
The Impact of Global Communication Latency
at Extreme Scales on Krylov Methods

Thomas J. Ashby1,2, Pieter Ghysels1,3, and Wim Heirman1,4 and Wim
Vanroose3

1 Intel/Flanders Exascience Lab, Leuven, Belgium
2 Imec, Leuven, Belgium

3 Universiteit Antwerpen, Antwerp, Belgium
4 Universiteit Gent, Ghent, Belgium

Abstract. Krylov Subspace Methods (KSMs) are popular numerical
tools for solving large linear systems of equations. We consider their role
in solving sparse systems on future massively parallel distributed mem-
ory machines, by estimating future performance of their constituent op-
erations. To this end we construct a model that is simple, but which
takes topology and network acceleration into account as they are impor-
tant considerations. We show that, as the number of nodes of a parallel
machine increases to very large numbers, the increasing latency cost of
reductions may well become a problematic bottleneck for traditional for-
mulations of these methods. Finally, we discuss how pipelined KSMs can
be used to tackle the potential problem, and appropriate pipeline depths.

Keywords: Krylov methods, extreme scaling, global communication,
reduction latency, pipelining, latency hiding

1 Introduction

Krylov Subspace Methods (KSMs), such as gmres, cg, bicgstab and numerous
other variants, are widely used numerical tools for solving linear systems of
equations Ax = b. They are popular because they are easy to parallelize, meaning
that they can be run quickly, and they do not require direct manipulation of
the matrix A, only matrix–vector products Av, and so can be used easily with
sparse matrices without memory capacity problems. They are the tool of choice
for solving extremely large sparse systems of equations on parallel distributed
memory machines.

The general trend in large scale parallel computing is towards more cores per
node, and more nodes. Because KSMs are such important tools, it is therefore
a valuable exercise to model the future performance of the algorithms assuming
this machine architecture trend will continue into the future. The potential par-
allel inefficiency of the KSMs at extreme scales on distributed memory machines
is the problem we investigate in this paper.

The dependency structures of the KSM basic operations when vector ele-
ments are distributed across a parallel machine are given in Table 1. If the work

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55827785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

per node is fixed, then of these operations the only ones which must necessarily
get more costly as the number of machine nodes increases are the scalar prod-
ucts. Reduction operations on distributed memory machines are dominated by
their latency cost, and have necessarily rather poor parallel efficiency for the
non-local parts of the computation. Consequently the relative cost of this oper-
ation to the others and what the schedule of operations will end up looking like
are both important to gauge the overall parallel efficiency as the scalar products
get more expensive.

Pipelined (a.k.a. Communication-Hiding) KSMs have been proposed as an
alternative formulation of KSMs to tackle the case when scalar products become
an efficiency bottleneck [7]. The approach requires modifying the algorithms of
the KSMs to alter their dependency structure. The extra scheduling freedom thus
introduced is then used to implement a form of pipelining that can significantly
improve the parallel efficiency of the algorithms.

The contribution of this paper is to show in detail how reduction latencies
may become a problem on future exascale machines, and give a first quantifi-
cation of what degree of pipelining in the KSMs may be required to avoid that
latency becoming a bottleneck.

2 Example Problem

As the sparsity pattern, and thus form of the matrix–vector product, is problem
specific, we choose a specific instance to make discussion easier. For our example
problem we take a simple finite difference stencil, being the nearest neighbour
in each direction on a regular 3D grid. The layout is the natural one, with
contiguous sub-cubes of the grid allocated to each machine node. Although this
problem is relatively simple, it is a reasonable approximation to sparse matrices
that have a relatively low degree of connections between grid points. As there are
many problems that use grids derived from physical problems with low spatial
connectivity, including many finite element problems, this is a useful yardstick.

We stick to cubic grids for simplicity. We have chosen four local grid sizes;
1, 503, 1003 and 2003 per machine node (this amount is then further subdivided
over sockets/cores). The largest size gives around 8 million Degrees of Freedom
(DoFs). Although these numbers are not large for full problem sizes, there are
several cases when they are relevant. Firstly, particle-mesh simulations often have
high particle to mesh ratios resulting in thinly spread linear systems. Secondly,
the use of multigrid for preconditioning (or as a solver) is interesting in that
KSMs have been used for the “bottom solve” in a U-cycle, that is to solve the
system once further restriction steps are abandoned as the resulting system will
suffer from too much parallel inefficiency [8]; if the bottom solve requires enough
iterations then pipelining can be useful. Thirdly, strong scaling can lead to thinly
spread problems. The smallest problem size (i.e. 1) is intended to show the limit
case for the problem rather than being a practical grid size.

