
 Rewiring Strategies for Changing Environments 

Wim Laurier*, Geert Vanderhulst°, Geert Poels*, Kris Luyten° 

*Department of Management Information and Operational Management, Faculty of Economic 

and Business Administration, Ghent University, Tweekerkenstraat 2, 9000 Ghent, Belgium 

{wim.laurier,geert.poels}@ugent.be 

°Hasselt University – transnationale Universiteit Limburg – IBBT Expertise Centre for Digital 

Media, Wetenschapspark 2, 3590 Diepenbeek, Belgium 

{geert.vanderhulst,kris.luyten}@uhasselt.be 

Abstract. A typical pervasive application executes in a changing environment: 

people, computing resources, software services and network connections  come 

and go continuously. A robust pervasive application needs adapt to this 

changing context as long as there is an appropriate rewiring strategy that 

guarantees correct behavior. We combine the MERODE modeling 

methodology with the ReWiRe framework for creating interactive pervasive 

applications that can cope with changing environments. The core of our 

approach is a consistent environment model, which is essential to create 

(re)configurable context-aware pervasive applications. We aggregate different 

ontologies that provide the required semantics to describe almost any target 

environment. We present a case study that shows a interactive pervasive 

application for media access that incorporates parental control on media content 

and can migrate between devices. The application builds upon models of the 

run-time environment represented as system states for dedicated rewiring 

strategies. 

Keywords: Dynamic Pervasive Environments, MERODE, ReWiRe, Parental 

Control 

1 Introduction 

Mobile devices such as a smart phone or ultra-mobile PC (UMPC) gain popularity 

and move towards interoperability with pervasive environments. To enable seamless 

integration of interoperable devices in new environments and to deal with purpose 

changes (e.g. the role of a mobile phone can evolve from multimedia device to VoIP 

device), there is a growing need for reconfigurable software applications that can 

dynamically adapt to their runtime environment [1, 2]. Therefore, this paper presents 

a combination of ontology-based environment models, which are constructed using  

the MERODE methodology [3-8] and ReWiRe’s environment model [9], which 

enables software services to react to environment changes (e.g. by. the redistribution 

of a user interface to another device). Consequently, we rely on the MERODE 



2 Wim Laurier*, Geert Vanderhulst , Geert Poels*, Kris Luyten 

methodology to create environment models that go beyond what is needed for 

creating pervasive environments. The MERODE framework has a strong theoretical 

underpinning in process algebra and supports dealing with asynchronous and parallel 

events by which a pervasive environment is characterized. This combination of 

reconfigurable environment models and pervasive software architecture (i.e. the 

ReWiRe’s technological component is based on OSGi technology1) ensures reliable 

support for building context-aware applications [10] that can be rewired2 at runtime. 

Section 2 introduces the envisioned scenario, where section 3 shows the environment 

model that is used by the prototype application and section 4 illustrates the prototype 

application. Conclusions, limitations and directions for future research are discussed 

in section 5. 

2 Scenario: parental control on media content in dynamic 

pervasive environment 

In our envisioned scenario, different types of media are shared on personal devices 

such as a mobile phone or set-top box with built-in hard disk. When brought together 

in a connected environment (i.e. a home network), shared media are discovered and 

listed in a user interface on end-user devices from where they can be accessed and 

streamed to an output device of choice. For example, an output device could be the 

current interaction device or a television set capable of playing media (i.e. running a 

media service). To protect children from content not suited for them (i.e. adult 

content) parental control is required to successfully deploy a pervasive media 

application in a real-world environment. Since the environment is assembled at 

runtime from available devices and media resources, parents have no absolute control 

over the media resources presented to their children. Therefore, the parental control 

has to be integrated into the environment model.  

This usage scenario demands for a dynamic application that can adapt at runtime to 

changes in the environment configuration, as changes in the environment 

configuration can have an impact on the application's execution flow. Consequently, 

programming such an application in an ad-hoc way would be cumbersome due to the 

lack of a dynamic knowledge base reflecting the current state of the environment. The 

impact of environment changes can be indicated considering the example of a 

television streaming media residing on a mobile phone. If the phone and its owner 

leave the environment, the media stream is likely to be interrupted and the application 

will need to cleanup allocated resources (e.g. shutdown a media service and switch off 

the television screen). Alternatively, when an output device is about to become 

unavailable, the application might react by automatically selecting another suitable 

output device to play the current media stream on. 

                                                           
1 http://www.osgi.org/ 
2 Rewiring is the dynamic reconfiguration process that enables systems to adapt themselves 

when their context of use changes. 



