigh edges. If edges are
weighted, the distance between two adjacent
vertices becomes inversely proportional to the
number of edges between those vertices. In
Figure 2, the distance between vertices “ski-
masks” and “guns” equals 1/2 in the weighted
case due to the two edges between those ver-
tices. In the unweighted case, the distance be-
tween two adjacent vertices is always 1. By ap-
plying weights to the edges, we model that two
vertices have lower distance if there exist more
relationships between them. This will have an
increasing effect on the closeness of these ver-
tices. The application of weights thus has the
effect that rank method cls will prefer pairs of
vertices with many mutual relationships. For
simplicity, we model the effect of multiple rela-
tionships in an inverse linear manner.
• Edge direction The second design choice is
whether or not to consider directed edges. In
Figure 2, the undirected case is shown, thereby
losing the information of the order in which the
vertices occur in the text.

For a given vertex rank method r, these design
choices lead to four different variations. In the fol-
lowing, we shall denote the design choices by means
of a two-bit mask. More specifically, we denote a
vertex rank method as rb1b2 where b1 is a bit that
indicates whether edges are weighted (b1 = 1) or
not (b1 = 0) and b2 is a bit that indicates whether
edges are directed (b2 = 1) or not (b2 = 0). For
example, cls01 denotes the closeness rank method
used on a graph with non-weighted, directed edges.
The main question that we try to answer in this

section is to what extent the design choices result in
a different subgraph G•(k). Therefore, for each clus-
ter in the dataset, the similarity will be measured
between two subgraphs that stem from different de-
sign choices. Hereby, similarity between two graphs
is calculated as the Jaccard index of the vertex sets.
More specifically, for two graphs G1 and G2, we de-
note the similarity of these two graphs as:

sim (G1, G2) = J (V1, V2) = |V1 ∩ V2|
|V1 ∪ V2|

.

Next, we can calculate the mean similarity over all
clusters. Figure 4 shows the similarities between
cls and deg for the different choices of design as a
heatmap, where a dark color indicates high similar-
ity.

Figure 4: Similarity heatmap for clsb1b2 and degb1b2
for k = 10

An interesting observation is the high mutual sim-
ilarity between subgraphs obtained by vertex rank
method deg. This is however not surprising, as
it is known that the degree of a vertex is not in-
fluenced by weighting the edges. We see however
that the subgraphs obtained by using deg and cls
show lower mutual similarity. Also, for vertex rank
method cls, the different design choices lead to dif-
ferent subgraphs. This indicates that it makes sense
to consider different vertex rank methods and in
case of cls, it makes sense to consider different de-
sign choices. Because of the minimal impact of the
design choices for deg, we shall consider only deg00
in the remainder of this paper.

6.2. Multi-Document Summarization

In the second experiment, it is investigated to what
extent the graph decomposition method can be used
in a Multi-Document Summarization task. More
specifically, it is studied to what extent the labels of
the vertices of a subgraphG•(k) can serve as the basis
for generating a text summary. As such, it is evalu-
ated to what extent a subgraph G•(k) can serve as a
content selection tool. As ground truth, the hand-
written summaries (multiple summaries per cluster)
available in the DUC-2002 dataset are used. For our
experiments, we use the 50-word length summaries.
In order to evaluate the accuracy of the content

provided by a subgraph G•(k), the ROUGE-N eval-
uation metric [17] is used. This is a recall-based
method that is generally accepted as a good ac-
curacy metric for Multi-Document Summarization.
The ROUGE-N metric compares a generated sum-
mary with a set of reference summaries by calcu-
lating the ratio of N -grams in the reference sum-
maries that also occur in the generated summary.
Because our method produces a graph rather than a

639



summary (i.e., a text), the vertices of the produced
subgraph G•(k) are tokenized and collected in a list.
Next, as prescribed in [18], we use Porter stemming
to preprocess the tokens and calculate the ROUGE-
1 scores for the different vertex rank methods. Be-
cause the ROUGE-1 is biased to content with a high
amount of tokens, the parameter k (i.e., the number
of vertices in G•(k)) is ranged from 5 to 50 in steps
of five in order to obtain a correct evaluation of our
approach. In addition, the ILP method described
in [18] is used as a baseline method3.

Figure 5: Average ROUGE-1 scores for five vertex
rank methods and baseline ILP (dotted line)

Figure 5 shows the ROUGE-1 scores for the base-
line method and the five vertex rank methods un-
der consideration. The first observation is that ver-
tex ranker deg00 is consistently better than cls in
all its variants. The second observation is that
the ROUGE-1 increases linearly with an increasing
amount of vertices in the subgraph. It can be seen
that for k = 40 (i.e., 40 vertices in the subgraph),
the ROUGE-1 score of all vertex rank methods is
comparable to that of the baseline ILP method.
This effect is due to an increasing number of ver-
tices in the created subgraph. Indeed, taking into
account that k1 ≤ k2 ⇒ G•(k1) ⊆ G•(k2), we have
that adding more vertices to the subgraph increases
the probability that the subgraph will contain to-
kens that appear also in the reference summaries.
In other words, the bigger the subgraph, the higher
its recall with respect to reference summaries.