3

3 Available Parallelism in Krylov Subspace Methods

Table 1. Krylov Subspace Method basic operations

Operation Notation Dependencies

Matrix-vector Ax Depends on sparsity of A and
multiplication machine topology; usually localised

Scalar products < v,w >, ||v|| Global tree
Vector operations αv, v ± w Local (element wise)

KSM basic operations and their dependencies on a distributed memory ma-
chine are given in Table 1. The total available parallelism of a KSM is determined
by the dependencies within and between these basic operations.

3.1 Parallelism within Operations

The two classes of operations with dependencies that result in communication
are the matrix-vector multiplication and the scalar products. KSMs are popu-
lar for use with sparse linear systems. Of particular interest are those systems
where the sparsity can be modelled by a graph with a low number of edges that
approximates a grid structure.

When mapping such a problem and associated matrix onto a parallel ma-
chine, it is a natural mapping to distribute the graph on the machine such that
a small graph neighbourhood becomes a small machine neighbourhood wher-
ever possible, e.g. in our example problem, grid neighbours become machine
neighbours. If the machine network supports low latency communication for all
resulting neighbourhoods, then the cost of the matrix-vector product is either
fixed or dominated by data transmission cost, and this doesn’t change if the
problem size is increased by weak scaling. Such an operation can in principle
be weakly scaled to arbitrary problem sizes without significantly changing its
parallel efficiency.

The reduction operations on the other hand, do not have a fixed level of
parallelism. Their non-local operation structure is one large binary tree of oper-
ations where the leaves are the vector elements. As the number of input values
grows, the height of the tree also grows, albeit slowly. Higher levels of the tree
have many fewer operations than available computational resources, thus reduc-
tions have bad parallel efficiency, which gets worse as the machine gets larger;
the ratio of computation to number of communication events is very low, and
the amount of data sent is also low, so the whole operation is dominated by
network latency costs, with most of the computing elements spending most of
the time idle waiting for values to arrive.

4

3.2 Parallelism between Operations

In the standard KSM algorithms, scalar products are used in such a way that
their parallel efficiency will be affected at extreme scales, and potentially before.
The start of an algorithm iteration involves applying the matrix (also called
applying the stencil, as our sparse matrix is in stencil form) to produce a new
vector, then calculating some scalar products on that new vector. The result of
the scalar products are used to construct the input for the next stencil oper-
ation, and so there is a dependency cycle between stencil and scalar product
operations. This pattern of dependencies occurs in all the methods in one form
or other. Thus, the ratio of the reduction time vs. the time required to do the
communication necessary for a stencil operation is a proxy to gauge general
parallel efficiency of standard KSMs, from the point of view of communication
costs. Note that in some methods, i.e. gmres, there is a dependent sequence of
at least two scalar products per stencil.

The validity of the stencil communication time vs. reduction time metric de-
pends on some assumptions about local operations. As well as the two acts of
communication (with associated computation for the reduction), a KSM itera-
tion requires the local part of the stencil operation and some purely local vector
operations to be performed. The relationship of these to the reduction time and
stencil communication time is discussed in sec. 6; it suffices here to say that in
some circumstances the reduction time stencil communication time dominate.
When this holds, a reasonable portion of the schedule can be spent waiting for
the latency dominated and parallel-inefficient non-local scalar products.

4 Relative Cost of KSM Operations at Extreme Scales

We start by modelling the off-node communication costs in this section. Although
our model is relatively simple, we note that the problem we are analysing results
from the value of the ratios. As such, the absolute values we use in our model
may be wrong, but the conclusions that we come to will still be valid provided
the actual ratios (now, at exascale or later) are similar to the ones we report on.

