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ABSTRACT
We present a framework for large-scale crowdsourcing of
first-person viewpoint videos recorded on mobile devices.
Collecting videos at a massive scale poses a number of major
issues in terms of network planning. To improve the scalabil-
ity with regards to the number of users, videos and geograph-
ical area and better cope with restrictions on storage, band-
width and processing power, the framework is distributed
and based on the two-layer cloudlet architecture. To miti-
gate the limited bandwidth in the access network, a set of
decision algorithms is constructed and evaluated that are
able to filter out irrelevant videos based on their metadata
and given selection criteria. To illustrate the crowdsourcing
framework, we present Street View Live, an application for
presenting videos based on location, similar to the popular
Google Street View but with up-to-date videos covering the
location instead of possibly outdated images. In order to
have an up-to-date view of every location, the video collec-
tion is continuously extended and updated by crowdsourcing
videos from mobile devices.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications; E.1 [Data]: Data Struc-
tures—Distributed data structures; F.2.2 [Analysis of Al-
gorithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems—Sequencing and scheduling ; H.3.4
[Information Storage and Retrieval]: Systems and Soft-
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ware—Distributed systems, Performance evaluation (efficiency
and effectiveness); I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Intelligent agents, Multiagent
systems

General Terms
Design, Algorithms, Performance, Experimentation
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1. INTRODUCTION
In recent years, billions of mobile devices such as smart-

phones and tablets have been sold [4]. As these devices
are almost always online, it has become very easy for mo-
bile users to share content on social network sites such as
Facebook and Twitter. Mobile devices also posses an array
of sensors, such as (possibly multiple) cameras and loca-
tion sensors, which allow users to upload geotagged pho-
tos and videos to sites such as Flickr and YouTube. Over
one hundred hours of video are uploaded to YouTube ev-
ery minute [16]. With the emergence of smart glasses like
Google Glass, it will require even less effort to record and
share first-person viewpoint videos. It can be foreseen that
in the near future, mobile users will generate and upload
massive amounts of videos covering their daily lives.

All these videos and location data provide a treasure trove
of information, with each video showing a glimpse of the
world where and when it was recorded. This information
enables a whole new range of applications. One such appli-
cation is Street View Live, as proposed in [11], which allows
users to virtually navigate roads on a map through first-
person viewpoint video previously captured by another user
walking the same road. Ideally, this video was recorded just
moments before in order to provide an up-to-date view. By
massively crowdsourcing videos from mobile users, it should
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be possible to have enough up-to-date material of sufficient
quality to cover major cities and even entire countries.

Crowdsourcing videos on such a massive scale, however,
poses a number of important challenges regarding network
planning, storage capacity, energy consumption, etc. In this
paper, we address the issues regarding the scalability of such
a large-scale video crowdsourcing framework, applied to the
Street View Live use case. This framework should not only
be scalable in the number of users and video’s being up-
loaded, but also in the geographic area for which videos are
being crowdsourced. On top of that, we need to account for
the restrictions in available bandwidth and storage capacity.

These challenges are tackled in two steps. First, Section 3
addresses the issues of having a centralized, cloud-based ap-
proach and proposes a better-suited solution in the form of
a distributed 2-tier cloudlet architecture. Cloudlets [10, 14],
also known as edge clouds, are trusted server infrastructure
placed closely to mobile users at the edge of the network,
e.g. co-located with the wireless access point. Distribut-
ing infrastructure close to the user allows the system to ex-
ploit dependencies on location, which in turn reduces the
total amount of bandwidth consumed. Nonetheless, videos
still need to be transmitted over the last hop of the net-
work, namely the mobile wireless access network. Due to
the wireless medium, there are tight bandwidth restrictions
that need to be taken into account. While limited, we still
want to get the most out of the available upload bandwidth
by determining which videos add the most value to the ex-
isting collection. Based on this value, which is calculated
using video metadata, intelligent decisions can be made on
which videos to accept or reject from uploading. Such deci-
sion algorithms are discussed in Section 5.

The remainder of this paper is structured as follows. In
Section 2, relevant related work is discussed. Sections 3
and 4 handle respectively the distributed architecture and
implementation of the video crowdsourcing framework and
Street View Live application. Section 5 goes into more detail
of the decision algorithms used to accept or reject video
uploads, which are then evaluated in Section 6. Finally we
draw our conclusions and discuss future work in Section 7.