7. Future work

Within the scope of this paper, we have studied a
novel, graph-based approach for the representation
of a text. Although the usability of this model was

3It was verified that the experiment setup is equal to the
one in [18]

briefly illustrated in the context of Multi-Document
Summarization, it is our goal to further investigate
this model and its applications. Some ideas to guide
this future research are the following. First, there
exist many other vertex rank methods besides de-
gree and closeness. Investigating these rank meth-
ods will be a usefull contribution. Also other graph
reduction methods such as the network Pathfinder
algorithm [19] can be taken into account. Second,
other applications of the model, such as sentiment
analysis, will be explored. Third, as the proposed
model relies on POS-tagging, which is inherently
language dependent, the model should be evaluated
on other languages.

8. Conclusions

In this paper we have introduced a novel graph-
model for representing a text. The principle under-
lying our approach is that tokens associated with
a text can be mapped onto vertices and edges of a
graph by considering the syntactic function of the
token. Therefore our approach uses Part-Of-Speech
tagging to annotate each token in a text with its
correct lexical category. Next, a text is processed
as a stream of tokens, and each token is attributed
to either a vertex or an edge in a dynamically gen-
erated graph structure. The main advantage of this
approach is that vertices and edges are labeled with
N -grams where N is not a constant value within
the same graph. Finally, it was shown how our
graph-model can be used in the context of Multi-
Document Summarization by applying the opera-
tions of graph union and vertex ranking. Several
vertex ranking methods were evaluated by means of
the well-known ROUGE-N score and compared to
a baseline technique from the literature. The eval-
uations have shown that, in terms of the ROUGE-1
score, our approach is competitive with the baseline
technique.

References

[1] Ricardo Baeza-Yates and Berthier Ribeiro-
Neto. Modern information retrieval. ACM
Press, 1999.

[2] Karen Spärck Jones, Steve Walker, and
Stephen Robertson. A probabilistic model of
information retrieval: Development and com-
parative experiments (parts 1 and 2). Informa-
tion Processing and Management, 36(6):779–
840, 2000.

[3] Svetlana Hensman. Automatic Construction of
Conceptual Graphs from Texts using Compu-
tational Linguistics Techniques. PhD thesis,
School of Computer Science and Informatics,
University College Dublin, 2004.

[4] Wei Jin and Rohini Srihari. Graph-based text
representation and knowledge discovery. In

640



Proceedings of the SAC conference, pages 807–
811, Seoul, Korea, 2007.

[5] Faguo Zhou, Fan Zhang, and Bingru Yang.
Graph-based text representation model and its
realization. In Natural Language Processing
and Knowledge Engineering (NLP-KE), 2010
International Conference on, pages 1–8, 2010.

[6] Chuntao Jiang, Frans Coenen, Robert Sander-
son, and Michele Zito. Text classification
using graph mining-based feature extraction.
Knowledge-Based Systems, 23(4):302 – 308,
2010.

[7] Lu Zhang, Chunping Li, Jun Liu, and Hui
Wang. Graph-based text similarity measure-
ment by exploiting wikipedia as background
knowledge. World Academy of Science, En-
gineering and Technology, pages 1548 – 1553,
2011.

[8] Eric Brill. A Corpus-Based Approach to Lan-
guage Learning. PhD thesis, Department of
Computer and Information Science, University
of Pennsylvania, 1993.

[9] Barbara Greene and Gerald Rubin. Automatic
Grammatical Tagging of English. Department
of Linguistics, Brown University, 1971.

[10] Lalit Bahl and Robert Mercer. Part-of-speech
assignment by a statistical decision algorithm.
In IEEE International Symposium on Informa-
tion Theory, pages 88–89, 1976.

[11] Kenneth Church. A stochastic parts program
and noun phrase parser for unrestricted text. In
Proceedings of the Third Conference on Applied
Natural Language Processing, pages 136–143,

1988.
[12] Steven DeRose. Grammatical category disam-

biguation by statistical optimization. Compu-
tational Linguistics, 14(1):31–39, 1988.

[13] Helmut Schmid. Probabilistic part-of-speech
tagging using decision trees. In Proceedings of
International Conference on New Methods in
Language Processing, pages 44–49, 1994.

[14] Mitchell Marcus, Beatrice Santorini, and Mary
Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. Compu-
tational Linguistics, 19(2):313 – 330, 1993.

[15] Chin-Yew lin. Robust Automated Topic Iden-
tification. PhD thesis, Faculty of the Gradu-
ate School, University of Southern California,
1997.

[16] Louis Hakimi. On realizability of a set of inte-
gers as degrees of the vertices of a linear graph.
Journal of the Society for Industrial and Ap-
plied Mathematics, 10:496–506, 1962.

[17] Chin-Yew Lin. Rouge: A package for auto-
matic evaluation of summaries. In Proceed-
ings of the Workshop on Text Summarization
Branches Out, pages 74–81, 2004.

[18] Ryan MacDonald. A study of global inference
algorithms in multi-document summarization.
In Proceedings of the 29th European conference
on IR research, pages 557–564, 2007.

[19] Roger Schvaneveldt, Donald Dearholt, and
Francis Durso. Graph theoretic foundations of
pathfinder networks. Computers and Mathe-
matics with Applications, 15(4):337–345, 1988.

641