Fout! Gebruik het tabblad Start om title toe te passen op de tekst die u hier wilt 

weergeven.  3 

3 Conceptual Models for Parental Control application 

We use the MERODE methodology to create a consistent3 set of models, which 

reflect the current environment, and maintain consistency during model changes, 

which reflect environment changes. A key feature of the MERODE methodology is 

the use of existence dependency diagrams which relate the existence of a class 

instance with the existence of one of the instances in its parent class. Such 

dependency relations mean that instances of the existence dependent class refer to one 

and the same instance of the parent class during their entire lifespan.  Fig. 1 shows the 

existence dependency diagram for our parental control application. The diagram is 

represented as a UML class diagram, in which the keywords on top of the class name 

indicate the origin of the concept that is represented by the class (the RESOURCE class 

originates in the ReWiRe ontology [9]). Existence dependency relationships are 

represented as dependency arrows of which the arrowhead points towards the parent 

class (e.g. NATURALTYPE is a parent class for INDIVIDUAL). The existence 

dependency semantics are further specified by cardinality constraints added to these 

arrows. To prevent cognitive overload, methods and attributes were omitted and the 

‘movie’, ‘life’ and ‘person’ ontologies are purpose-built minimal ontologies and not 

fully-fledged ontologies. 

The partial ordering of objects, which originates in the existence dependency 

semantics, determines the object event table, which is a second model (next to the 

existence dependency diagrams) used by the MERODE methodology and specifies 

the objects that are affected (i.e. class instances whose state is changed) by the events 

listed. The matching of objects and events is done at the type level such that the effect 

that events have on object states can be specified as class methods. MERODE’s event 

propagation rule states that the methods that apply to an existence dependent class 

also apply to its parent class(es), where they can exhibit a different behaviour (i.e. 

polymorphism). Consequently, an event that creates an object, ends the life of an 

object or modifies the state of an object may also modify the state of the object’s 

parent object or other objects further up the existence dependency chain. Apart from 

the existence dependency diagram and the object event table, for each class a lifecycle 

is specified that describes all possible sequences of object state changes caused by 

events. These lifecycle models build, together with the existence dependency diagram 

and the object event table, a conceptual schema for the application.  

The conceptual backbone of the reconfigurable conceptual environment model, 

originates in the work of Parsons and Li [11], who distinguish natural, phase and role 

types. Natural types (e.g. human) are independent (i.e. the existence of their instances 

does not depend upon other instances) and are rigid (i.e. their individuals cannot 

migrate to another natural type during their lifetime). Phase types (e.g. child, 

teenager, adult) are independent and anti-rigid (i.e. their individuals can migrate to 

another phase type during their lifetime). Role types are anti-rigid (i.e. their 

individuals can migrate to another role type during their lifetime) and founded (i.e. 

                                                           
3 The consistency should prevent children from gaining access to content that is not suitable for 

them due to weaknesses in the environment model. 



4 Wim Laurier*, Geert Vanderhulst , Geert Poels*, Kris Luyten 

depend on a particular pattern of associations). Therefore, individuals are modelled as 

existence dependent on natural types (cf. rigidity) and phase and role types are 

modelled as existence dependent of individuals (cf. anti-rigidity).  

Using this conceptual backbone, various domain ontology concepts are categorised 

as natural, phase and role types. Humans are categorised as natural types (i.e. a human 

individual is a human for all of its life). Also movie types were categorised as natural 

types. A human’s stages of life are considered phases (e.g. being a teenager does not 

require a particular association and may change to being an adult over time). 

Furthermore, all concepts of the ReWiRe ontology are considered role types as they 

all depend on their association with the context of pervasive applications (e.g. USER is 

the role of a HUMAN INDIVIDUAL in the context of pervasive applications, DEVICE is 

the role of a piece of hardware in the context of pervasive applications). 

Consequently, the conceptual backbone enables us to discriminate between the parts 

of the environment model that can change (i.e. anti-rigid) and those that cannot (i.e. 

rigid). For example, an adult movie will never be suitable for kids, but a person can 

grow up. Following the extension of the backbone with domain ontology concepts, 

the domain ontologies are extended with concepts specific for the intended 

application, which build an application ontology [12] for parental control. 

Consequently, the application specific concepts of playing regular media content and 

adult media content are modelled as extensions of the SERVICE concept in the 

ReWiRe domain ontology [9]. 

 

Fig. 1. Conceptual Model of Integrated Ontologies for Parental Control Application 

 



Fout! Gebruik het tabblad Start om title toe te passen op de tekst die u hier wilt 

weergeven.  5 

Next to the categorization of domain and application ontology concepts, also the 

interactions between these concepts in our intended application need to be addressed. 