2. RELATED WORK
Although cameras are arguably the richest sensors cur-

rently present on mobile devices, not much work has been
done in exploiting these sensors for crowdsourcing applica-
tions. We believe this is caused by the limited scalability
when crowdsourcing videos on current systems. While sev-
eral crowdsourcing frameworks have been introduced in re-
cent years that incorporate scalability, such as Medusa [9]
and CrowdLab [2], few of them are equipped to handle the
requirements of massive-scale crowdsourcing of video [15].

In SignalGuru [7], videos are crowdsourced from windshield-
mounted smartphones in order to detect and predict traffic
light schedules. This allows drivers to optimize their driving
speed which in turn reduces vehicle fuel consumption. The
collaborative sensing platform developed in this work is en-
tirely mobile based, requiring no fixed infrastructure. Video
processing is done on the mobile devices themselves, which
communicate in an ad hoc fashion to exchange traffic light
prediction information. This application allows for a com-
pletely mobile solution. Firstly because power constraints
are less of an issue as drivers tend to plug windshield-mounted
devices into the vehicles’ power supply. Secondly, the videos

themselves do not have to be transmitted over the network
and can be discarded after traffic light detection has been
performed. Issues regarding storage or bandwidth limita-
tions hence do not occur.

Our work is more similar to the work done by Simoens et
al. [11]. They present GigaSight, a hybrid cloud architecture
for scalable crowdsourcing of videos. Their approach is de-
scribed as a Content Delivery Network (CDN) in reverse and
is similar to the two-layer cloudlet architecture discussed in
this paper. Our approach is different in two major ways
however. First, GigaSight aims to crowdsource continuous,
real-time video from heads-up displays whereas we opt to
crowdsource pre-recorded fragments. This decision is moti-
vated by the fact that it is not yet feasible to continuously
capture and stream video from wearable devices due to bat-
tery and connectivity constraints. Users are more likely to
record shorter, individual fragments, and may even choose
to upload them at a later time, e.g. when connected to a
power source. Second, this paper focuses on the issues of the
actual uploading and gathering of videos whereas GigaSight
is aimed at the processing and indexing of the video streams
and how those services can be scaled out. Specifically, their
work focuses on privacy and introduces the concept of “de-
naturing” as a way to preserve it. They conclude, however,
that even in the near future the limited upload bandwidth
of the access network may pose a major issue.

This idea of preserving privacy in the large-scale crowd-
sourcing of videos is further supported by the work in [12],
where a technique is presented which not only efficiently
blurs faces and other privacy-sensitive parts of a video, but
also significantly reduces the bitrate of the filtered video.
The authors specifically advocate their technique for Street
View Live applications. The possibilities of crowdsourcing
combined with Street View has recently gotten more atten-
tion. Google has opened up its Google Maps API to allow
users to share panoramic shots of their favorite locations
with the world [5]. Instead of Street View being the goal
of crowdsourcing imagery, Street View has also succesfully
been used as a data source for crowdsourcing. In [6], un-
trained crowd workers find, label, and assess sidewalk acces-
sibility problems using Google Street View imagery.

3. FRAMEWORK ARCHITECTURE
Massively crowdsourcing videos from both a large number

of mobile users as well as a widespread geographical area is
no easy task. For applications that have to scale out eas-
ily, cloud computing has become the golden standard, as
it provides computing resources in an on-demand fashion.
With the Street View backend deployed on the cloud, mo-
bile clients push videos over the internet to the centralized
datacenters where they are stored along with their meta-
data, as shown in Figure 1a.

3.1 Two-tier Cloudlet Architecture
A major issue with centralized cloud infrastructure is that

all data transmitted between the mobile client and the cloud,
video in this case, has to pass over the core internet. This
causes bandwidth to be consumed along each network con-
nection between the client and the cloud backend, which
may add up to a significant amount if a large number of
videos are uploaded simultaneously. Moreover, the internet
and specifically the last-hop to the cloud datacenter may
become an upload bottleneck in some cases. If we assume



(a) Cloud architecture (b) Cloudlet architecture

Figure 1: In contrast to a classical cloud architecture, a 2-tier architecture is used where videos are stored on cloudlets at the
edge of the network and only the metadata is stored centrally.

the recommended bitrate by YouTube of 8.5 Mbps and an
available upload bandwidth of 10 Gbps to the datacenter,
only about 1200 simultaneous real-time videostreams can be
transmitted, which may not be enough to cover (multiple)
major cities.

