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Abstract: The thin client computing paradigm shifts 

processing capabilities from the device to the network. 

Applications are executed on network servers and the 

terminal functionality is limited to capturing user 

input and rendering the display updates. Since the 

amount of processing by the terminal is reduced, thin 

clients are potentially energy efficient devices, making 

them highly appealing to mobile users. However, 

intensive network communication is required to 

convey user input and display updates between server 

and terminal. The increased power consumption of the 

device radio platform might undo or even exceed the 

savings achieved by the reduction in local processing. 

In this paper, two power-saving strategies for thin 

client are presented: adaptive content encoding and 

improved wireless link layer control algorithm. The 

strategies have been experimentally validated in three 

scenarios. This work was done in the scope of the 

European FP7 MobiThin project, focused on the 

adaption of wireless and mobile thin client computing. 
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1 INTRODUCTION 

A thin client heavily relies on a remote server for 

processing activities. It merely acts as an interface, 

conveying input and output between the user and the 

remote server, rather than executing the applications 

locally. The required client functionality is limited to 

capturing user input and rendering display updates 

received from the remote server. The communication is 

established through a remote display protocol.  

 

Figure 1 - User input is sent to the application server. Resulting 

display updates are sent back to the client. 

The concept enables the consumption of even the most 

demanding applications and services on resource 

constrained terminals. This is of particular interest in the 

context of mobile devices, where users are nowadays 

often obliged to fall back on a restricted version of the 

applications, tailored to the specifics of the underlying 

mobile phone operation system. Another major advantage 

of mobile thin client computing is that the reduction in 

required terminal processing hardware allows to make the 

mobile device more lightweight and potentially more 

energy efficient. 

The thin client paradigm trades local processing for 

network communication. In a mobile device context, the 

terminal will most probably be connected to the server 

over a wireless interface, such as WiFi, UMTS or LTE. 

The power required by the wireless network interface card 

to transmit and receive remote display protocol traffic 

might undo, and eventually exceed the power savings 

achieved by the reduction in processing on the terminal. 

This paper contributes to an optimization of wireless thin 

client devices. It carries out an analysis of the power 

consumption of the wireless platform due to the remote 

display protocol traffic and explores two ways to optimize 

the power consumption, located at different layers of the 

communication stack. The first strategy is an 

improvement of the wireless link layer control algorithm 

on the device, by taking into account the current state of 

the physical radio interface. At a higher layer in the 

communication stack, the presentation layer, terminal 

power savings are achieved through a more efficient 

content encoding by the application server, thereby 

reducing the required bandwidth and the terminal 

decoding effort. 

The reported research has been conducted in the scope of 

the FP7-funded MobiThin project [1], addressing 

important blockers of the wide adoption of the wireless 

thin client computing paradigm. In addition to the design 

of a suitable framework for thin client service delivery 

and provisioning, research is conducted into remote 

display protocols. This includes the development of a 

protocol adapting to the application content and wireless 

network characteristics. Specific attention is paid to 

minimize the induced terminal power consumption.  

The remainder of this paper is structured as follows. A 

survey of related work on power consumption of thin 

clients is presented in section 2. Both power optimization 

strategies are elaborated on in section 3. Section 4 details 

the experimental setting in which the results of section 5 
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have been achieved. The main conclusions are set out in 

section 6. 

2 RELATED WORK 

The power efficiency of thin clients, compared to desktop 

PCs, was previously studied in [2]. The authors 

demonstrate how some thin client devices use up to 85 % 

less power than their PC rivals in a real world 

environment. A more generic viewpoint is taken in [3], 

where the authors study the environmental impact of thin 

clients compared to desktop PCs, taking into account the 

production, distribution and operational phase. In 

previous work, we studied the impact of the increased 

power consumption of application server farms (server 

powering, cooling) on the power efficiency of the thin 

client use case, compared to the classical desktop case 

[4],[5]. 

In [6], we carried out a detailed analysis of the power 

consumption due to thin client protocol traffic. Some 

guidelines for wireless link layer optimization were 

formulated, which are validated in the current paper.  

