

# Tunable band structure in coreshell quantum dots through alloying of the core

<u>A. Guille</u> | D. Mourad | T. Aubert | A. Houtepen | R. Van Deun | E. Brainis | Z. Hens



## Semiconductor nanocrystals

- $\rightarrow$  High tunability
- → Different materials available (CdSe, PbSe, CdS, ZnS,...)
- → Influence of size (quantum confinement)
- $\rightarrow$  Possibility to synthesize core/shell structures





#### Additional degree of freedom : Composition



# Tunability of CdS<sub>(1-x)</sub>Se<sub>x</sub>\ZnSe QDs

- $\rightarrow$  Homogeneously alloyed CdS<sub>(1-x)</sub>S<sub>x</sub> core
- ightarrow Tuning of overlap of charge carriers wavefunctions
- $\rightarrow$  Single exciton gain demonstrated in Type II CdS / ZnSe



## Quantum dots as gain medium : Advantages of type II QDs



 $\rightarrow$  Gain requires more than one exciton per dot : High excitation fluence



→ Reduced reabsorption : **Reduced excitation fluence** 

### **Overlap of charge carriers**

- $\rightarrow$  Valence band-offset CdS<sub>(1-x)</sub>S<sub>x</sub> \ ZnSe
- $\rightarrow$  Calculated numerically with tight binding approach (D. Mourad)
- $\rightarrow$  From type II to type I 1/2





0.8

0.7

0.6

0.5

0.4

0.3

0.2

N 1

#### Overlap of charge carriers and gain threshold

ightarrow Calculation in effective mass approximation with calculated band offsets



#### Electron-hole overlap

Gain threshold



Threshold 4.5 3.5 (E) 2.5 1.5 0.5 0.5 1.5 3.5 4.5 1 2 2.5 3 4 H(nm)





# **QDs synthesis and characterisation**

**Results and discussion** 

Conclusion

# 2. Synthesis



# Hot injection synthesis of CdS<sub>(1-x)</sub>Se<sub>x</sub> QDs

T. Aubert et al., Chem. Mater. 2013, 25, 2388–2390

- $\rightarrow$  Precursors:
  - Se powder dispersed in ODE
  - S dissolved in ODE
  - Cd oleate
- $\rightarrow$  Balanced reactivity of S and Se precursors
- $\rightarrow$  Composition measured by EDX
- ightarrow Alloying checked with Raman spectroscopy





#### 2. Synthesis



#### Growth of ZnSe shell

- $\rightarrow\,$  Cores in ODE and octade cylamine
- $\rightarrow\,$  Continuous injection of Zn oleate and TOP-Se
- $\rightarrow$  Stored in hexane

Core



CdS<sub>0.6</sub>Se<sub>0.4</sub>

#### Core-shell



 $CdS_{0.6}Se_{0.4}$  / ZnSe

#### 2. Characterisation



#### Absorption and emission spectra



- $\rightarrow$  Core radius: 1.5 nm
- $\rightarrow$  Shell thickness: 1.5 nm
- $\rightarrow$  Trap emission in S rich core QDs

#### Excitonic peak appears in Se rich cores Transition from type II to type I 1/2





#### Origin of trap emission in CdS/ZnSe

- $\rightarrow$  Larger cores : trap emission visible
- $\rightarrow$  Different PLE spectra and decays

#### **Increased absorption : Effect on gain ?**







# QDs synthesis and characterisation

**Results and discussion** 

Conclusion

## 3. Results and discussion



#### Transient absorption spectroscopy

 $\rightarrow$  Absorption spectrum at different pump-probe delays



#### 3. Results and discussion



#### Transition Type II to type I 1/2



#### 3. Results and discussion



#### Absorption spectrum of excited QDs : Optical gain





# QDs synthesis and characterisation

**Results and discussion** 

Conclusion

## 4. Conclusion

# Synthesis of CdS<sub>(1-x)</sub>Se<sub>x</sub> / ZnSe QDs

- ightarrow Absorption and emission from traps at the interface
- → Excess of absorbance at the emission wavelength : synthesis to improve

# Tunability of QDs band structure

- $\rightarrow$  Continuous transition from type II to type I ½ demonstrated
- $\rightarrow$  Very large tunability of emission wavelength and overlap
- ightarrow Gain observed with transient absorption spectroscopy











# Thank you for your attention !





belgian Science Policy Office











belspo

Belgian Science Policy Office