Recently, however, there has been a trend to push cloud
infrastructure closer to the edge of the network and the end
user, the so-called edge clouds or cloudlets. By deploying
a crowdsourcing application on cloudlet infrastructure, the
total amount of bandwidth consumption is reduced. Bot-
tlenecks are also less likely to occur as at the most a few
network connections are shared between simultaneous video
uploads. Moreover, there is an additional argument in favor
of the use of cloudlets for applications where data locality
can be expected, such as Street View Live. It is plausible
that data, in this case video, originating from a certain loca-
tion will mostly be utilized by users in the same geographic
area. For example, in the Street View Live case, videos cov-
ering the city of Ghent will most likely be watched by people
visiting or living in and around Ghent. Hence, it makes sense
to store those videos geographically close to the city.

Therefore, we propose a two-tiered architecture as shown
in Figure 1b, with cloudlets at the network edge bridging the
mobile users with a centralized cloud. Crowdsourced videos
are uploaded over the wireless network to a cloudlet assigned
to their geographic coordinates, where they are stored until
users look them up. While we want to distribute the videos
themselves across the network edge, we still want to main-
tain a global overview of the entire collection. Therefore a
centralized cloud is still desired to store all the metadata of
the crowdsourced videos.

However, while the two-tiered cloudlet architecture avoids
any bottlenecks at the cloud backend, there still remains the
issue of the limited wireless access bandwidth. Permanently
storing the videos on the mobile devices themselves is not
feasible due to their limited resources. Instead, in order to
utilize the available bandwidth as efficiently as possible, an
upload request is first sent to a cloudlet and the video itself
is only uploaded if this request is accepted. The cloudlet
can then make the decision on which videos to upload and
which not, based on knowledge of the previous uploads.

3.2 Components
In order to easily deploy the the crowdsourcing frame-

work on the two-tier infrastructure as well as the mobile
clients, a component-based approach is chosen. The com-

Figure 2: Architecture of the crowd-sourcing framework.
The Communication at the client sends upload requests to
the Agent, while the Decision decides whether to accept or
reject a video.

ponent diagram on Figure 2 shows a detailed view of the
software components constituting the framework, as well as
their deployment. The Communication component is the
only component deployed on the mobile client, while the
other components are distributed among among the avail-
able cloudlets and cloud infrastructure.

Communication The Communication component is the
only component deployed on the mobile device. When
triggered by the user, it will make a request for a video
upload at the nearest Load Balancer. This request con-
tains the required metadata of the video to make the
decision whether to accept it or not, e.g. its location
and timestamp.

Load Balancer This component will forward the upload
request to any of the available Agent components. It
can do this using any standard load balancing algo-
rithm, e.g. Round Robin.



(a) Mobile client (b) Street View Live webpage

Figure 3: Screenshots of both the mobile application used to record and upload videos, as well as the Street View Live webpage
used to view them.

Agent The Agent is the most important component of the
system, as it actually handles the upload requests.
When it receives a requests, it queries the Decision
component with the metadata contained in the re-
quest. When the response is positive, the Agent will
request the Communication component at the client
to actually upload the accepted video. When fully re-
ceived, the communication with the client is complete
and terminated. Before sending the video to the Me-
dia Server, it is first sent to a Converter component if
the source and required format differ. Multiple Agent
components can be available per cloudlet, to distribute
the load among the available servers.

Decision The Decision component will make the decision
whether to accept a certain video based on the meta-
data in the upload request and data form the State
and Resource Monitor components using the desired
decision algorithm (see Section 5).

State The State contains a (compact) representation of the
metadata of part of the already uploaded video collec-
tion. The exact structure of the representation will
depend on the chosen decision algorithm.

