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Abstract—HTTP Adaptive Streaming (HAS) is becoming the
de-facto standard for video streaming services over the Internet.
In HAS, each video is segmented and stored in different qualities.
Rate adaptation heuristics, deployed at the client, allow the most
appropriate quality level to be dynamically requested, based on
the current network conditions. Current heuristics under-perform
when sudden bandwidth drops occur, therefore leading to freezes
in the video play-out, the main factor influencing users’ Quality
of Experience (QoE). In this article, we propose an Openflow-
based framework capable of increasing clients’ QoE by reducing
video freezes. An Openflow-controller is in charge of introducing
prioritized delivery of HAS segments, based on feedback collected
from both the network nodes and the clients. To reduce the side-
effects introduced by prioritization on the bandwidth estimation
of the clients, we introduce a novel mechanism to inform the
clients about the prioritization status of the downloaded segments
without introducing overhead into the network. This information
is then used to correct the estimated bandwidth in case of
prioritized delivery. By evaluating this novel approach through
emulation, under varying network conditions and in several
multi-client scenarios, we show how the proposed approach can
reduce freezes up to 75% compared to state-of-the-art heuristics.

Keywords—HTTP Adaptive Streaming, OpenFlow, Prioritiza-
tion, Quality of Experience, Video Freezes

I. INTRODUCTION

Nowadays, video streaming applications are responsible for
the largest portion of the Internet traffic. Particularly, HTTP
Adaptive Streaming (HAS) protocols have become very pop-
ular and can therefore be considered as the de facto standard
for video streaming services over the Internet. Microsoft’s
Smooth Streaming, Apple’s HTTP Live Streaming, Adobe’s
HTTP Dynamic Streaming and MPEG Dynamic Adaptive
Streaming over HTTP (DASH) are examples of available
HAS technologies. In a HAS architecture, video content is
stored on a server as segments of fixed duration at different
quality levels. Each client can request the segment at the most
appropriate quality level on the basis of the local perceived
bandwidth. In this way, video playback dynamically changes
according to the available resources. Such dynamic adaptation
results in a smooth video streaming experience. Nevertheless,
several inefficiencies have still to be solved in order to further
improve users’ Quality of Experience (QoE). As reported
by Akshabi et al. and Riiser et al., current rate adaptation
heuristics perform quality selection sub-optimally, especially
when a sudden bandwidth drop occurs [1], [2]. This leads to
unnecessary quality switches and video play-out interruptions,
which negatively affect the final QoE of the users. Similar
conclusions are drawn by the Conviva report on HAS [3]. The
report reveals that almost 27% of the analysed HAS sessions

exhibit at least one video freeze. This problem is mainly due
to the unmanaged nature of current HAS technologies. This
entails that clients are not aware of the real network conditions
nor are they assisted in improving the delivered QoE. In this
paper, we investigate the aforementioned problems arising in
HAS under volatile bandwidth conditions. Particularly, we
present an OpenFlow-based controller in charge of collecting
information from both the network nodes and the HAS clients.
Based on current network conditions and clients’ status, the
controller can decide to prioritize the delivery of particular
HAS segments in order to avoid video freezes at the clients.
The OpenFlow standard allows to separate the data forwarding
plane of the packets from their control plane. This separation
provides a flexible way to introduce innovative management
solutions in multimedia delivery networks.

The main contributions of this paper are three-fold. First,
we present an OpenFlow-based controller that helps clients
avoiding video freezes under scarce bandwidth conditions.
This controller has the fundamental characteristic to be capable
of collecting feedback from both the network nodes and the
HAS clients to take the best decision on the segment to prior-
itize. Moreover, this feedback is collected without introducing
extra signalling into the network. Second, a communication
mechanism is proposed between the controller and the clients
to inform the clients about the prioritization status of the
downloaded segment. Prioritized segments are marked with
a specific DSCP (Differentiated Services Code Point) field,
which is extracted by the clients during the download of a
segment to understand whether the segment was prioritized or
not. This information is then used to correct the bandwidth
estimation process in case of a prioritized delivery. Third,
detailed experimental results are presented to characterize the
gain of our OpenFlow-based framework compared to state-of-
the-art HAS heuristics.