A formula for the relative cost of the communicating operations at extreme
scale is given below:

δr
δs

=
β +

∑T
i=0(λir + δn)

λs + (Dface/θs)
(1)

where δr and δs are the total time taken for the reduction and stencil operations
respectively. We assume that the reduction takes the form of a series of non-
local communication steps, where data is transmitted on the network, and local
reduction steps where the operations are actually carried out on the data present.
T is the height of the tree of non-local reduction steps, λir is the latency of
traversing the network links and switches for reduction step i, and δn is the
time for executing the local reduction operations on a compute node or network
switch to make an intermediate or final result. β is the cost of broadcasting the

5

reduction result. λs is the maximum latency for traversing the network links
and switches to logically neighbouring nodes for a single stencil step, Dface is
the volume of data to transfer to a neighbour, representing the face of the local
grid cube, and θs is the per-face bandwidth available over the links used for the
stencil operation. Our choice of stencil means that what gets communicated to
neighbours are the six faces of the locally allocated sub-cube of the problem grid,
with the longest time taken to communicate any face determining δs. Stating
the bandwidth parameter as “per face” allows us to model different network
topologies by deriving the per face bandwidth from the network link bandwidth
and the topology.

The reduction operations we consider are of type all-reduce, meaning that the
result of the operation should be made available to all cores. There are several
ways to implement such all-to-all operations. We have chosen a reduction to
a single value followed by a broadcast for the following reasons. True N -to-N
broadcast and butterfly networks of high radix are unlikely to be implemented
for a very large number of nodes due to the prohibitive equipment cost. Also,
mapping such algorithmic approaches on to the network topologies we consider
here is unlikely to gain much if anything in terms of the latency cost after taking
switch contention into account.

4.1 Applying the Model

To use formula 1 we need to fill in the parameters; these, and associated assump-
tions, are given below.

Nodes: Node count estimates for future exascale systems vary, from around
100,000 for “fat nodes” to around 1,000,000 for “thin nodes” [13]. By node we
mean the parts of a machine with their own separate network interfaces (usually
containing several sockets and/or accelerators, each supporting multiple cores
or CPUs). On the assumption that we will get there eventually, at exascale or
shortly thereafter, we take the larger number to illustrate the problem of latency
when scaling to larger node counts.

Network: The latency costs λs and λir depend on the corresponding cable
lengths, a per switch latency, which we assume is the same for all switches in a
given network, and an at-node network to user-process (and vice versa) transfer
latency. Our basic model for cables is based on a square warehouse of densely
packed cabinets each measuring 1m2, with maximum 500 nodes per cabinet.
Cable distance for longer cables is calculated using Manhattan distance between
cabinets, and cable latency is based on signals propagating at the speed of light.
We reduce cable latency within a cabinet to zero to simplify the model (cable
latency costs are dominated by the longer links). We derive the link bandwidth
(Eqn. 2) and router latency (Eqn. 3) from a simple model of a router, based on
the bi-directional router bandwidth and network radix (i.e. number of in or out
ports):

6

linkBW = routerBW /(2 × radix) (2)

routerlatency = 10ns+ 5 × log2(radix) (3)

The constant (10 nanoseconds) in Eqn. 3 is to take account of SerDes and sig-
nalling. The factor 2 Eqn. 2 is to turn a network radix into the total number of
I/O ports on a network router (for bi-directional bandwidth). All router chips
in a given model have the same bandwidth. In the case of multiple networks,
the number of I/O ports can be different for each network. We set the local
node latency cost to move data from a network interface into a user process or
back the other way according to machine type (details below). The height of the
non-local reduction tree, T , is given by the number of nodes (given above) and
the non-local reduction tree radix.

4.2 Machine architecture

Although for our case the scalar products are the limiting factor for available
parallelism in KSMs as the size of a problem grows, the mapping of the KSMs
onto a machine architecture needs to be taken into account to understand ac-
tual parallel efficiency. The main concerns here are the network topology and the
available bandwidth. To apply the model, we take two example machine archi-
tectures. The first is a machine where the grid embeds in such a way that nearest
neighbour communication links are available, and there is a separate Accelerated
Reduction Tree (ART) for reductions; this is a close match with the program
dependencies. An ART is a separate network where the switches are capable
of buffering the incoming values and executing a reduction operation on them
directly before sending the result further up the tree. The reduction requires one
trip up the ART to compute the result, and one trip down it to make it available
to all cores. Machines with accelerated reduction networks include [2,4,3].