Technical details on the adaptive content encoding 

mechanism, which is the second power optimization 

strategy under study in this paper, are given in [11]. While 

the previous paper focused solely on the bandwidth and 

QoS optimization, the present paper studies the power 

efficiency of this approach.  

 

3 POWER OPTIMIZATION 

This section describes two different power optimization 

strategies for a thin client environment. As outlined above, 

the first strategy is located at the wireless link layer, while 

the second is located at the upper layer of the 

communication stack: the presentation layer. 

3.1 Wireless link layer control 

The radio platform of a device can be in 4 different power 

states: sleep, idle, send and receive mode. These states are 

differentiated by the activation of certain platform 

components. In idle state the terminal can detect incoming 

frames because the front-end is activated, while in sleep 

mode all components are turned off and no incoming 

frames are detected. The send and receive state are the 

most power consuming and correspond to the terminal 

state of transmitting or receiving data. The total radio 

platform energy consumption depends not only on the 

active components in a given radio power state, but also 

on the time they remain in that state. This is steered by the 

wireless link layer control algorithm. 

As the power amplifier is the most power consuming 

component, most reference control algorithms adopt the 

maximum-throughput strategy, aiming to transmit the 

data as fast as possible to have some time spent in idle or 

sleep mode afterwards. In the remainder of this paper, we 

refer to this algorithm as Reference Solution (RS). 

However, the RS leads to a maximum activation of the 

power amplifier. As the power amplifier consumption 

does not scale linearly with the transmission rate, 

transmitting at a lower rate and thus a lower activation of 

the power amplifier might turn out to be more energy 

efficient, although we spend more time in the sending 

state. In [6], an improved control algorithm was presented, 

that takes into account models of the platform power 

consumption and the current radio channel statistics. 

Based on a predefined database with optimized 

configurations in function of the current channel 

conditions and the data rata requirements, link layer 

parameters are tuned, such as modulation and code rate, 

as well as power amplifier settings, such as the signal 

output power. As the algorithm works cross-layer 

between the wireless link and the physical layer, it will be 

referred to in this paper as XCTRL.  

3.2 Adaptive content encoding 

Current remote display protocols such as VNC-RFB [7], 

Microsoft’s RDP [8] and Citrix’ ICA [9] are optimized 

for rather static displays of office applications, such as a 

text editor or a spreadsheet. The transport of multimedia 

data over a remote display protocol is very inefficient, 

leading to high bandwidth requirements [10]. Video 

codecs such as MPEG-2 are optimized to handle fast 

moving images in a bandwidth efficient manner. We have 

developed an adaptive encoding infrastructure, depicted 

in Figure 2.  

 

Figure 2 - Adaptive encoding. The amount of motion in the graphics 

is analyzed and the best transmission mode is selected. 

The amount of motion in the graphics is analyzed. For 

static displays, the VNC mode is selected and for high-

motion graphics the streaming (H.264) mode is applied. 

In [11], we have detailed this architecture and 

demonstrated the gains in bandwidth. While the streaming 

mode can offer smooth multimedia graphics, it was 

shown that the decoding of H.264 requires more CPU 

cycles than decoding VNC, advocating the overhead 

hybrid mechanism as it allows to switch back to VNC for 

low-motion scenarios. In the current paper, we investigate 

the power consumption of both modes and study if the 

wireless platform energy savings due to the bandwidth 

reduction of the streaming mode is not undone by the 

increased decoding complexity. 

4 EXPERIMENTAL SETTING 

4.1 Test scenarios  

To isolate the effects of both mechanisms described in the 

previous section, different test scenarios were elected to 

validate both mechanisms.  

4.1.1 Wireless link layer control algorithm 

In order to asses the specific benefits of the wireless link 

layer control algorithm, the content encoding should be 

fixed, in our case we chose to fix it to VNC-RFB. As 



 

VNC is designed for office related work, the elected test 

scenarios cover text editing and browsing, while 

multimedia was excluded to avoid biasing the test 

results [10]. The main differentiator is the amount of 

generated traffic. The three scenarios listed below are in 

increasing order of required downstream bandwidth. 

 Text editing: the user opens a text editor 

(OpenOffice Writer), inserts a title and subtitle 

and types half a page of text. Afterwards, a 

picture is inserted and a few more sentences are 

typed, before closing the text editor. 