Resource Monitor As the name implies, the Resource Mon-
itor component will keep track of the available re-
sources, specifically the available bandwidth for up-
loading videos and the remaining storage capacity.

Converter The Converter is responsible for converting the
uploaded video to the format required by the Media
Server, e.g. a format suitable for streaming over the
web.

Media Server The Media Server provides the actual video
storage facilities of the application, as well as the means
of streaming a particular video.

Metadata Database The Metadata Database provides a
searchable index of the metadata of the entire video
collection as well as the location (Media Server on a
specific cloudlet) where each video can be found. This
component is deployed on centralized cloud infrastruc-
ture.

Web Server Finally, the Web Server provides the frontend
for the Street View Live application in the form of
a web page that allows users to browse a map with

markers showing each of the available videos. When
users select a specific marker, a video stream is set up
and the video is shown in a pop-up window.

4. IMPLEMENTATION
A prototype of the video crowdsourcing platform was built

using AIOLOS1 [13]. AIOLOS is middleware for scalable
mobile cloud computing built on top of OSGi [8], an open-
standard service platform for Java. Applications consist of
components (bundles) that can be started and stopped dy-
namically by the OSGi runtime. Bundles register Java ob-
jects as services and may themselves request other services.
These service references are then resolved dynamically.

The goal of AIOLOS is to facilitate distributing OSGi-
based applications in a mobile cloud environment. AIOLOS
hides the actual location of the service implementation us-
ing proxies, allowing to transparently perform remote calls,
but also to migrate services between devices at runtime, as
well as scale out services and automatically perform load-
balancing. The developer is further aided by provided func-
tionality for service discovery, service and device monitoring,
custom load balancing policies and Virtual Machine (VM)
management when running on a Infrastructure-as-a-Service
(IaaS) provider. Being Java-based, AIOLOS can run on
any platform that has a Java Virtual Machine (JVM) avail-
able, as well as Android, a popular operating system for
mobile devices. It is also compatible with multiple open-
source OSGi implementations, such as Apache Felix [1] or
the low-footprint Concierge [3], more suitable for mobile de-
vices.

The architecture of the crowdsourcing framework is mapped
to AIOLOS by defining the required service interfaces and
providing an OSGi bundle for each of the compoments shown
in 2. As AIOLOS already provides the necessary functional-
ity for load balancing, however, the Load Balancer is omit-
ted. Figure 3 shows screenshots of the prototype implemen-
tations of the mobile client and Street View Live webpage.

5. DECISION ALGORITHMS
If multiple videos are uploaded simultaneously, the access

network to a specific cloudlet may become overloaded. To
avoid this, the Agent will first process the metadata of the
videos using a decision algorithm in order to decide which

1Available at http://aiolos.intec.ugent.be



Figure 4: Schematic representation of the decision algo-
rithms.

videos should be uploaded and which not. The goal is to op-
timally use the available bandwidth and not waste network
resources on redundant videos. However, it is not feasible
to take the metadata of the entire collection into account
for each new request as this does not scale well. Instead,
we want to be able to only look at a subset of the already
collected metadata while still being as close to optimal as
possible.

5.1 Formal Description
This problem can be formally described as follows. Let V

represent the metadata of all videos the framework already
collected. Each time step i a collection of candidate videos
Ki is offered to the platform, but there is only bandwidth Bi

available, which might not be sufficient to upload all videos
of Ki. We thus need a decision algorithm that can select a
subset Ni of Ki in such a way that the required bandwidth
to upload Ni is less than or equal to Bi. Furthermore, the
videos of Ni are picked in such a way that f(V ∪ Ni) ≥
f(V ∪ Li), with Li each other possible subset of Ki which
requires a bandwidth less than or equal to Bi to upload.

The function f represents a global scoring function which
assigns a score f(V ) to the collection V . f needs to satisfy
a number of properties to be a valid global scoring function.
First of, it has to be stationary, i.e. it should not depend
on the order in which the videos were added to the collec-
tion. Second, it should be increase monotonically when new
videos are added, as we expect that each offered video will
at least contribute in some (possibly very small) way to the
collection. The exact form of f depends on our definition
of a relevant video and thus the goal of the crowdsourced
video. For the Street View Live application considered in
this paper, the videos in the collection should be chosen in
such a way that they uniformly cover the geographic area
for which videos are collected as well as being as recent as
possible. Figure 4 shows a schematic representation of the
decision algorithms.