The second is a machine with a single high-radix fat-tree network; this rep-
resents a machine where a different network has been chosen due to cost and
flexibility issues, and the network architecture is a less good fit to the depen-
dencies. In the case of a standard indirect tree-like network with no in-built
acceleration, the logical form of the reduction would still be a tree of a cer-
tain radix, but where the local reduction steps are carried out at the leaves of
the tree network. Note that the individual links in the operation tree would be
mapped onto various sets of links in the machine tree network, and thus would
have different total switch latency costs, unlike the ART where only cable length
varies.

After using the parameters and assumptions in sec. 4.1, we need per face
bandwidth θs, non-local reduction step tree radix, local reduction cost δn, and
broadcast latency β to derive a value from our models. These values are either
specific to the machine architecture, or used as range parameters to generate
plots.

7

GPN = 1, TFV ≈ 48 bytes GPN = 503, TFV ≈ 117 KB

GPN = 1003, TFV ≈ 468 KB GPN = 2003, TFV ≈ 1875 KB

Fig. 1. δr/δs for mesh + ART. The x-axis is router bandwidth (0.5 to 5 TBytes/s),
y-axis is increasing ART height (i.e. the different heights given by the radices in the
range 200 to 2), and z-axis is the resulting δr/δs. GPN is Grid Points per Node, TFV
is Total Face data Volume (i.e. per face volume ×6).

θs is derived from the router bandwidth. The bi-directional router bandwidth
is a free parameter which we vary in the plots from 0.5 to 5 TBytes/s. The local
reduction costs are based on an assist circuit serially executing floating point
operations at 2 GHz. To get the height of the tree of non-local reduction steps,
we need a radix. We fix this radix based on the machine architecture. For an
ART, the machine ART radix thus becomes a plot parameter. For a fat-tree, we
make the radix of the non-local reduction tree the same as the network radix, so
there is again a single architecture radix parameter. We use the radix parameter
to generate different tree heights, and plot the tree height and router bandwidth
against the resulting ratio of reduction to stencil time cost.

Mesh and ART We take the link latency for the stencil operation on the mesh
network, λs, based on a cable to each neighbouring node at most 1 metre long,
and the assumption that each node has a Network Interface Controller (NIC)
that also acts as the switch for the mesh network. We assume the bandwidth to
the NIC from the cores is at least as much as the total off-node bandwidth, and
we divide the router chip bandwidth between the off-node links only. We assume

8

that the face exchange can be done in parallel, so that all torus router links are
used simultaneously at full link bandwidth.

The local reduction latency δn is a function of the local operations in the
ART. We assume that the ART supports broadcast directly with no at-switch
copy overhead, so β is just derived from switch and cable crossing costs on the
way down the tree. The core-to-NIC cost is 100ns, based on reported numbers
for a specialised low overhead system [6], which is in line with design choices
such as reduction acceleration hardware.

In Fig. 1 we plot the relative cost of the two operations, where the parameters
are ART height and bi-directional router bandwidth. The number of bits for a
cube face varies from figure to figure; the maximum is 2002× 64 bits, that is the
face of a local 3D cube of double precision floats that has dimension 2003, and
the minimum is 1 × 64, the case where the local cube is a single point.

The model shows that the ratio δr/δs gets worse with taller tree heights and
increased router bandwidth, with the exception that the results for the smallest
face volume are not affected by the bandwidth parameter. Whilst the ratios are
mostly under 1 for the largest problem size (2003), they are mostly above 1 for
the other sizes, and there is a significant amount of the design space above 1.5
for both 503 and 1003.

We consider ratios less than 0.25 to be largely irrelevant for pipelining, on
the basis that a chain of two such scalar products still only costs at most half as
much as a stencil in a standard KSM, and thus the parallel efficiency is already
reasonable. This occurs for very few points, suggesting that for the mesh + ART
the standard KSMs should show a reasonable benefit from pipelining to improve
parallel efficiency for these problem sizes.