The remainder of this article is structured as follows.
Section II reports related work on HAS optimization and
OpenFlow. Next, Section III details the proposed OpenFlow-
based framework both from an architectural and algorithmic
point of view. In Section IV, we evaluate our solution through
emulation and show its benefits compared to current HAS
heuristics. Section V presents the main conclusions.

II. RELATED WORK

Akshabi et al. present an analysis of the performance and
drawbacks of some commercially available HAS heuristics,
such as Microsoft Smooth Streaming, Netflix and Adobe
players [1]. They show that current rate adaptation heuristics
perform quality selection sub-optimally. Particularly, these
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heuristics fail to adapt to rapid bandwidth changes. As a result,
interruptions in the video play-out and unnecessary quality
switches occur. Similar conclusions are drawn by Müller et
al. based on tests of different HAS implementations using real
bandwidth traces collected on a mobile network [4]. They also
point out that the Microsoft Smooth Streaming client is able
to achieve the highest average bit rate as well as a low number
of quality switches.

Many adaptation heuristics have been proposed to alleviate
the problems highlighted in the previous paragraph [5]. Tian et
al. present a control theory-based HAS client where the buffer
filling level of the client is controlled [6]. Adzic et al. propose
to add additional information into the manifest file about the
objective quality of the video segments to enhance the rate
adaptation algorithm [7]. The work presented by Claeys et
al. is based on the Markov Decision Process (MPD) [8]. The
solution to the MDP is computed online by means of the Q-
Learning algorithm. Even though purely client-based heuristics
simplify the design and implementation of the algorithms, such
heuristics fail in case of sudden bandwidth drops. This failure
leads to video freezes and consequently low QoE.

In order to solve this issue, we adopt in this paper an
in-network approach, where intermediary nodes are placed
in the network to collect information regarding the available
bandwidth and to improve the behaviour of the clients. The
use of an OpenFlow controller to optimize the behaviour
of HAS clients has been studied by Egilmez et al. [9].
They propose to dynamically re-route HAS traffic to avoid
congested links. As traffic re-routing is only possible in the
core ISP (Internet Service Provider) network while congested
links mainly arise in the access network, this approach is
not able to fully optimize the behaviour of HAS clients.
Several other works apply traffic-shaping techniques to limit
the bandwidth assigned to each client and to drive them to
request the target bit rate [10], [11]. Georgopoulos et al. design
a centralized OpenFlow controller to allocate the bandwidth
for each streaming device in order to obtain fairness from a
QoE point of view [12]. Essaili et al. propose a QoE optimizer
for wireless networks that computes the optimal rate for the
streaming clients, based on the wireless channel conditions
[13]. This value is subsequently used by a QoE proxy in charge
of intercepting and rewriting clients’ requests to match the
requested quality level with the optimal rate. In our previous
work [14], an intermediate node collects QoE statistics on the
clients’ behaviour and returns this information to them. This
measurement is used by the clients to obtain fairness from a
QoE point of view. The idea of prioritization in HAS was first
introduced by Bouten et al. [15]. In their work, the decision
on which segment to prioritize is made independently by each
client. Based on its buffer level, a client asks to prioritize the
next segment to download when requesting this segment to the
HAS server. Nodes equipped with diff-serv capabilities are in
charge of enforcing prioritization in the network. Although this
approach does not require any intelligence in the network, it
exhibits two main drawbacks. First, the prioritization decision
performed by the clients is not network-aware, i.e., clients
do not know if sufficient resources are available to guarantee
the prioritization of the requested segments. This drawback
could easily lead to a congestion of the prioritized queue in
case of sudden bandwidth drops. Second, malicious clients
could repeatedly request a prioritized delivery, as the clients’
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Fig. 1: Logical sequence diagram of the proposed solution.

behaviour is not monitored. In our work instead, the proposed
OpenFlow controller obtains feedback from both the network
nodes and the HAS clients. Therefore, it can decide which
are the most appropriate segments to prioritize based on the
network conditions and clients’ status.

