
Corresponding author: Farhan Azmat Ali, IBBT-IBCN, Deparment of Information Technology, Ghent University, Gaston Crommenlaan
8 bus 201, 9050 Gent, +32 9 3314900, farhan.azmatali@intec.ugent.be

Reducing power consumption

of mobile thin client devices

 F. Azmat Ali1, P. Simoens1, B. Vankeirsbilck1, L. Deboosere1, B. Dhoedt1, P. Demeester1,
R. Torrea-Duran2, C. Desset2

1
IBBT-IBCN, Department of Information Technology, Ghent University, Gent, Belgium;

2
IMEC, Leuven, Belgium

E-mail: 1farhan.azmatali@intec.ugent.be, 2torrea@imec.be

Abstract: The thin client computing paradigm shifts

processing capabilities from the device to the network.

Applications are executed on network servers and the

terminal functionality is limited to capturing user

input and rendering the display updates. Since the

amount of processing by the terminal is reduced, thin

clients are potentially energy efficient devices, making

them highly appealing to mobile users. However,

intensive network communication is required to

convey user input and display updates between server

and terminal. The increased power consumption of the

device radio platform might undo or even exceed the

savings achieved by the reduction in local processing.

In this paper, two power-saving strategies for thin

client are presented: adaptive content encoding and

improved wireless link layer control algorithm. The

strategies have been experimentally validated in three

scenarios. This work was done in the scope of the

European FP7 MobiThin project, focused on the

adaption of wireless and mobile thin client computing.

Keywords: thin client, power consumption, wireless link

layer control, adaptive content encoding

1 INTRODUCTION

A thin client heavily relies on a remote server for

processing activities. It merely acts as an interface,

conveying input and output between the user and the

remote server, rather than executing the applications

locally. The required client functionality is limited to

capturing user input and rendering display updates

received from the remote server. The communication is

established through a remote display protocol.

Figure 1 - User input is sent to the application server. Resulting

display updates are sent back to the client.

The concept enables the consumption of even the most

demanding applications and services on resource

constrained terminals. This is of particular interest in the

context of mobile devices, where users are nowadays

often obliged to fall back on a restricted version of the

applications, tailored to the specifics of the underlying

mobile phone operation system. Another major advantage

of mobile thin client computing is that the reduction in

required terminal processing hardware allows to make the

mobile device more lightweight and potentially more

energy efficient.

The thin client paradigm trades local processing for

network communication. In a mobile device context, the

terminal will most probably be connected to the server

over a wireless interface, such as WiFi, UMTS or LTE.

The power required by the wireless network interface card

to transmit and receive remote display protocol traffic

might undo, and eventually exceed the power savings

achieved by the reduction in processing on the terminal.

This paper contributes to an optimization of wireless thin

client devices. It carries out an analysis of the power

consumption of the wireless platform due to the remote

display protocol traffic and explores two ways to optimize

the power consumption, located at different layers of the

communication stack. The first strategy is an

improvement of the wireless link layer control algorithm

on the device, by taking into account the current state of

the physical radio interface. At a higher layer in the

communication stack, the presentation layer, terminal

power savings are achieved through a more efficient

content encoding by the application server, thereby

reducing the required bandwidth and the terminal

decoding effort.

The reported research has been conducted in the scope of

the FP7-funded MobiThin project [1], addressing

important blockers of the wide adoption of the wireless

thin client computing paradigm. In addition to the design

of a suitable framework for thin client service delivery

and provisioning, research is conducted into remote

display protocols. This includes the development of a

protocol adapting to the application content and wireless

network characteristics. Specific attention is paid to

minimize the induced terminal power consumption.

The remainder of this paper is structured as follows. A

survey of related work on power consumption of thin

clients is presented in section 2. Both power optimization

strategies are elaborated on in section 3. Section 4 details

the experimental setting in which the results of section 5

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55827601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

have been achieved. The main conclusions are set out in

section 6.

2 RELATED WORK

The power efficiency of thin clients, compared to desktop

PCs, was previously studied in [2]. The authors

demonstrate how some thin client devices use up to 85 %

less power than their PC rivals in a real world

environment. A more generic viewpoint is taken in [3],

where the authors study the environmental impact of thin

clients compared to desktop PCs, taking into account the

production, distribution and operational phase. In

previous work, we studied the impact of the increased

power consumption of application server farms (server

powering, cooling) on the power efficiency of the thin

client use case, compared to the classical desktop case

[4],[5].