5.2 Algorithm structure
Each decision-algorithm presented here is built accord-

ing to the same twofold structure. To keep the algorithm
scalable with the size of the collection V , the information
contained in V has to be compacted in some way, so only

(a) Histogram (b) Hierarchical histogram

Figure 5: A histogram (a) divides the geographical area into
a grid. A hierarchical histogram (b) consists of multiple
levels, with each level composed of a histogram of different
cell size.

the essential subset of metadata is taken into account for the
decision. The first part of the twofold structure is therefore
formed by the way the algorithm keeps track of the infor-
mation contained in V , which we call the local state of the
algorithm.

The second part is formed by the selected local scoring
function, which determines a score for each offered video
which is calculated using both the metadata of the offered
video as well as the local state. Note that this local scor-
ing function, which values a single video with respect to
an existing collection, is different form the global scoring
function, which values a collection as a whole. The local
scoring function is used in the decision to accept a video or
not, while the global scoring function is used to benchmark
the resulting collection. By calculating the local score for
each of the offered videos in Ki, the subset with the highest
total score that still fits within the available bandwidth is
accepted, while the others are rejected.

Each algorithm can either be executed preemptively or
non-preemptively. When using preemption, the set of video
currently uploading are added to the set of offered videos
Ki, i.e. it is possible to interrupt an uploading video in
favor of another video with a higher score. If the already
uploaded part is sufficiently large, it is still added to the
collection, otherwise it is discarded. When no preemption
is used, a video will upload completely once it has been
selected, regardless of the videos being offered during the
time it is being transmitted. The following sections describe
in more detail the choices for the state and local scoring
function, which combine to a total of 12 decision algorithms.

5.2.1 State representations
Two representations for the state are considered. The

first option is to use a histogram. In this approach, the
geographical area for which videos are collected is divided
into a grid, as presented in Figure 5a. For simplicity, we
assume this area is rectangular. For each cell in the grid,
both the total number of videos that are located in that
specific cell as well as the metadata of the n videos with
the highest local score are tracked. These n videos are used
as input for the local scoring function. By adjusting the
size of n, we can make a trade-off between accuracy and
computation time. Local scoring functions will always be
applied on one cell of the histogram, this is the cell that the



video is located in for which we are calculating the score.
The number of cells in the histogram is a parameter that
needs to be optimized, which is done in Section 6.

The second option is to use an extension of the histogram,
i.e. the hierarchical histogram. The hierarchical histogram
consists of multiple levels, in which each level is composed
of a histogram with a different number of cells, as presented
in Figure 5b. Again, only the metadata of the top n videos
is stored for each cell on each level. The histogram is built
bottom-up, with the lowest level consisting of cells of 1 unit
of distance squared, until a certain number of levels. Local
scoring functions are applied on each level in the same man-
ner as for the histogram, after which a weighted sum of the
scores is made with the weight for level i being wi = 2i−1.

These compact state representations are useful because
the local scoring function of an offered video only needs to
be calculated in a single cell for the histogram or one stack of
cells for the hierarchical histogram. This allows the state to
be easily partitioned in independent parts, which can then
be assigned to the available cloudlets. In other words, each
State component only has to maintain a limited number of
cells, ensuring scalability.

5.2.2 Local Scoring Functions
We propose three different local scoring functions. These

are chosen in order to match the criteria of the Street View
Live application: aim to have an uniformly spread collection
of recent videos. The first local scoring function calculates
the score of an offered video as the average Euclidean dis-
tance between its location {xa, ya} and the location {xi, yi}
of the n videos that are tracked for the corresponding cell
(i.e. the videos with the highest local scoring function). This
distance is divided by the age la of the offered video to favor
recent videos, as shown in Equation 1. This function has
complexity O (n) in the number of tracked videos n.

sa =

∑
i=1..n

√
(xi − xa)2 + (yi − ya)2

la
(1)

The second local scoring function calculates the score of
an offered video using the average number of videos that
are located in all cells N (of a level for the hierarchical his-
togram) and the number of videos in the corresponding cell
na, as represented in Equation 2. The score is again divided
by the age la. This scoring function has complexity O (1).