III. PROPOSED OPENFLOW-BASED FRAMEWORK

In this section, we detail the implementation of the
OpenFlow-based framework introduced in the previous sec-
tions. The main component of this framework is an OpenFlow
controller deciding which segments should be prioritized in
order to avoid interruptions in the video play-out of the clients.
As the controller can collect feedback from both the network
nodes and the clients, it has a comprehensive view of the
network and clients’ conditions, and can consequently take the
best decision to maximize clients’ QoE. Another important as-
pect of our solution is that clients are aware of the prioritization
status of the downloaded segments. This information is used by
the clients to refine their quality selection process and to timely
react to bandwidth drops in the network. If clients are not
aware of the prioritization status of the downloaded segment,
two problems arise in their quality decision process. First, the
bandwidth perceived by the clients in case of prioritization
does not match the real bandwidth. Second, a prioritized
segment entails that the decision of the client is not optimal
or that a sudden bandwidth drop has occurred. Consequently,
the prioritization status is used by the clients as an additional
feedback on the quality of their rate adaptation process or on
the network conditions. In the remainder of this section, we
provide an architectural description of the proposed framework
(Section III-A) and detail the controller heuristic to enforce
prioritization (Section III-B).

A. Architectural Description
As introduced previously, the OpenFlow controller helps

the clients avoiding freezes in case of scarce network re-
sources, e.g. bandwidth drops, by introducing prioritization in
the delivery of the video segments. Prioritization is enforced
in the network by using an OpenFlow-enabled switch, the so-
called prioritization switch, which is equipped with a best-
effort and a prioritized queue. Based on controller decisions,
the prioritization switch enqueues clients’ segments in one of
these queues. Prioritization switches should be positioned on
the links where a bottleneck is most likely to occur. Potential
bottlenecks can be identified by analysing the underlying
network or at runtime by monitoring links conditions. For
example, if the traffic exceeds a certain percentage of the
link capacity, a prioritization switch can automatically become
active. Depending on the number of bottlenecks, two types



of network scenarios can be distinguished. When all clients
share a common bottleneck, the best option is to use a single
prioritization switch located before the bottleneck. In a second
and more complex scenario, a multitude of bottlenecks may
simultaneously be present. In this case, we need a system of
prioritization switches, which exchange information with one
or more controllers to decide which segment to prioritize. In
this paper, we focus on the first network scenario while we
propose to investigate the more complex one in future work.

An illustrative sequence diagram of the proposed frame-
work is shown in Figure 1. The OpenFlow controller intervenes
each time a client requests a new segment from the HAS
server and decides whether the analysed segment should be
prioritized or not. To perform this decision, the controller ob-
tains relevant measurements from both the prioritization switch
and the HAS client requesting the new segment. Network
measurements are obtained by using the OpenFlow protocol,
which provides well-defined APIs to collect data from the
OpenFlow switches. More specifically, the controller period-
ically polls the prioritization switch to compute the average
throughput of the best-effort and prioritized queue (not shown
in Figure 1). Given the complexity of implementing a direct
communication channel between the clients and the controller,
client related measurements are transmitted by introducing an
additional field in the header of the HTTP GET message sent
by the client when requesting a new segment. The prioritization
switch is configured to forward the HTTP GET header to the
controller via an OpenFlow rule. The information signalled by
the clients is the current buffer filling level and the size and
duration of the requested segment. Based on this feedback,
the controller decides whether the analysed segment should
be prioritized or not. The actual logic implemented by the
controller is presented in Section III-B. Next, the controller
installs a new OpenFlow rule on the prioritization switch to
guarantee a proper delivery of the analysed segment, i.e.,
best-effort or prioritized delivery. As introduced previously, an
important element of our solution consists of the prioritization-
awareness of the HAS clients. Similarly to what is presented
by Araujo et al., this communication is carried out by using in-
network signalling instead of a direct communication channel
between the controller and the clients [16]. More specifically,
the prioritization switch can be configured to mark prioritized
packets with a specific DSCP field. This field is extracted
by the clients during the download of a segment to under-
stand whether the segment was prioritized or not. As stated
previously, this information is highly relevant for the quality
decision process of the clients. When a client downloads a
prioritized segment, the prioritization mode is triggered. In this
mode, prioritized segments are ignored in the calculation of the
estimated bandwidth because the bandwidth perceived in case
of prioritization does not match the real network conditions.
In addition, the client directly requests the next segment at the
lowest quality. In this way, the client tries to minimize the risk
of video freezes, which is high as the prioritization indicates.
It is worth noting that the prioritization mode is independent
from the actual rate adaptation heuristic implemented by the
client.