 Static browsing: the user navigates through the 

IceWeasel browser to different websites 

containing rather static content. Successively, 

the user logs in to a GMail account, reads and 

replies to an e-mail, and reads a few articles on 

the BBC news website. As the news website is 

updated frequently, it was made available offline 

to keep the content exactly the same over the 

different measurement iterations. 

 Dynamic browsing: the user navigates through 

the IceWeasel browser to different websites, 

containing more dynamic content like JavaScript 

or Flash. Visited websites include 

www.creaktif.com, www.cafesonique.com, 

www.youtube.com  

4.1.2 Adaptive encoding 

The scenarios described above are not suited to test the 

adaptive encoding mechanism because no switching 

between the encoding modes would occur. Therefore, two 

new test scenarios were selected, specifically oriented to 

one of both encoding modes. More specifically, video was 

included to test the streaming mode. 

 Static: a text editor (OpenOffice Writer) is 

started through the menu bar of the desktop. A 

text is typed, this text is then selected and 

aligned by the “justify” command. A figure is 

inserted, followed by a caption of two lines of 

text. At the end, the user scrolls back to the top 

and closes the text editor. 

 Dynamic: a video file is played with the VLC 

media player in full screen mode. The video 

repeats in an infinite loop. 

 

4.2 Measurement set-up 

The testbed is depicted in Figure 3. It comprises a VNC 

server and client, connected via an internal fixed network 

to the 802.11 link simulator. At the terminal, the VNC 

viewer translates the user events to VNC protocol 

messages, which are then relayed to the VNC server 

through the simulator. The server encodes the 

corresponding graphical updates in VNC protocol 

messages to be returned to the terminal. 

 

Figure 3 - The testbed comprises a VNC server and client, connected 

by a simulated 802.11 link. The NS-2 simulator models the wireless 

channel transmission as well as the power consumption of the 

wireless platform on both access point and terminal. 

The 802.11 link simulator is completely transparent to the 

server and the terminal. Implemented in NS-2, its 

functionality is twofold. First of all, it implements a MAC 

and PHY stack to mimic data transmission between 

access point and terminal over 802.11. Different channel 

parameters can be configured: path loss, coherence time 

and terminal speed.  

The second functionality of the simulator is the 

assessment of the power consumption. For each of the 4 

modes of the wireless platform, models of the power 

consumption of the various parts of a wireless platform of 

both the access point and the user terminal were 

implemented in the simulator. The simulator keeps track 

of how much power is consumed by the wireless platform 

in every mode, at both the access point and the user 

terminal. 

 

5 EXPERIMENTAL RESULTS 

5.1 Wireless link layer control algorithm 

The power consumed by the wireless platform was 

measured for three scenarios described in section 4.1.1, 

using the testbed depicted in Figure 3. For every scenario, 

a series of user events was recorded by an in-house 

developed VNC replay tool, ensuring that exactly the 

same application layer traffic is generated when repeating 

the same scenario for different wireless channel parameter 

configurations.  

The channel coherence time is set to 0.1 s, 1 s and 10 s. 

Experiments are performed for both static and moving 

terminals. For a static terminal, located at a fixed distance 

from the base station, the average path loss is varied from 

60 dB to 90 dB. For a moving terminal, the terminal is 

located at the start at a distance of 10 m from the base 

station and moves away from base station with fluctuating 

and increasing path loss. At the end of trajectory, the 

terminal is located at 40 m from the base station. The 

movement speed of the terminal is set to 1 m/s, 3 m/s and 

5 m/s.  

 

From all channel condition parameters, the channel path 

loss seems to have the largest influence on the power 

consumption, while the impact of the channel coherence 

time proves to be rather minimal. Figure 4 demonstrates 



 

the influence of the channel condition on the power 

consumption.  

 

 

Figure 4 - Average power consumption for different 

scenarios with static terminal  

 

For both RS and XCTRL, the power consumption 

increases with the path loss. A degraded channel leads to 

an increase in the number of retransmissions and requires 

using less power efficient data modulations. This 

increases the time and energy spent in send and receive 

mode. The XCTRL algorithm takes into account the 

current channel conditions and adapts its transmission 

strategy, as previously described in section 3.1. The gains 

increase when there is more downstream traffic, as the 

terminal has to send more acknowledgements (ACKs) and 

accordingly can go more into sleep mode immediately 

after sending these ACKs. 