These interactions, which we consider as aspects [13] of ontology integration that 

crosscut multiple ontologies, are modeled as object lifecycle models. Fig. 2 shows one 

aspect of the interaction between the movie ontology and the media application 

ontology. It shows that ‘all viewer’ movies can only be accessed by the ‘play media’ 

service. A similar model has been created, representing that ‘adult viewer’ movies can 

only be accessed by the ‘play adult media’ service. The CR_INDIVIDUAL and 

END_INDIVIDUAL events in the finite state machine indicate that individuals (i.e. 

movies) can be assigned to each of these natural types. 

 
Fig. 2. All Viewers Movie x Play Media Service Aspect 

Finally, we discuss the policy model for HUMAN INDIVIDUALS in the context of the 

parental control application. Fig. 3 shows that only adults (i.e. INDIVIDUALS of natural 

type HUMAN to which the ADULT phase type has been assigned) can have access to 

the PLAYADULTMEDIA service (i.e. CR_PLAYADULTMEDIA, end_PLAYADULTMEDIA) 

where other users only have access to the PLAYMEDIA service (i.e. CR_PLAYMEDIA, 

end_PLAYMEDIA).  

 
Fig. 3.  Adults Only Policy 

It should be noted that all finite state machines presented above were simplified for 

the reason of clarity. However, when these models are represented in the MERODE 

modeling tool (i.e. Mermaid4), the consistency checker automatically identifies e.g. 

orthogonal events, which can then be added to create the fully-fledged models. 

                                                           
4 http://merode.econ.kuleuven.ac.be/mermaid.aspx 



6 Wim Laurier*, Geert Vanderhulst , Geert Poels*, Kris Luyten 

4 Adopting MERODE models in ReWiRe 

The structural models produced by the MERODE design tool are transformed into 

a media domain ontology which is aggregated with ReWiRe’s environment ontology 

as shown in fig. 4. An instance of this aggregated ontology describes the current 

environment context (i.e. available resources and relations that apply between them.  

 

Fig. 4.   Aggregated ontologies and media user interface component. 

We developed two services and a user interface which, together with the models, 

give rise to the pervasive media application. The PLAYMEDIA and PLAYADULTMEDIA 

services implement a media player component that exports a software interface to 

control a player from external services. The media player component publishes the 

player's state in the environment model and informs interested parties of state changes 

through sensor events (using ReWiRe's built-in notification mechanism). The 

PLAYMEDIA and PLAYADULTMEDIA services also shares media content residing on 

the device it runs on, by advertising it as MEDIACONTENT in the environment model. 

An additional service, the MERODEMEDIA service, fulfils a coordination role and 

implements a dedicated 'rewiring strategy' for the pervasive media scenario. Such a 

rewiring strategy aims to keep an application consistent at all times, in particular 

when the configuration of the environment changes. The coordination service is built 

on top of our previously designed MERODE models. As such, the objects generated 

from the structural and behavioural knowledge base serve as a special-purpose model 

which is synchronized with the ReWiRe environment model using asynchronous 

events. For instance, the coordination service subscribes to R+ events (a new resource 

enters the environment), R- events (a resource leaves the environment) and player 

state events fired by a PLAYMEDIA or PLAYADULTMEDIA service and propagates this 

information to the MERODE models. Modifications to these models (e.g. 

transformations from one state into another one), either triggered by system or user 

events, are then translated into method calls that orchestrate a play media service.  

Furthermore, we developed and deployed a migratable media user interface 

component as shown in figure 4. This interface presents available media content on 



Fout! Gebruik het tabblad Start om title toe te passen op de tekst die u hier wilt 

weergeven.  7 

end-user devices and features the option to select an output device to stream selected 

media to. In its back-end, this user interface leverages the MERODEMEDIA 

coordination service and its embedded behaviour models. For example, if a user 

selects adult content, MERODE models are traversed and if an adult check does not 

pass, the play button remains disabled in the user interface for the selected media. 

5 Conclusions, limitations and Future Research 

This paper presented a framework, which uses ontology models that are connected 

to a conceptual backbone to provide pervasive applications with a shared and 

dynamic environment model, of which the (run-time) consistency is guaranteed by 

using the MERODE methodology. The presented parental control application is one 

of many potential scenarios that requires both real-world (e.g. the age of a person, the 

rating of a movie) and technological awareness (e.g. listing potential output devices). 

The integration of real-world and technological awareness in a changing (real-world 

and technological) environment is enabled by combining MERODE and ReWiRe. 

Models that can capture the current state of a pervasive environment and its 

applications are vital components to build context-aware applications [14]. Ontologies 

have already been used to enable the development of pervasive applications [10, 15, 

16]. For example, Preuveneers et al. proposed an ontology to capture the context of 

use of ambient intelligent environments in [17].  Chen et al. [15] designed a rich 

ontology for ubiquitous and pervasive applications (SOUPA) that is exploited in a 

broker-centric agent architecture to support knowledge sharing and context reasoning. 