An important aspect of our framework is how client related
measurements are collected by the controller. In this paper, we
used an explicit feedback from the client. Another alternative
would be to use session-reconstruction to infer the buffer filling

Algorithm 1 : Prioritization algorithm. The symbol * indicates
the parameters belonging to the heuristic.
Require: prioBan, bandwidth guaranteed to the prioritized channel

maxConsecutivePrio*, maximum number of consecutive prioritizations allowed
safetyMarginDT*, safety margin in the estimation of the segment download time
(always ≥ 0)
α*, smoothing factor of the exponential average for the queues’ throughput estimation

Ensure: prioStatus, prioritization decision. FALSE means no prioritization

1: buffer = GetClientBufferFromHTTP ()
2: segmentSize = GetSegmentSizeFromHTTP ()
3: segmentDuration = GetSegmentDurationFromHTTP ()
4: numConsecutivePrio = GetNumConsecutivePrioritizations()
5: thrBe = GetThroughputBeQueue(α)
6: thrPr = GetThroughputPrioQueue(α)

7: prioStatus = FALSE
8: if numConsecutivePrio < maxConsecutivePrio then
9: totClBe = GetNumClientsBestEffortQueue()

10: eDTBe = (1 + safetyMarginDT ) ×
(segmentSize/(thrBe/(totClBe+ 1)))

11: eThrPr = thrPr + segmentSize/segmentDuration
12: if eDTBe ≤ buffer or eThrPr > prioBan then
13: prioStatus = FALSE
14: else
15: totClPr = GetNumClientsPrioritizationQueue()
16: eDTPr = (1 + safetyMarginDT ) ×

(segmentSize/(min(thrBe+ thrPr, prioBan)/(totClPr + 1))
17: if eDTPr ≤ buffer then
18: prioStatus = TRUE
19: else
20: prioStatus = FALSE
21: end if
22: end if
23: end if

level of the clients, as shown by Huysegems et al. [17]. In this
case, the network can decide autonomously which segment to
prioritize without any feedback from the clients.

B. OpenFlow Controller Logic
The OpenFlow controller helps clients avoiding play-out

interruptions, by enforcing prioritization into the network. The
controller logic is based on two types of inputs: the throughput
of the best-effort and prioritized queue from the prioritization
switch and the buffer filling level, the size and duration of the
requested segment from the HAS client. The decision on which
segment to prioritize is carried out computing an estimate of
the segment download time in the best-effort and prioritized
queue. If a best-effort delivery does not guarantee a timely
download of the segment, i.e., if the download time is larger
than the client buffer filling level, the segment is prioritized.
Algorithm 1 details the operations performed by the controller.

As described in Section III-A, Algorithm 1 is executed
every time a client requests a new segment to download. First,
the controller extracts the client’s buffer filling level and the
size and duration of the requested segment from the HTTP
GET message header (line 1-3). The controller also keeps track
of the number of consecutive prioritizations obtained for the
analysed client (line 4). Then, it obtains the throughput of
the best-effort and prioritized queue (line 5 and 6), which is
computed using exponential smoothing, with the smoothing
factor equal to α. If the number of consecutive prioritizations
is greater than maxConsecutivePrio (line 8), the segment is
enqueued in the best-effort queue. This way, the controller tries
to fairly share the prioritized channel among all the clients.
Otherwise, an estimation of the download time in the best-
effort queue eDTBe is computed (line 10). eDTBe is given by
the ratio between the requested segment size segmentSize and
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the bandwidth per-client available in the best-effort queue. We
assume here the available bandwidth is shared fairly among
the clients. This last value is obtained by subdividing the best-
effort queue throughput thrBe by totClBe+1, the number of
segments currently waiting in the best-effort queue plus one.
Because eDTBe represents only an estimate of the segment
download time, we introduce a safety margin safetyMarginDT.
The algorithm proceeds as in the following. If eDTBe is smaller
than the buffer filling level of the client (line 12), the segment is
not prioritized because the risk of a video freeze is negligible.
We assume here that the buffer decrease during the interval
between the client’s request and the HTTP header analysis is
negligible compared to the total buffer level. The controller
also evaluates whether prioritizing the segment could congest
the prioritized queue. Particularly, the current throughput of the
prioritized queue plus the throughput of the analysed segment
(line 11) has to be lower than the guaranteed throughput
prioBan (second condition on line 12). If this condition is not
met, the segment is not prioritized. This way, the controller
tries to avoid congesting the prioritized queue and thus nega-
tively impacting the delivery of the other segments. Otherwise,
the controller computes an estimate of the download time in
the prioritization queue eDTPr (line 16) similarly to what is
done for the best-effort queue. In this case, the total available
bandwidth is the minimum between the guaranteed bandwidth
prioBan and the total throughput observed on the prioritization
switch interface, i.e., thrBe+ thrPr. Finally, the segment is
entitled for prioritization only if eDTPr is lower than the buffer
level (line 17), i.e., only if a prioritized delivery is actually
effective in avoiding a video freeze.