Fat-tree For the fat-tree the nearest neighbour latency cost for the stencil, λs,
will be the full cost of a trip via the top node of the tree. Thus the radix and
resulting height of the fat-tree will affect the stencil time δs. Cable latencies are
again derived from the tree layout model, with longer cables now affecting both
operations. Given that each node has one cable link to its immediate parent
switch, which is not attached to any node, the bandwidth available for parallel
face exchange in the stencil operation is one sixth that of the network link
bandwidth (as the stencil is 3D); this is different from the mesh + ART case.
We use a core-to-NIC cost of 800ns for this architecture, based on reported
numbers for hardware that would be used in a commodity cluster ([1] reports a
one-way MPI latency of 1.6µs, giving a maximum of 800ns per core).

A reduction on a network without full acceleration gives rise to a more com-
plicated calculation for δr. As the local reduction of each stage must be computed
at the network leaves, the length of the path taken by the operands through the
network will change; for example, the operands for the first stage of the reduc-
tion could pass through one switch to a neighbouring node, but the operands
for the last stage of the reduction must pass through the top of the tree (and
get back to a leaf node). Due to the latency cost of getting information from
the NIC on to the sockets, we assume that the actual reduction operation itself

9

GPN = 1, TFV ≈ 48 bytes GPN = 503, TFV ≈ 117 KB

GPN = 1003, TFV ≈ 468 KB GPN = 2003, TFV ≈ 1875 KB

Fig. 2. δr/δs for fat-tree. The x-axis is router bandwidth (0.5 to 5 TBytes/s), y-axis
is increasing fat-tree height (i.e. the different heights given by the radices in the range
500 to 5), and z-axis is the resulting δr/δs. GPN is Grid Points per Node, TFV is Total
Face data Volume (i.e. per face volume ×6).

is done by an assist processor on the NIC to avoid this; for a current example
of such an approach, see [12]. We assume that the final broadcast is supported
by the switches, so that the cost for it (β) is the same latency as a trip up and
down the tree network. Note that the lack of acceleration means that it is not a
good fit for the reduction, which must use multiple trips through the tree.

In Fig. 2 we give plots of the relative cost of the two operations, where the
parameters are fat-tree height and router bandwidth. The calculations for the
fat-tree bear some similarity to the mesh + ART results. However, the ratio
values tend to be less. For 2003, roughly half the space is < 0.25, and thus
unlikely to profit much from pipelining. Similarly, the lower tree heights, which
are more likely for a low diameter network, are quite often under 0.25 for 1003.
However, 503 problem sizes will almost definitely benefit from pipelining. The
increase in reduction cost for lower router bandwidth for size 1 is a quirk that
probably results from a contested fat-tree down-link to the nodes that perform
the reduction calculations at each step.

10

Fig. 3. Reduction times. x-axis is tree network height, y-axis is total all-reduce time in
nanoseconds. The bottom line (blue) is for the mesh + ART, the top two lines (green
and red) are for the minimum and maximum fat-tree reduction times respectively (as
the radix varies).

5 Reduction Times, Bandwidth and Pipeline Depth

The reduction times computed from the model are given in Fig. 3. The per
link one-directional bandwidth varies from 155 GBits/s to 1.55 TBits/s for the
torus network as the router chip bandwidth changes, and from 18 GBits/s to 3.7
TBits/s for the fat-tree as both the router bandwidth and tree radix changes.

Measured reduction times for large clusters are difficult to find in the litera-
ture. [6] states that a barrier on a full size machine is expected to take about 6µs.
It is reasonable to suppose that a reduction will also take roughly this amount
of time. Our model gives results which are less that this due to significantly
lower assumed latency in the routers, use of tree networks reducing the number
of hops, and the fact that the barrier time in [6] is somewhat larger than the
value expected from extrapolating directly from their per-hop reduction costs.
If our predictions are overly optimistic, then larger values for reduction times at
exascale will make scalar products more expensive relative to stencil operations,
and deeper pipelines will be necessary.

The required pipeline depths for methods with two reductions per matrix
product are (the ceiling of) twice the ratios given in the result plots. Thus, a
pipeline depth of at least 1 should be applied to everything except the low band-
width/low tree height parts of 2003 for the mesh + ART, and many parameter
points for the 1003 and 503 problem sizes would benefit from pipeline depths of
3 or 4. Depths are somewhat less for the fat-tree, but depths 1 and 2 are still
common, and reasonable parts of the parameter space benefit from 3.