In [6], we carried out a detailed analysis of the power

consumption due to thin client protocol traffic. Some

guidelines for wireless link layer optimization were

formulated, which are validated in the current paper.

Technical details on the adaptive content encoding

mechanism, which is the second power optimization

strategy under study in this paper, are given in [11]. While

the previous paper focused solely on the bandwidth and

QoS optimization, the present paper studies the power

efficiency of this approach.

3 POWER OPTIMIZATION

This section describes two different power optimization

strategies for a thin client environment. As outlined above,

the first strategy is located at the wireless link layer, while

the second is located at the upper layer of the

communication stack: the presentation layer.

3.1 Wireless link layer control

The radio platform of a device can be in 4 different power

states: sleep, idle, send and receive mode. These states are

differentiated by the activation of certain platform

components. In idle state the terminal can detect incoming

frames because the front-end is activated, while in sleep

mode all components are turned off and no incoming

frames are detected. The send and receive state are the

most power consuming and correspond to the terminal

state of transmitting or receiving data. The total radio

platform energy consumption depends not only on the

active components in a given radio power state, but also

on the time they remain in that state. This is steered by the

wireless link layer control algorithm.

As the power amplifier is the most power consuming

component, most reference control algorithms adopt the

maximum-throughput strategy, aiming to transmit the

data as fast as possible to have some time spent in idle or

sleep mode afterwards. In the remainder of this paper, we

refer to this algorithm as Reference Solution (RS).

However, the RS leads to a maximum activation of the

power amplifier. As the power amplifier consumption

does not scale linearly with the transmission rate,

transmitting at a lower rate and thus a lower activation of

the power amplifier might turn out to be more energy

efficient, although we spend more time in the sending

state. In [6], an improved control algorithm was presented,

that takes into account models of the platform power

consumption and the current radio channel statistics.

Based on a predefined database with optimized

configurations in function of the current channel

conditions and the data rata requirements, link layer

parameters are tuned, such as modulation and code rate,

as well as power amplifier settings, such as the signal

output power. As the algorithm works cross-layer

between the wireless link and the physical layer, it will be

referred to in this paper as XCTRL.

3.2 Adaptive content encoding

Current remote display protocols such as VNC-RFB [7],

Microsoft’s RDP [8] and Citrix’ ICA [9] are optimized

for rather static displays of office applications, such as a

text editor or a spreadsheet. The transport of multimedia

data over a remote display protocol is very inefficient,

leading to high bandwidth requirements [10]. Video

codecs such as MPEG-2 are optimized to handle fast

moving images in a bandwidth efficient manner. We have

developed an adaptive encoding infrastructure, depicted

in Figure 2.

Figure 2 - Adaptive encoding. The amount of motion in the graphics

is analyzed and the best transmission mode is selected.

The amount of motion in the graphics is analyzed. For

static displays, the VNC mode is selected and for high-

motion graphics the streaming (H.264) mode is applied.

In [11], we have detailed this architecture and

demonstrated the gains in bandwidth. While the streaming

mode can offer smooth multimedia graphics, it was

shown that the decoding of H.264 requires more CPU

cycles than decoding VNC, advocating the overhead

hybrid mechanism as it allows to switch back to VNC for

low-motion scenarios. In the current paper, we investigate

the power consumption of both modes and study if the

wireless platform energy savings due to the bandwidth

reduction of the streaming mode is not undone by the

increased decoding complexity.

4 EXPERIMENTAL SETTING

4.1 Test scenarios

To isolate the effects of both mechanisms described in the

previous section, different test scenarios were elected to

validate both mechanisms.

4.1.1 Wireless link layer control algorithm

In order to asses the specific benefits of the wireless link

layer control algorithm, the content encoding should be

fixed, in our case we chose to fix it to VNC-RFB. As

VNC is designed for office related work, the elected test

scenarios cover text editing and browsing, while

multimedia was excluded to avoid biasing the test

results [10]. The main differentiator is the amount of

generated traffic. The three scenarios listed below are in

increasing order of required downstream bandwidth.

 Text editing: the user opens a text editor

(OpenOffice Writer), inserts a title and subtitle

and types half a page of text. Afterwards, a

picture is inserted and a few more sentences are

typed, before closing the text editor.

 Static browsing: the user navigates through the

IceWeasel browser to different websites

containing rather static content. Successively,

the user logs in to a GMail account, reads and

replies to an e-mail, and reads a few articles on

the BBC news website. As the news website is

updated frequently, it was made available offline

to keep the content exactly the same over the

different measurement iterations.