As far as possible scalability issues are concerned, it is
worth noting that the computation complexity of the controller
heuristic is O(n) with n the number of controlled clients. Thus,
the controller heuristic scales well even for a large number of
clients. Moreover, as explained in Section III-A, a prioritization
switch should be located before the main network bottleneck,
which is typically a link in the access network. Consequently,
only few thousand clients would need to be managed by the
controller at the same time in the worst case scenario.

IV. PERFORMANCE EVALUATION

A. Experimental Setup
The proposed OpenFlow framework is implemented on

the Mininet Network Emulator1. The HTTP server, where
the video content is stored, is an Apache Server. The video
streamed is Big Buck Bunny, composed by 299 segments, each
2 seconds long and encoded at 7 different quality levels: 300,
427, 608, 806, 1233, 1636, 2436 kbps. The HAS clients are

1http://mininet.org

implemented on top of the libdash library [18], the official
reference software of the ISO/IEC MPEG-DASH standard.
The libcurl library2 is used to modify the HTTP GET header
and signal the buffer filling level and the size and duration
of the requested segment to the controller. Libpcap3 is used
to extract the DSCP field from the received packets and
thus enable prioritization-awareness. The buffer size for each
client is equal to 5 segments or 10 seconds. The controller
is implemented using POX4, an extendible Python-based con-
troller. Open vSwitch 1.9.35 is used to realize the OpenFlow
switches. The prioritization switch is equipped with a best-
effort and a prioritized queue. A strict-priority policy was used
for the experiments. The prioritized queue can transmit at a
guaranteed rate of 0.25 × N Mbps, with N the number of
clients. The switch polling time of the controller to obtain the
new throughput of the best-effort and prioritized queues is set
to 0.5 seconds.

The emulated network topology is shown in Fig. 2, where
the position of the prioritization switch is illustrated. The
prioritized queue is installed on the interface towards link LPS.
In order to provide an extensive evaluation of the proposed
framework, we emulate 30 episodes of the video trace and
average the results over the 30 runs. A different variable
bandwidth pattern for each episode is used on link LPS, which
varies each second and is scaled with respect to the number
of clients. As far as the bandwidth pattern is concerned, an
open-source dataset collected on a real 3G/HSDPA network
is used [19]. The available bandwidth for one client has an
average of 2087 Kbps and a standard deviation of 1314 Kbps.
The bandwidth on links LS and Li, with i from 1 to N, is kept
constant and equal to 3×N Mbps and 5 Mbps, respectively.

The rate adaptation heuristic embedded in the HAS clients
is the QoE-RAHAS heuristic [20], with parameters quality-
Window, bufferMin and bufferPercentage set to 70 seconds,
4 seconds and 100%, respectively. In order to provide an
extensive benchmark of the proposed framework, we compare
our results to those obtained using a popular proprietary HAS
client, the Microsoft ISS Smooth Streaming (MSS) client
[21] with parameters panic threshold, lower threshold, upper
threshold and improved timeout equal to 25%, 40%, 80% and 4
seconds, respectively. All the aforementioned coefficients were
set according to our previous work [22].

The QoE model used to evaluate the proposed framework
is a metric in the same range of the Mean Opinion Score
(MOS), which was proposed by De Vriendt et al. [23] and
further improved by Claeys et al. [8]. The QoE experienced
by a client is a function of the average requested quality level,
its standard deviation, the number of freezes and the average
freeze duration.