Table 1 and Table 2 compare the energy consumption in 

all three scenarios when the RS or the XCTRL algorithm 

is applied. 

 

Table 1 - Comparison of the power consumption for channel path 

loss of 60 dB, coherence time 0.1 s and a static terminal 

Scenarios RS 

[J/s] 

XCTRL 

[J/s] 

Gain 

[%] 

Office typing 0.21 0.20 5 

Static Browsing 0.26 0.24 8 

Dynamic browsing 0.68 0.55 23 

 

Table 2 - Comparison RS and XCTRL for a channel path loss of 60 

dB, coherence time 0.1 s and a moving terminal at 1 m/s 

Scenarios RS[J/s] XCTRL[J/s] Gain[%] 

Office typing 0.21 0.20 5 

Static Browsing 0.27 0.25 8 

Dynamic browsing 0.72 0.62 16 

 

The total power consumption is the sum of the energy 

consumed in send, receive, sleep and idle mode. With 

current experimental conditions, having no background 

traffic in the network, most of the power is consumed in 

idle mode. For low traffic scenario, e.g. text editing, this 

happens due to the fact that there is only small amount of 

data to send or receive. Consequently, 90 % of total 

power is consumed in idle mode. For high traffic scenario, 

e.g. dynamic browsing, idle mode consumes almost half 

of the total power consumption.  

Figure 5 shows a breakdown of the power consumption 

by thin client in the different modes for dynamic 

browsing scenario. This is the scenario with the most 

downstream traffic. The other scenarios have not been 

included due to space constraints and because the 

conclusions are largely similar. 

 
(a) Reference solution - channel coherence time = 0.1s 

 

(b) XCTRL - channel coherence time = 0.1s 

 
Figure 5 - Power consumption in different modes for 

the dynamic browsing scenario 

From Figure 5, it is clear that the XCTRL algorithm is 

able to reduce the relative (and absolute) power consumed 



 

in the send state, because of its more efficient 

transmission strategy explained before.  

 

The energy spent in the receive state is largely dependent 

on the amount of bytes generated by the application 

server. Consequently, no significant wireless link layer 

strategy at the client can be expected here, rather some 

efficiency improvements should be done when encoding 

the data. The adaptive encoding mechanism is an example 

of such an optimization and is explained in the next 

section. 
 
Besides limiting the time spent in send and receive state, 

energy gains could be achieved by putting the terminal 

more in sleep mode and less in idle mode. Currently, the 

terminal cannot go into sleep mode, as it might miss any 

relevant data. If the application and wireless platform 

could agree on data-free periods between the client and 

base station, the terminal could be put in sleep mode, as it 

can be sure not to miss any relevant data. As this 

mechanism would affect the throughput and increase 

additional delays, care should be taken to maintain a 

sufficient user Quality of Service, e.g. the sleep interval 

should not significantly degrade the user interactivity 

experience. 

 

5.2 Adaptive content encoding 

Commercially available hardware devices were used to 

test the adaptive content encoding mechanism, in order to 

include the power consumption of the CPU when 

decoding and rendering the content. Hardware 

specifications are shown in Table 3. The client is 

connected to the server via a WiFi access point. 

Table 3 - Hardware characteristics  

Server Thin Client 

Intel QuadCore 2.73 GHz Asus EEE pc 

Intel Celeron M 

2 GB RAM 512 MB RAM 

1 Gbps NIC WiFi 

Linux Ubuntu Linux Debian 

Hybrid VNC server Hybrid VNC client 

 

The energy measurements are performed by removing the 

battery from the device and measuring the current drawn 

from and voltage over the DC side of the adapter. Both 

current and voltage are simultaneously measured with a 

separate Velleman DVM345DI Digital Multimeter. One 

sample is taken per second. Every experimental run lasted 

one hour.  