 Dynamic browsing: the user navigates through

the IceWeasel browser to different websites,

containing more dynamic content like JavaScript

or Flash. Visited websites include

www.creaktif.com, www.cafesonique.com,

www.youtube.com

4.1.2 Adaptive encoding

The scenarios described above are not suited to test the

adaptive encoding mechanism because no switching

between the encoding modes would occur. Therefore, two

new test scenarios were selected, specifically oriented to

one of both encoding modes. More specifically, video was

included to test the streaming mode.

 Static: a text editor (OpenOffice Writer) is

started through the menu bar of the desktop. A

text is typed, this text is then selected and

aligned by the “justify” command. A figure is

inserted, followed by a caption of two lines of

text. At the end, the user scrolls back to the top

and closes the text editor.

 Dynamic: a video file is played with the VLC

media player in full screen mode. The video

repeats in an infinite loop.

4.2 Measurement set-up

The testbed is depicted in Figure 3. It comprises a VNC

server and client, connected via an internal fixed network

to the 802.11 link simulator. At the terminal, the VNC

viewer translates the user events to VNC protocol

messages, which are then relayed to the VNC server

through the simulator. The server encodes the

corresponding graphical updates in VNC protocol

messages to be returned to the terminal.

Figure 3 - The testbed comprises a VNC server and client, connected

by a simulated 802.11 link. The NS-2 simulator models the wireless

channel transmission as well as the power consumption of the

wireless platform on both access point and terminal.

The 802.11 link simulator is completely transparent to the

server and the terminal. Implemented in NS-2, its

functionality is twofold. First of all, it implements a MAC

and PHY stack to mimic data transmission between

access point and terminal over 802.11. Different channel

parameters can be configured: path loss, coherence time

and terminal speed.

The second functionality of the simulator is the

assessment of the power consumption. For each of the 4

modes of the wireless platform, models of the power

consumption of the various parts of a wireless platform of

both the access point and the user terminal were

implemented in the simulator. The simulator keeps track

of how much power is consumed by the wireless platform

in every mode, at both the access point and the user

terminal.

5 EXPERIMENTAL RESULTS

5.1 Wireless link layer control algorithm

The power consumed by the wireless platform was

measured for three scenarios described in section 4.1.1,

using the testbed depicted in Figure 3. For every scenario,

a series of user events was recorded by an in-house

developed VNC replay tool, ensuring that exactly the

same application layer traffic is generated when repeating

the same scenario for different wireless channel parameter

configurations.

The channel coherence time is set to 0.1 s, 1 s and 10 s.

Experiments are performed for both static and moving

terminals. For a static terminal, located at a fixed distance

from the base station, the average path loss is varied from

60 dB to 90 dB. For a moving terminal, the terminal is

located at the start at a distance of 10 m from the base

station and moves away from base station with fluctuating

and increasing path loss. At the end of trajectory, the

terminal is located at 40 m from the base station. The

movement speed of the terminal is set to 1 m/s, 3 m/s and

5 m/s.

From all channel condition parameters, the channel path

loss seems to have the largest influence on the power

consumption, while the impact of the channel coherence

time proves to be rather minimal. Figure 4 demonstrates

the influence of the channel condition on the power

consumption.

Figure 4 - Average power consumption for different

scenarios with static terminal

For both RS and XCTRL, the power consumption

increases with the path loss. A degraded channel leads to

an increase in the number of retransmissions and requires

using less power efficient data modulations. This

increases the time and energy spent in send and receive

mode. The XCTRL algorithm takes into account the

current channel conditions and adapts its transmission

strategy, as previously described in section 3.1. The gains

increase when there is more downstream traffic, as the

terminal has to send more acknowledgements (ACKs) and

accordingly can go more into sleep mode immediately

after sending these ACKs.

Table 1 and Table 2 compare the energy consumption in

all three scenarios when the RS or the XCTRL algorithm

is applied.

Table 1 - Comparison of the power consumption for channel path

loss of 60 dB, coherence time 0.1 s and a static terminal

Scenarios RS

[J/s]

XCTRL

[J/s]

Gain

[%]

Office typing 0.21 0.20 5

Static Browsing 0.26 0.24 8

Dynamic browsing 0.68 0.55 23

Table 2 - Comparison RS and XCTRL for a channel path loss of 60

dB, coherence time 0.1 s and a moving terminal at 1 m/s

Scenarios RS[J/s] XCTRL[J/s] Gain[%]

Office typing 0.21 0.20 5

Static Browsing 0.27 0.25 8

Dynamic browsing 0.72 0.62 16

The total power consumption is the sum of the energy

consumed in send, receive, sleep and idle mode. With

current experimental conditions, having no background

traffic in the network, most of the power is consumed in

idle mode. For low traffic scenario, e.g. text editing, this

happens due to the fact that there is only small amount of

data to send or receive. Consequently, 90 % of total

power is consumed in idle mode. For high traffic scenario,

e.g. dynamic browsing, idle mode consumes almost half

of the total power consumption.