B. Controller Parameters Analysis
In this section we investigate the impact of the controller

parameters on the performance of our solution and select the
configuration to use in the remainder of the paper. As explained
in Section III-B and Algorithm 1, the controller heuristic
parameters are: (i) maxConsecutivePrio, the maximum number
of consecutive prioritizations allowed for a given client, (ii)

2http://curl.haxx.se/libcurl
3http://www.tcpdump.org
4https://OpenFlow.stanford.edu/display/ONL/POX+Wiki
5http://openvswitch.org



TABLE I: Overview of evaluated parameter configuration

Parameter Evaluated values
maxConsecutivePrio 1, 2, 3, 6, ∞

safetyMarginDT 0, 0.05, 0.1, 0.2
α 0.25, 0.5, 0.75, 1

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 0.25  0.5  0.75  1

A
ve

ra
g
e 

M
et

ri
c 

Q

α

(a)

 2.5

 2.6

 2.7

 2.8

 2.9

 0  0.05  0.1  0.2

Av
er

ag
e 

M
et

ri
c 

Q

safetyMarginDT

(b)

 2.5

 2.6

 2.7

 2.8

 2.9

 1  2  3  6 ∞

Av
er

ag
e 

M
et

ri
c 

Q

maxConsecutivePrio

(c)

Fig. 3: Analysis of the parameter influence.

safetyMarginDT, the safety margin for the estimation of the
segment download time and (iii) α, the smoothing factor of
the exponential average used to compute the throughput of the
best-effort and prioritized queue. In order to properly tune our
framework and select the best configuration, an elaborate eval-
uation of the parameter space was performed. The evaluated
values are reported in Table I, for a total of 80 configurations.
We evaluate our solution with the setup described in Section
IV-A. The network contains 30 clients streaming video at the
same time. The capacity of link LS is set to 90 Mbps, while the
bandwidth on link LPS is variable and has an average of about
63 Mbps and a standard deviation of about 40 Mbps over the
30 emulated episodes. The best configuration is selected on the
basis of the obtained QoE. We introduce a metric to evaluate
the overall performance of the analysed configurations, defined
as QoEk. QoEk is the average QoE computed over the whole
group of clients for the k-th episode. For every configuration,
the average Q of the performance metric QoEk over the 30
episodes is computed. Then, for each evaluated value of each
parameter, the average performance metric Q over the five
best configurations containing the evaluated value is calculated.
Using more than 5 values does not significantly affect the
outcome of this analysis. The results are shown in Figure
3. Small values of the smoothing factor α lead to the best
performance. This means that the throughput estimation of the
best-effort and prioritized queues is computed also considering
the past estimations. Taking the past into account helps filtering
small and temporary bandwidth drops that can be absorbed by
the client’s buffer without the need of prioritization but does
not affect the timely identification of significant drops for the
correct estimation of the segment download time. As far as the
parameter safetyMarginDT is concerned, a 5% increase of the
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TABLE II: Performance summary in terms of quality com-
ponents. The average value over the 30 episodes is reported,
together with the 95% confidence interval. Quality levels are
expressed from 1 (low) to 7 (high).

MSS QoE-RAHAS QoE-RAHASPRIO
QoE 2.05±.20 2.40±.21 2.83±.19

Average quality
level 5.95±.09 5.93±.09 5.91±.08

Quality standard
deviation 1.66±.07 1.71±.06 1.68±.06

Freeze time [s] 12.41±1.4 8.70±1.4 3.27±.45
Freeze number 7.13±0.86 5.71±1.02 1.59±0.28

estimated segment download time results in the best average
metric Q. As the controller can compute only an estimate of
the segment download time, a safety margin equal to zero
entails that the controller can fail identifying segments that
need a prioritized delivery. Also when the safety margin is
large, the performance of our solution drops because the con-
troller overestimates the risk for video freezes. Consequently,
prioritization is enforced in a sub-optimal way. It is interesting
to notice that limiting the number of consecutive prioritizations
does not have a positive impact on performance. When a
segment is prioritized, the client is forced to request the next
segment at the lowest quality. This reduces the risk for further
buffer-depletion and typically allows to raise the buffer level.
As a result, the next segment does not need a prioritized
delivery. Consequently, an explicit, enforced limitation of the
number of consecutive prioritizations is not required.