11

6 Off-node vs. On-node Costs

We consider on-node costs for a stencil or an iteration of a KSM as the floating
point operations (flop) and transfers from memory that are required. Instruction
bandwidth is unlikely to be important as the algorithms are concise. The amount
of non-floating point operations and their throughput is heavily dependant on
code implementation details and the features of the core micro-architecture (such
as how many integer pipelines there are and how fast they run compared to the
floating point vector unit etc), and thus is difficult to include in the model in an
unbiased way; thus we omit them.

Rather than very specific predictions of on-node resources, we consider here
the general scaling of on-node costs and how technology advancement may affect
this in the future. In our example problem, each node is allocated a cube of data
to represent its portion of the grid, which is then further subdivided over the
different sockets and cores. In the language of the KSMs, each such grid is a
(local part of a) vector, and the basic operations manipulate these vectors. First
we consider when off-node costs dominate for a stencil as a function of the size
of the local grid, then we extend this reasoning to the KSMs.

6.1 Stencil Costs

Computational Bandwidth Given the latencies of the reduction operations
calculated from the model, the first comparison is against the computational
throughput on the node. Estimates of node performance for exascale vary. Here
we take the “fat” node estimate from [13], which predicts 10 TFlop/s per node.

The number of flops required per element of a centred difference stencil op-
eration is 2n+ k, where n is the dimensionality of the hypercube and k is some
fixed number to take into account the centre point and any normalisation etc.;
n = 3 in our running example, and we take k = 3 to allow for normalisation.
For a local cube of side length g, this gives a total number of flops as 9g3. This
number grows rapidly as g increases. Similarly, the on-node cost for the local
part of a reduction is 2g3.

The node is not computationally limited provided that the flop rate is suffi-
cient to process the appropriate local cube size in the time taken to perform the
corresponding communication. In our example, this means executing (9 + 2)g3

flops in the time taken to perform an off-node all-reduce, when the all-reduce is
the longest of the communications. Compute times for the various problem sizes
are given in table 2. The figures suggest that the computational bandwidth will
start to be a bottleneck shortly before g = 100 for the mesh + ART and shortly
afterwards for the fat-tree topology. We are wary of making any hard claims
here due to the fairly wide error margins on the calculations from the model
and the predictions of effective future computational bandwidth. Nonetheless is
reasonable to suppose that pipelining is likely to be useful for g ≤ 100, which is
also what the δr/δs ratios show. Due to the cube growth of flops required with
g, it is unlikely that g = 200 will not be computational-bandwidth bound.

12

Memory Bandwidth Computing a stencil requires 2n+ 1 reads and 1 writes
per element. If we assume modest cache capacities that can capture the reuse
of the values between different element read accesses (which is reasonable for
low n), then this becomes 1 read and 1 write to main memory per element. An
inner-product requires 1 read and 1 write per element. Thus, the number of off-
chip memory transfers to compute a local stencil and scalar product when the
vector objects do not fit entirely in cache is 4g3.

Although the number of transfers from memory required to compute a stencil
is less than the number of flops needed, the factor of difference is small; only 2.75.
By contrast, the flop to bandwidth ratio in current and predicted future machines
is much larger than this. The ratio of computational bandwidth to memory
bandwidth given in [13] is 20:1. The implication of this trend is that a problem
size that is mostly out-of-cache will be much sooner memory bandwidth bound
than computational bandwidth bound. Thus, the problem should fit (almost)
entirely in-cache for pipelining to be relevant, or future memory bandwidth would
have to be substantially larger than current predictions.

Table 2. Data sizes and local compute times as local cube side length g varies

Volume Total volume Compute Compute
g per vector gmres(10) stencil + reduce gmres

1 8 bytes 88 bytes < 10ns < 10ns
50 976.5 kB 10.4 MB 137ns 662ns
100 7812.5 kB 83.9 MB 1100ns 5300ns
200 62500 kB 671.3 MB 8800ns 42.4µs

6.2 KSM Costs

To extend this sort of calculation to a whole KSM algorithm, we need to take
into account the change in algorithm resource requirements. A prototypical long
recurrence algorithm, truncated gmres(m), requires m + 1 vectors of storage,
where m is chosen to balance rough estimates of iteration cost vs. the number of
iterations needed for convergence. gmres(m) requires 2m+ 8 memory transfers
and 2n + 4m + 7 flops per grid element. We show an analysis for gmres(10).
Note that gmres requires two scalar products, so we are comparing against 2×
the reduction costs given in Fig. 3.