sa =
N

la na
(2)

The third and final scoring function studied calculates the
score of an offered video using the age of this video and other
videos that were tracked for the corresponding cell. This
scoring function calculates a value before and after adding
the offered video. The difference between these values is then
used as the final score. sv represents the value before adding
the offered video and V is a list of the ages of all videos
tracked for the corresponding cell, sorted from youngest to
oldest.

sv =
∑

0≤i<n

1

2i Vi
(3)

sn represents the value after adding the offered video and
N represents V after adding the offered video to this list.
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Figure 6: Normalized score with respect to the simulation
time. Both the use of preemption as well as the number of
cells in the histogram affect the score.

sn =
∑

0≤i<n+1

1

2i Ni
(4)

Finally, Equation 5 shows the final score for the offered
video.

sa = sv − sn (5)

6. EVALUATION
Each combination of a local scoring function and a state

representation will result in a new decision-algorithm. The
goal of the evaluation is first to optimize the parameters of
the different decision algorithms. Second, the different algo-
rithms are compared with each other and with other relevant
algorithms both in terms of performance (how well do they
approach the optimum) as well their required execution time
(which is important at runtime).

6.1 Global Scoring Function
In order to be able to compare these algorithms, we first

need to define the global scoring function f . For the Street
View Live application, it is desired to collect videos that
are as recent and as far from each other as possible. The
algorithm to calculate this score is constructed the same
way as the hierarchical histogram in Section 5.2.1, but keeps
track of all videos in each cell instead of just a few. To
calculate the score of the entire collection, Equation 6 is used
to calculate a score for each cell, which are then summed to
obtain the global score.

s =
∑

0≤i<n

exp(−Vi/α)

2i
(6)

The aging factor α allows us to adjust the importance that
is given to the age of videos against their position. Choosing
α smaller, will attach more importance to the age of videos,
while bigger values of α will focus more on the position of
videos. In our results, alpha is set to 50 days. Note that
this scoring function satisfies the properties that adding a
video to the collection should always lead to an increased
score and that the specific order in which they are added
is not important. Also note that the total score of the col-
lection decreases when no new videos are added. Decision
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Figure 7: Simulation results for the decision algorithm consisting of the histogram state combined with average distance local
scoring function.

algorithms can now be compared by looking at the global
scores obtained after the same set of videos are offered.

6.2 Simulations
The parameters of each decision algorithm were optimized

using simulations after which the best results were com-
pared. The results may however partially depend on the
parameters that were used in the simulation. The simu-
lated geographic area is a square with length 216 meters,
witch matches the size of an average city. The location
of videos is Gaussian distributed around the square center,
with a standard deviation of 1.3 km. For simplicity, band-
width is discretized in 200 upload slots, meaning a maxi-
mum of 200 videos can be uploaded simultaneously. Videos
arrive according to a Poisson process at a rate of 5 per sec-
ond. Simulations with non-stationary, non-Poisson arrival
processes with the same average arrival rate were also per-
formed, but yielded very similar results and are furthermore
not discussed for clarity. The average upload time was set
to 10 minutes. Upload requests are buffered for a periodic
interval of 5 seconds after which the decision algorithms pro-
cesses them. After the decision is made, the global scoring
function is re-evaluated. A total of 72 hours is simulated.

An upper bound for the global scoring function can be
found by simulating an infinite amount of upload slots, so no
offered video ever has to be rejected. In the results shown,
the value of upper bound at the end of the simulation is
used to normalize the global score throughout the simula-
tion. Note that this is a very spacious upper bound, as it
can never be achieved in reality.

6.3 Parameter Optimization
Figure 6 shows the global scoring function varying through

time for the decision algorithm consisting of the histogram
state representation combined with the average distance lo-
cal scoring function, both preemptive and non-preemptive
versions for two different granularities of the histogram. The
granularity refers to the number of cells in the histogram
both length- and width-wise. The upper bound is also shown.
Two observations can be made. First, the preemptive ver-
sion clearly outperforms the non-preemptive one, which matches
our intuition. Second, the number of cells in the histogram
clearly has an impact on performance, so an optimal number
needs to be found.