Based on this analysis, the configuration with maxConsec-
utivePrio not limited, safetyMarginDT equal to 0.05 and α
to 0.25 was finally chosen. It is worth noting that this same
configuration is also the best overall.

C. Rate Adaptation Heuristic Comparison
In this section, we compare the performance of our so-

lution with that obtained by using the MSS and a classi-
cal implementation of the QoE-RAHAS heuristic. The same
settings as in the previous section are used with 30 clients
streaming video at the same time. For each episode and
for each heuristic, we compute the average QoE and the
average freeze time for the entire group of clients. Figure 4
reports the average value over the 30 runs of these metrics



together with the confidence intervals at 95%. Our OpenFlow-
based solution is able to reduce the freeze duration by 75%
and 60% when compared to the MSS and the QoE-RAHAS
heuristics, respectively. This improvement has a direct effect
on the delivered QoE, which increases by 18% compared to
MSS and by 15% compared to QoE-RAHAS. It is worth
noting that also a classical implementation of the QoE-RAHAS
heuristic is able to outperform the MSS one both in terms of
average freeze time and QoE. The introduction of network-
based prioritization allows to further improve the heuristic’s
performance. As it is possible to see from Table II, the main
difference among the heuristics lies in the freeze time. Due
to the high variability of the used bandwidth pattern, clients
can experience a considerable amount of video freezes. The
introduction of prioritization allows to remarkably improve
this metric and, consequently, the final QoE delivered to the
users. The average requested quality slightly decreases in the
QoE-RAHASPRIO case because clients are forced to request
the lowest quality level in case of a prioritized delivery,
as explained in Section III-A. Another interesting metric to
analyse is the number of prioritized segments enforced by
the controller. We first average this value for each run over
the entire group of clients. Then, the average of this value
over the 30 runs is computed. The obtained value is equal to
4.78. This entails that, on average, less than 2% of the video
is delivered in a prioritized way. Nevertheless, as reported
above, this is sufficient to considerably reduce freezes and
increase QoE. This result is mainly due to two aspects. First,
as the controller has a comprehensive view of the network
and clients’ conditions, it is able to prioritize the segments
that most likely will result in a video freeze. Second, when a
segment is prioritized, the client enters the prioritization mode
and directly requests the lowest quality level. This approach
helps reducing congestion occurring during bandwidth drops
or scarce bandwidth conditions and consequently decreasing
the risk of freezes also for the other clients.

V. CONCLUSIONS

In this paper, we presented an OpenFlow-based framework
to improve the Quality of Experience of HAS clients and re-
duce interruptions in the play-out of the video clients. This was
necessary as state-of-the-art rate adaptation heuristics suffer
from non-negligible video play-out freezes in case of sudden
bandwidth drops or scarce network resources. This objective is
achieved by introducing prioritization in the delivery of HAS
segments. An OpenFlow controller collects information on the
overall network conditions and the HAS clients’ status and
decides whether a particular segment has to be prioritized or
not in order to avoid a freeze at the client. Clients are also
aware of the prioritization status of the downloaded segments
in order to react properly to prioritization. Extensive emulation
experiments using Mininet have validated the effectiveness of
the proposed approach. Particularly, we have compared our
OpenFlow-based framework with the proprietary Microsoft
ISS Smooth Streaming client and a classical implementation
of the QoE-RAHAS heuristic [20]. In the evaluated bandwidth
scenarios, we were able to show that our OpenFlow framework
has resulted in a better video quality and in a reduction of video
freeze time up to 18% and 75% respectively, when compared
to the benchmark algorithms.

Future research includes the investigation of session-

reconstruction methods to obtain the buffer filling level of
the clients at the controller side. In this case, the network
can decide autonomously which segment to prioritize without
any feedback from the clients. We propose to study more
complex network scenarios involving multiple bottleneck links,
by leveraging a distributed system of OpenFlow controllers
communicating with each other, and to evaluate the perfor-
mance of the OpenFlow controllers in terms of scalability
properties and hardware requirements. Moreover, we plan to
implement other state-of-the-art rate adaptation heuristics to
obtain additional insight into the advantages of the proposed
framework and to investigate how our solution can benefit from
the Server- and Network-assisted DASH (SAND), a recent
standardized solution proposed by MPEG for network-assisted
adaptive streaming.
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