Figure 5 shows a breakdown of the power consumption

by thin client in the different modes for dynamic

browsing scenario. This is the scenario with the most

downstream traffic. The other scenarios have not been

included due to space constraints and because the

conclusions are largely similar.

(a) Reference solution - channel coherence time = 0.1s

(b) XCTRL - channel coherence time = 0.1s

Figure 5 - Power consumption in different modes for

the dynamic browsing scenario

From Figure 5, it is clear that the XCTRL algorithm is

able to reduce the relative (and absolute) power consumed

in the send state, because of its more efficient

transmission strategy explained before.

The energy spent in the receive state is largely dependent

on the amount of bytes generated by the application

server. Consequently, no significant wireless link layer

strategy at the client can be expected here, rather some

efficiency improvements should be done when encoding

the data. The adaptive encoding mechanism is an example

of such an optimization and is explained in the next

section.

Besides limiting the time spent in send and receive state,

energy gains could be achieved by putting the terminal

more in sleep mode and less in idle mode. Currently, the

terminal cannot go into sleep mode, as it might miss any

relevant data. If the application and wireless platform

could agree on data-free periods between the client and

base station, the terminal could be put in sleep mode, as it

can be sure not to miss any relevant data. As this

mechanism would affect the throughput and increase

additional delays, care should be taken to maintain a

sufficient user Quality of Service, e.g. the sleep interval

should not significantly degrade the user interactivity

experience.

5.2 Adaptive content encoding

Commercially available hardware devices were used to

test the adaptive content encoding mechanism, in order to

include the power consumption of the CPU when

decoding and rendering the content. Hardware

specifications are shown in Table 3. The client is

connected to the server via a WiFi access point.

Table 3 - Hardware characteristics

Server Thin Client

Intel QuadCore 2.73 GHz Asus EEE pc

Intel Celeron M

2 GB RAM 512 MB RAM

1 Gbps NIC WiFi

Linux Ubuntu Linux Debian

Hybrid VNC server Hybrid VNC client

The energy measurements are performed by removing the

battery from the device and measuring the current drawn

from and voltage over the DC side of the adapter. Both

current and voltage are simultaneously measured with a

separate Velleman DVM345DI Digital Multimeter. One

sample is taken per second. Every experimental run lasted

one hour.

Table 4 shows the average energy consumed by both

encoding mechanism, while executing the scenarios of

section 4.1.2. The switching algorithm was disabled, and

so either the VNC or the streaming encoding mode was

applied during a single experiment. From an energy point-

of-view, the table shows that VNC, is power efficient for

office-type of applications but does not cope well with

video-type of applications. Streaming is the better option

for dynamic content, but is in comparison with the thin

client protocol, not suited for static scenarios.

If VNC is seen as the reference encoding scheme, 4% of

the consumed energy can be saved when transferring

dynamic content in streaming instead of VNC mode. For

static content, VNC is the better option because when

streaming mode would be used, 1.6 % more energy would

be consumed. Although the differences in energy

consumption for both modes are relatively small, we

remind the reader that the adaptive content encoding

mechanisms was primarily designed to combine

bandwidth efficiency and optimized QoS [11]. These

results confirm that, for dynamic content, the more

complex decoding of the streaming mode is still more

power efficient than using VNC.

Table 4: Average energy consumption of streaming and VNC

for both scenarios

 Static Dynamic

VNC 12.32 J/s 13.49 J/s

Streaming 12.52 J/s 12.95 J/s

Figure 6 depicts in more detail the momentary consumed

power related to the encoding applied for the graphical

updates. In this one-hour experiment, the static scenario

explained earlier was repeated five times. Every run of

this static scenario takes about 4 minutes, resulting in a

static period in the trace of 20 minutes. Then, in the same

thin client session, the dynamic scenario is executed for

20 minutes, again followed by 20 minutes of looping the

static scenario. The full line shows the energy consumed

by the adaptive encoding protocol. The dashed line shows

the average energy that would be consumed if in all cases

the “inappropriate” encoding would be applied, following

Table 4: streaming static content and encoding dynamic

content using VNC.

Figure 6 – Energy consumption of the Asus EEE PC.