In [10] context discovery and knowledge sharing are supported using an ontology-

based context model and an OSGi-based middleware infrastructure. However, their 

ontology is mainly geared towards the creation and deployment of context-aware 

systems, and does not focus on runtime and thus (re)configuration support. As we do 

not only use ontologies to capture and query the execution context, but also to create 

dynamic pervasive applications which can be (re)configured at runtime. As the 

MERODE algebra has been used in model-driven design, it should be noted that the 

framework presented in this paper differs from modelling languages for pervasive 

systems (e.g. PervML5) by discriminating a dynamic environment model, of which 

the consistency is supported by the MERODE algebra, and a stable application design 

in ReWiRe, which interprets the environment model, where model-driven design 

approaches focus on the application design. 

Since the use of the MERODE algebra has been limited to model-driven design, a 

tool that integrates the MERODE methodology and the ReWiRe framework is not 

available yet. Consequently, part of the integration between the MERODE and the 

ReWiRe environment had to be performed manually. In the future, the MERODE 

algebra will be integrated in the ReWiRe framework to automate environment model 

reconfiguration fully. 

                                                           
5http://oomethod.dsic.upv.es/labs/index.php?option=com_content&task=view&id=40&Itemid=

77 



8 Wim Laurier*, Geert Vanderhulst , Geert Poels*, Kris Luyten 

References 

1. Geihs, K., Barone, P., Eliassen, F., Floch, J., Fricke, R., Gjorven, E., Hallsteinsen, S., Horn, 

G., Khan, M.U., Mamelli, A., Papadopoulos, G.A., Paspallis, N., Reichle, R., Stav, E.: A 

comprehensive solution for application-level adaptation. Softw. Pract. Exper. 39 (2009) 385-

422 

2. Lobato, C., Garcia, A., Romanovsky, A., Lucena, C.: An aspect-oriented software 

architecture for code mobility. Softw. Pract. Exper. 38 (2008) 1365-1392 

3. Snoeck, M., Lemahieu, W., Goethals, F., Dedene, G., Vandenbulcke, J.: Events as atomic 

contracts for component integration. Data & Knowledge Engineering 51 (2004) 81-107 

4. Snoeck, M., Dedene, G.: Existence dependency: The key to semantic integrity between 

structural and behavioral aspects of object types. IEEE Transactions on Software 

Engineering 24 (1998) 233-251 

5. Dedene, G., Snoeck, M.: Formal deadlock elimination in an object oriented conceptual 

schema. Data & Knowledge Engineering 15 (1995) 1-30 

6. Snoeck, M., Dedene, G.: Generalization/specialization and role in object oriented conceptual 

modeling. Data & Knowledge Engineering 19 (1996) 171-195 

7. Snoeck, M., Poels, G.: Improving the Reuse Possibilities of the Behavioral Aspects of 

Object-Oriented Domain Models. 19th International Conference on Conceptual Modeling — 

ER 2000, Vol. 1920. Springer (2000) 423-439 

8. Snoeck, M.: Object-oriented enterprise modelling with MERODE. Leuven University Press, 

Leuven (1999) 

9. Vanderhulst, G., Luyten, K., Coninx, K.: ReWiRe: Creating interactive pervasive systems 

that cope with changing environments by rewiring. 4th International Conference on 

Inteligent Environments. IEEE, Seattle, WA (2008) 1-8 

10. Gu, T., Pung, H.K., Zhang, D.Q.: Toward an OSGi-Based Infrastructure for Context-Aware 

Applications. IEEE Pervasive Computing 3 (2004) 66-74 

11. Parsons, J., Li, X.: An ontological Metamodel of Classifiers and Its Application to 

Conceptual Modelling and Database Design. 26th International Conference on Conceptual 

Modeling (ER 2007), Vol. 4801 (2007) 214-228 

12. Guarino, N.: Formal Ontology and Information Systems. Proceedings of FOIS'98. IOS 

Press, Trento, Italy (1998) 3-15 

13. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.: 

Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.), Jyvaskyla, Finland (1997) 

220-242 

14. Dey, A.K.: Understanding and Using Context. Personal and Ubiquitous Computing 5 (2001) 

4-7 

15. Chen, H., Perich, F., Finin, T., Joshi, A.: SOUPA: standard ontology for ubiquitous and 

pervasive applications. Mobile and Ubiquitous Systems: Networking and Services, 2004. 

MOBIQUITOUS 2004. The First Annual International Conference on (2004) 258-267 

16. Peters, S., Shrobe, H.E.: Using semantic networks for knowledge representation in an 

intelligent environment. First IEEE International Conference on Pervasive Computing and 

Communications IEEE (2003) 323-329 

17. Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T., 

Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an Extensible Context 

Ontology for Ambient Intelligence. Ambient Intelligence (2004) 148-159 

 

 