Table 4 shows the average energy consumed by both 

encoding mechanism, while executing the scenarios of 

section 4.1.2. The switching algorithm was disabled, and 

so either the VNC or the streaming encoding mode was 

applied during a single experiment. From an energy point-

of-view, the table shows that VNC, is power efficient for 

office-type of applications but does not cope well with 

video-type of applications. Streaming is the better option 

for dynamic content, but is in comparison with the thin 

client protocol, not suited for static scenarios.  

If VNC is seen as the reference encoding scheme, 4% of 

the consumed energy can be saved when transferring 

dynamic content in streaming instead of VNC mode. For 

static content, VNC is the better option because when 

streaming mode would be used, 1.6 % more energy would 

be consumed. Although the differences in energy 

consumption for both modes are relatively small, we 

remind the reader that the adaptive content encoding 

mechanisms was primarily designed to combine 

bandwidth efficiency and optimized QoS [11]. These 

results confirm that, for dynamic content, the more 

complex decoding of the streaming mode is still more 

power efficient than using VNC. 

Table 4: Average energy consumption of streaming and VNC  

for both scenarios 

 Static Dynamic 

VNC 12.32 J/s 13.49 J/s 

Streaming 12.52 J/s 12.95 J/s 

 

Figure 6 depicts in more detail the momentary consumed 

power related to the encoding applied for the graphical 

updates. In this one-hour experiment, the static scenario 

explained earlier was repeated five times. Every run of 

this static scenario takes about 4 minutes, resulting in a 

static period in the trace of 20 minutes. Then, in the same 

thin client session, the dynamic scenario is executed for 

20 minutes, again followed by 20 minutes of looping the 

static scenario. The full line shows the energy consumed 

by the adaptive encoding protocol. The dashed line shows 

the average energy that would be consumed if in all cases 

the “inappropriate” encoding would be applied, following 

Table 4: streaming static content and encoding dynamic 

content using VNC. 

 

Figure 6 – Energy consumption of the Asus EEE PC. 

Besides the already demonstrated bandwidth efficiency 

and QoS improvements [11], this experiment proves that 

the adaptive encoding mechanism chooses the less power 

consuming mode as well.  



 

The spikes in the graph can be explained by a temporary 

switch in encoding mode. The mode decision algorithm is 

based on the amount of pixels that have changed in a time 

window of consequent graphical updates. This window 

has to be kept small enough in order to react to the 

circumstances in a timely manner: if the user starts video 

playback the algorithm should switch to streaming quite 

fast. On the other hand, the time window must be large 

enough to avoid switching unnecessarily: scrolling a text 

file while typing ideally should not cause a switch. The 

settings of the switching algorithm have been defined 

empirically, but from Figure 6, the big spikes show that 

for this case the algorithm switched unnecessarily. In the 

static scenario, a figure is inserted and then the document 

is scrolled down. This sequence incurs big differences in 

the screen and took longer than the time window which 

caused a switch to streaming mode and a switch back to 

VNC mode shortly after. The spikes in the dynamic 

period of the test were more appropriate: the video file 

that was played back contained a closed period of 15 

seconds of solid black colour. In this case the algorithm 

decided correctly that it would be overkill to stream solid 

colour. 

6 CONCLUSIONS 

 Significant terminal power savings can be achieved by 

delegating the application processing to an application 

server in the network. An intensive network 

communication is required to exchange user input and 

display updates between terminal and server. On wireless 

devices, the incurred power consumption of the wireless 

platform might undo or even exceed the power savings 

realized by the reduction in terminal processing.  

In this paper, two strategies were presented to limit the 

power consumption on thin clients. By taking into 

account physical layer parameters to tune the wireless link 

layer transmission settings, energy savings up to 23 % 

were achieved. The second strategy aims for an 

optimization of the content encoding: static encoding is 

encoded through the VNC protocol, while more dynamic 

multimedia content is encoded through video streaming. It 

was shown that this approach results in more efficient 

power consumption, along with a reduction in bandwidth 

and an optimization of QoS. 

Future work in this area will merge both tracks. Through 

a cross-layer framework, the wireless link layer control 

algorithm will communicate with the application and 

encoding layer. Feedback can be given on the available 

throughput of the wireless channel to tune the content 

encoding parameters.  
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