The optimal number of cells is determined experimentally.

Figure 7a shows the global scoring function for the non-
preemptive version at the end of the simulation, for a vary-
ing number of cells. Values shown are averages over 4 runs
along with standard deviation. An optimum is achieved for
300 cells. Figure 7b shows the same plot for the preemptive
version, where the optimum is reached for 250 cells. Note
that for any number of cells, the preemptive version outper-
forms the non-preemptive version by about 10%.

This same optimization process can be performed for the
remaining 10 decision algorithms. For each combination
of state representation and local scoring function, the pre-
emptive version performs significantly better than the non-
preemptive one. Therefore, in the remaining evaluations,
only the preemptive algorithms are considered.

6.4 Comparison
A comparison between the 6 different preemptive decision

algorithms is shown in Figure 8. The preemptive algorithm
combining a hierarchical histogram with 10 levels combined
with the local scoring function based on video age renders
the best result for these simulation settings.

Next, the performance of this algorithm is compared with
a few obvious, rather naive algorithms and the upper bound
in Figure 9. These algorithms are First Come First Served
(FCFS), Youngest First (YF) and Average Distance (AD).
The FCFS algorithm simply accepts videos in the order they
arrive as long as there is sufficient bandwidth available. The
YF algorithm accepts the youngest videos first, if there is
no sufficient bandwidth available, older videos that are still
uploading are interrupted. The AD algorithm selects videos
with a higher average distance to all videos in the entire
collection first. The hierarchical histogram in combination
with the age local scoring function achieved the best score,
but the difference with the AD algorithm is relatively small.

Performance in terms of global score is however not the
only metric important here. These algorithms need to be ex-
ecuted at runtime and hence their execution time needs to
scale well with the size of the video collection. Figures 10a
and 10b show that, while the AD algorithm achieves nearly
the same scores as the hierarchical histogram, it scales lin-
early with an increasing video collection. The hierarchical
histogram, on the other hand, scales logarithmic. Moreover,
the calculation time after 40K videos is about three orders of
magnitude lower. This makes the decision algorithm based
on the hierarchical histogram clearly the better choice.
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Figure 8: Comparison of the preemptive decision algorithms.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented a framework for large-scale

crowdsourcing of first-person viewpoint videos recorded on
mobile devices. To illustrate the possibilities of this frame-
work, we presented the Street View Live application. This
application offers a service similar to Google Street View,
but with up-to-date videos instead of still images, collected
through large-scale crowdsourcing.

Collecting videos on such a massive scale poses a num-
ber of challenges in terms of network planning. Two chal-
lenges were tackled in this work. The first challenge is to ob-
tain a scalable distributed architecture for the crowdsourc-
ing framework. This architecture was obtained by extend-
ing the classical cloud architecture to a two-layer cloudlet
architecture. Uploading videos to cloudlets close to the user
rather than a distant cloud consumes less total bandwidth
and makes the framework more scalable.

The second challenge is posed by the access network of the
cloudlets, which only has limited upload bandwidth avail-
able. We presented and evaluated several decision-algorithms
that are used to filter out less relevant videos when the access
network to a cloudlet becomes overloaded. These algorithms
are all based on the same twofold structure, namely a com-
pact way to represent the collection of videos and a local
scoring function that is applied to a local segment of this
representation. Through simulation, algorithm parameters
were optimized and a comparison between the different opti-
mized algorithms was made. The best performing algorithm
using a local representation performed at least as well in se-
lecting videos as a more obvious algorithm which required
the entire representation. Moreover, execution times were
three order of magnitude lower and scaled better with video
collection size.

A number of extensions to this work are possible. In the
simulations of the decision algorithms, more realistic load
patterns could be used. The upload behavior of large groups
of users can for example be simulated by using messages on
social network sites such as Flickr, Twitter and Facebook,
as a large number of these messages contain geotags. Fur-
thermore, the decision algorithms don’t take into account
the restrictions on the available storage. These should be
taken into account by extending the algorithm to select a
set of stored videos to be removed to make way for videos
with a higher score.
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Figure 9: Normalized score with respect to the simulation
time. The hierarchical histogram combined with the age
scoring function achieves the best score, shortly followed by
the Average Distance algorithm.
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