Computational Bandwidth The local gmres(10) computation times are
given in table 2. This suggests that, for this recurrence length, pipelining will
be interesting for g ≤ 60 for the mesh + ART. As the recurrence length in-
creases, this number will drop, but relatively slowly as the recurrence gives a
linear increase in resource requirements. For the fat-tree, pipelining is relevant
for g ≈ 100 for the fastest predicted reduction time. The same caveat for the re-
duction times derived from the model applies here; a relatively small error in the

13

model could make g = 100 a candidate for pipelining gmres, but the estimates
would have to be an order of magnitude off for it to be worthwhile for g = 200.

Memory Bandwidth The ratio of required computational bandwidth to data
bandwidth for gmres(10) is 53:28 (≈ 1.8 : 1), which is worse than the ratio
required for the simple stencil test. Thus, gmres is even more prone to being
memory bandwidth limited. Added to this, the total storage required is m + 1
vectors, thus for gmres(10) the cache should be 1003 × 11 ≈ 83MB. Although
this is somewhat out of the range of current standard nodes (e.g. 4 sockets ×
10MB L3 cache per socket), a doubling of L3 cache size would be enough to keep
virtually all the problem in cache. Thus, g = 100 could well still benefit from
pipelining on exascale machines if cache capacities increase modestly. However,
caches would have to grow by a factor of 15 to fit 2003 × 11 ≈ 671MB; this is
less likely, but not impossible if capacity follows Moore’s law.

Relevant recurrence lengths for gmres are clearly quite small due to cache
capacities when considering pipelining. Pipelining is mostly targeted at short
recurrence KSMs though, as they suffer the worst from strong scaling parallel
inefficiency.

7 Technology Factors

It is very difficult to predict exactly what the machines will look like at exascale
and afterwards due to the jump effects of the introduction of different tech-
nologies. The ratios of the resources may be significantly different. For example,
the computation to DRAM bandwidth ratio may change in the medium term
due to 3D stacking of DRAM and CPU, and/or optical interconnects [16,15].
Any relative increase in DRAM bandwidth will close the gap somewhat between
computational and memory bandwidth, and may make pipelining relevant for
problem sizes that are currently memory bandwidth limited due to limited cache
capacity.

Note that implementing pipelined KSMs requires simultaneous execution of
communicating parts of the algorithm that occur together, and thus they must be
multiplexed onto the network resources. At the very least it must be possible to
execute a stencil whilst waiting for a reduction to complete. We omit a discussion
on these details due to lack of space, and refer to [10] for ongoing work on
asynchronous reductions in e.g. MPI.

8 Related Work

8.1 Rescheduling

There have been various projects looking at how to combine and schedule basic
KSM operations, without altering the dependency structure of the algorithms
themselves, and/or the resulting performance; some examples include [5], which

14

considers rescheduling for bandwidth reduction, and [14], which uses careful
ordering of the operations of variants of the two-sided KSMs to allow scalar
products to be executed at the same time as one of the matrix-vector products;
this amounts to a partial pipelining approach. Our work is differs as we consider
the future impact of an algorithm that does more extensive reordering.

8.2 Partial Pipelining of Gram-Schmidt Orthogonalization

In [9] the authors improve the scalar product latency tolerance of two iteration
Iterated Classical Gram-Schmidt (icgs(2)) by doing the first iteration of orthog-
onalization and normalisation as usual, and then launching the second iteration
in parallel with the creation of the next basis vector. They report moderate
speed-up improvements over standard icgs, but do not attempt to extrapolate
to future computing technology. The context of the work is KSM–based eigen-
solvers.

9 Conclusions and Future Work

This paper has given the motivation for the study of pipelined KSMs [7] based
on a performance model of exascale machines. We have shown how the lack
of parallelism could affect the performance of KSM algorithms mapped onto
different parallel architectures for smaller problem sizes that occur as a result of
strong scaling or use of multigrid. We have also given estimates of the extent of
pipelining that will be needed; depths of 1 are likely to be common, and depths
up to 4 could easily be needed.