Besides the already demonstrated bandwidth efficiency

and QoS improvements [11], this experiment proves that

the adaptive encoding mechanism chooses the less power

consuming mode as well.

The spikes in the graph can be explained by a temporary

switch in encoding mode. The mode decision algorithm is

based on the amount of pixels that have changed in a time

window of consequent graphical updates. This window

has to be kept small enough in order to react to the

circumstances in a timely manner: if the user starts video

playback the algorithm should switch to streaming quite

fast. On the other hand, the time window must be large

enough to avoid switching unnecessarily: scrolling a text

file while typing ideally should not cause a switch. The

settings of the switching algorithm have been defined

empirically, but from Figure 6, the big spikes show that

for this case the algorithm switched unnecessarily. In the

static scenario, a figure is inserted and then the document

is scrolled down. This sequence incurs big differences in

the screen and took longer than the time window which

caused a switch to streaming mode and a switch back to

VNC mode shortly after. The spikes in the dynamic

period of the test were more appropriate: the video file

that was played back contained a closed period of 15

seconds of solid black colour. In this case the algorithm

decided correctly that it would be overkill to stream solid

colour.

6 CONCLUSIONS

 Significant terminal power savings can be achieved by

delegating the application processing to an application

server in the network. An intensive network

communication is required to exchange user input and

display updates between terminal and server. On wireless

devices, the incurred power consumption of the wireless

platform might undo or even exceed the power savings

realized by the reduction in terminal processing.

In this paper, two strategies were presented to limit the

power consumption on thin clients. By taking into

account physical layer parameters to tune the wireless link

layer transmission settings, energy savings up to 23 %

were achieved. The second strategy aims for an

optimization of the content encoding: static encoding is

encoded through the VNC protocol, while more dynamic

multimedia content is encoded through video streaming. It

was shown that this approach results in more efficient

power consumption, along with a reduction in bandwidth

and an optimization of QoS.

Future work in this area will merge both tracks. Through

a cross-layer framework, the wireless link layer control

algorithm will communicate with the application and

encoding layer. Feedback can be given on the available

throughput of the wireless channel to tune the content

encoding parameters.

Acknowledgment

Part of the research leading to these results was done for

the MobiThin project and has received funding from the

European Community’s Seventh Framework (FP7/2007-

2013) under grant agreement no. 216946. P. Simoens is

funded through Ph.D. grant of the Fund for Scientific

Research, Flanders (FWO-Vlaanderen). B. Vankeirsbilck

and L. Deboosere are funded through Ph.D. grant of the

Institute for the Promotion of Innovation through Science

and Technology in Flanders (IWT-Vlaanderen).

References
[1] MobiThin. http://www.mobithin.eu

[2] S. Greenberg et al., “Desktop energy consumption, a comparison

of thin clients and pcs”. WYSE White Paper.
[3] E. Weidner, “Environmental comparison of the relevance of pc and

thin client desktop equipment for the climate, 2008”. Fraunhofer
Institute, April 2008.

[4] W. Vereecken et al., “Energy efficiency in telecommunication

networks”. Proc. Of European Conference on Networks & Optical
Communications (NOC), July 2008, Krems, Austria.

[5] W. Vereecken, “Thin client power efficiency”. Proc. Of KEIO and

Ghent University 2nd G-COE Joint workshop for future network,
September 2008, Ghent, Belgium.

[6] P. Simoens et al.,”Characterization of power consumption in thin

clients due to protocol data transmission over IEEE 802.11”. Proc. of
7th Intl. Symposium on Modeling and Optimization in Mobile, Ad Hoc,

and Wireless Networks, WiOpt 2009, Seoul, South-Korea.

[7] T. Richardson et al., “Virtual Network Computing”. IEEE Internet
Computing 1998

[8] Microsoft, “Windows Remote Desktop Protocol (RDP)”.

http://msdn2.microsoft.com/en-us/library/aa383015.aspx
[9] Citrix Independent Computing Architecture. http://www.citrix.com

[10] L. Deboosere et al., “Thin client computing solutions in low- and

high-motion scenarios”. In ICNS 07: Proceedings of the 3rd International
Conference on Networking and Services. Washington DC, USA.

[11] P. Simoens et al.,”Design and implementation of a hybrid remote

display protocol to optimize multimedia experience on thin client
devices”. Proc. of Australasian Telecommunication Networks and

Applications Conference (ATNAC) 2008, Adelaide, Australia.

[12] VideoLan – VLC Media Player, http://www.videolan.org/vlc/

