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Abstract. Software defined networking (SDN) is a recent architectural framework 

for networking, which aims at decoupling the network control plane from the physical 

topology and at having the forwarding element controlled through a uniform vendor-

agnostic interface. A well-known implementation of SDN is OpenFlow. The core idea 

of OpenFlow is to provide direct programming of a router or switch to monitor and 

modify the way in which the individual packets are handled by the device. We 

describe our implemented fast failure recovery mechanisms (Restoration and 

Protection) in OpenFlow, capable of recovering from a link failure using an 

alternative path. In the demonstration, a video clip is streamed from a server to a 

remote client, which is connected by a network with an emulated German Backbone 

Network topology. We show switching of the video stream from the faulty path to the 

fault-free alternative path (restored or protected path) upon failure. 

 

1.  Introduction 

      Split architecture is a concept of decoupling the control functions from the 

forwarding elements and defining an open programmable interface between them. 

This split means that there are separated entities (physically) that remotely control 

several forwarding elements, which allows the independent design of control plane 

and leads to Software Defined Networking (SDN). One of the most known 

implementations of SDN is OpenFlow [1], which has gained significant interest from 

many research communities, and many of the research challenges behind it have been 

investigated in a number of projects all around the globe. In OpenFlow networks, one 

or more OpenFlow switches are controlled by separate devices (controllers) that 

communicate with the OpenFlow switches via the OpenFlow protocol. OpenFlow 

(specification 1.1 and beyond)  provides the concept of FlowTables and a GroupTable 

[2], which is an abstraction of the Forwarding Information Base (FIB). We 

implemented fast failure recovery mechanisms in OpenFlow, capable of recovering 

from a link failure using an alternative path. We demonstrate the effectiveness of the 

implemented mechanisms by emulating a large scale German backbone network and 

achieving a recovery time of less than 50 ms. 

 

2.  Our implemented Mechanisms and Experiment on High Speed Testbed 

      One of the European projects named SPARC [3] studies how OpenFlow can be 

deployed in carrier-grade networks. The carrier-grade network should recover from 

the failure within 50 ms. We implement two well-known mechanisms of failure 

recovery i.e. restoration and protection in OpenFlow networks. In the case of 
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restoration, the alternative path is established by the controller when it receives the 

failure notification from the OpenFlow switches [4,5]. In the case of protection, two 

disjoint paths (working and protected) are established by the controller before the 

failure occurs in the network. When the failure is detected in the working path, the 

traffic is switched to the protected path. We use a fast-failover type of the group-entry 

[2] to switch traffic between two different paths. This type is responsible for 

executing one of the action buckets of the group-entry as well as switching to another 

bucket upon failure. In our protection experiment, we establish an additional BFD 

session to monitor the failure in the working path. Once the BFD session stops 

receiving the BFD packets, the OpenFlow switch changes the associated alive-status.  
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Fig. 2A: Emulated Topology and On Site Portable Testbed    B: Virtual-wall Testbed 

 

We emulated our recovery mechanisms. in a nationwide German network topology 

(Fig. 2A). Each of the switches in Fig. 2A is also connected to a server (not shown) 

and has a dedicated interface to a switched LAN which establishes connection with 

the controller. Our testbed where this emulation is carried out is shown in Fig. 2B. 
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Fig. 3: Recovery Experiment 



For the experimentation, we implement our recovery mechanisms in a NOX 1.1 

controller and OpenFlow 1.1 software, recently developed by Ericsson [6]. We 

generate 182 different flows by using the Linux kernel module pktgen, break one link 

between switches and find recovery time. In our restoration experiment, the switches 

detect the failure due to loss of signal, which is approximately equal to the time when 

the first flow is restored in the network. On the other hand, the switches in the 

protection experiment detect the failure in 33 to 40 ms by establishing BFD sessions. 

The results of the experiment are depicted in Fig. 3. In Fig. 3, the X-axis represents 

the broken link (the number in brackets of Fig. 2A).; the Y-axis represents the 

recovery time. The minimum value is the time it takes to recover the first flow; the 

maximum value is the time it takes to recover all the flows; and the average value is 

the expected time for any flow to be recovered after the failure. In our nodes, 

Hannover node where we break the link 12 or 15 (Fig. 2A) detects the failure within 

50 ms in restoration. However, for other nodes, this value is between 167 to 210 ms 

(Fig. 3). The results show that restoration takes approximately 80 to 100 ms after 

detection of the failure (or after first flow is restored) and protection takes 1 to 3 ms.  

 

3. Demonstration on Portable Testbed 

In the on-site demonstration, we show our implemented restoration and protection in 

OpenFlow networks where a video server at one laptop streams a commercial video 

clip continuously, while the video client at other laptop receives and plays it in real 

time. We remove the link 15 (dotted link in Fig. 2A) from our emulated German 

topology to demonstrate it with two laptops, which consist of two Ethernet ports to 

communicate with each other. Mininet is used in the experiments to emulate this 

topology. We extend the Mininet software to send or receive the traffic from the 

physical port. For the demonstration, half of the topology is emulated in the first 

laptop and the other half is emulated in the second laptop (shown in Fig. 2A). In the 

topology, one NOX controller controls all the forwarding switches including switches 

emulated in the other laptop. Therefore, we use one Ethernet port for the working 

path; whereas other Ethernet port for the protected path and also for the 

communication between the controller and the switches of the other laptop. During 

the demonstration, we remove the Ethernet cable of the working path and show 

switching of traffic to the alternative path.  
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