Our work can be expanded in a number of ways. A missing component of
our model is OS noise [11] and synchronisation jitter, which would have the ef-
fect of increasing the cost of all-reduce operations and make δr/δs larger, and
pipelines thus longer. Secondly, although it is impossible to validate our model
(as exascale hardware has not been built yet), we plan to adjust our model pa-
rameters to reflect current hardware to see whether pipelining could already be
used. Finally, the scheduling freedom introduced to tolerate all-reduce latencies
in pipelined KSMs could also be used to improve the temporal locality of access
to vector entries. This may have an important impact for larger, memory band-
width limited problems even when reduction latency itself is not problematic.
We will investigate the performance of the algorithms for this size of problem in
future work.

10 Acknowledgements

This work is funded by Intel and by the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT). Thanks to Karl Meerbergen
for his input.

15

References

1. Retrieved from MVAPICH2 website (2012). http://mvapich.cse.ohio-state.

edu/performance/interNode.shtml, 2011.
2. N. Adiga et al. An overview of the BlueGene/L supercomputer. In Supercomputing,

ACM/IEEE 2002 Conference, page 60, nov. 2002.
3. Y. Ajima, S. Sumimoto, and T. Shimizu. Tofu: A 6D mesh/torus interconnect for

exascale computers. Computer, 42(11):36 –40, nov. 2009.
4. B. Arimilli et al. The PERCS high-performance interconnect. In IEEE HOTI

2010, pages 75 –82, Aug. 2010.
5. T. J. Ashby and M. F. P. O’Boyle. Iterative collective loop fusion. In ETAPS CC

2006, pages 202–216, March 2006.
6. D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara, S. Kumar,

V. Salapura, D. L. Satterfield, B. Steinmacher-Burow, and J. J. Parker. The IBM
BlueGene/Q interconnection network and message unit. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’11, pages 26:1–26:10, New York, NY, USA, 2011. ACM.

7. P. Ghysels, T. J. Ashby, K. Meerbergen, and W. Vanroose. Hiding global commu-
nication latency in the GMRES algorithm on massively parallel machines. To be
published 2012.

8. B. Gmeiner, T. Gradl, H. Kstler, and U. Rde. Analysis of a flat highly parallel
geometric multigrid algorithm for hierarchical hybrid grids. Technical report, Dept.
Comp. Sci., Universitt Erlangen-Nrnberg, 2011.

9. V. Hernndez, J. E. Romn, and A. Toms. A parallel variant of the Gram-Schmidt
process with reorthogonalization. In PARCO, pages 221–228, 2005.

10. T. Hoefler and A. Lumsdaine. Overlapping Communication and Computation with
High Level Communication Routines. In Proceedings of the 8th IEEE Symposium
on Cluster Computing and the Grid (CCGrid 2008), May 2008.

11. T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the influence of system
noise on large-scale applications by simulation. In ACM/IEEE Supercomputing
2010, pages 1–11, 2010.

12. A. Moody, J. Fernandez, F. Petrini, and D. K. Panda. Scalable NIC-based re-
duction on large-scale clusters. In ACM/IEEE Supercomputing 2003, pages 59–,
2003.

13. R. Stevens, A. White, et al. Architectures and technology for extreme scale com-
puting. Technical report, ASCR Scientic Grand Challenges Workshop Series, De-
cember 2009.

14. L. Tianruo Yang and R. Brent. The improved Krylov subspace methods for large
and sparse linear systems on bulk synchronous parallel architectures. In IEEE
IPDPS 2003, page 11 pp., april 2003.

15. A. N. Udipi, N. Muralimanohar, R. Balasubramonian, A. Davis, and N. P. Jouppi.
Combining memory and a controller with photonics through 3D-stacking to enable
scalable and energy-efficient systems. In ISCA 2011, pages 425–436, 2011.

16. D. H. Woo, N. H. Seong, D. Lewis, and H.-H. Lee. An optimized 3D-stacked
memory architecture by exploiting excessive, high-density TSV bandwidth. In
IEEE HPCA 2010, pages 1 –12, jan. 2010.

http://mvapich.cse.ohio-state.edu/performance/interNode.shtml
http://mvapich.cse.ohio-state.edu/performance/interNode.shtml

	The Impact of Global Communication Latency at Extreme Scales on Krylov Methods

