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This paper presents the analysis of a discrete-time single server queueing system
with a multi-type Galton-Watson arrival process with migration. It is shown that
such a process allows to capture intricate correlation in the arrival process while the
corresponding queueing analysis yields closed-form expressions for various moments of
queue content and packet delay.
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1. INTRODUCTION

Input traffic at various nodes in packet switched telecommunication networks typ-
ically exhibits various levels of correlation. It is well known that input correlation
significantly affects queueing performance and hence there is a continuing interest in
analytically tractable queueing models which can accurately capture arrival correlation.
There is a particular interest in Markovian arrival models, including models with a fi-
nite state space such as the discrete-time batch-Markovian arrival model [1, 2], or with
a structured infinite state space such as the discrete autoregressive arrival models [3, 4]
and the train and session arrival models [5, 6]. Queueing metrics for unstructured finite
state space arrival models are not available in closed form. However, efficient algorithms
are devised which yield the various performance measures in no time. In contrast, by
imposing a structure on the state space of the arrival process, closed-form expressions
for the various performance measures can be obtained.

In this paper, we propose a Markovian arrival process with a structured infinite state-
space, the Galton-Watson arrival process. A discrete-time queueing system is analysed
where the arrivals during the consecutive slots stem from a multi-type Galton-Watson
branching processes with migration [7]. It is shown that such an arrival process exhibits
intricate arrival correlation while closed form expressions for the probability generating
functions of queue content and packet delay are obtained.

The remainder of the paper is organised as follows. In the next section, the arrival
process and corresponding queueing model are introduced first. By a probability gener-
ating functions approach, we then obtain expressions for various performance measures.
Our results are illustrated by some numerical examples in section 3. Finally, conclusions
are drawn in section 4.
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2. QUEUEING MODEL AND ANALYSIS

We consider a discrete-time queueing system; time is divided into fixed-length in-
tervals or slots. During the consecutive slots, packets arrive at the queue, are stored
in an infinite-capacity buffer and are served in order of arrival. Service times of the
consecutive packets are fixed and equal to the slot length and packets cannot be served
during their arrival slot.

Packet arrivals stem from a multi-type Galton-Watson process with migration; let
K denote the number of types of this process. This branching process adheres the
following recursion,

X(k)
n =

K
∑

i=1

X
(i)
n−1

∑

j=1

M
(i,k)
j,n + N (k)

n . (1)

Here X
(k)
n denotes the number of arriving packets of type k during slot n, M

(i,k)
j,n is the

type k off-spring of the jth type i packet at slot n− 1, and N
(k)
n denotes the number of

new type k packets at slot n. The total number of packet arrivals during slot n is then
given by,

An =
K

∑

k=1

X(k)
n (2)

The vectors
{[

M
(i,1)
j,n ,M

(i,2)
j,n , . . . M

(i,K)
j,n

]

, j, n = 1, 2, . . .
}

constitute a doubly indexed

sequence of independent and identically distributed (iid) random vectors for all i =
1, 2, . . . , K. These random vectors are therefore completely characterised by the follow-
ing vector-valued joint probability generating function,

M(x) = [Mi(x)]i=1,2,...,K =

[

E

[

K
∏

k=1

x
M

(i,k)
j,n

k

]]

i=1,2,...,K

, (3)

with x = [x1, x2, . . . , xK ]. Similarly, the vectors
{[

N
(1)
n , N

(2)
n , . . . , N

(K)
n

]

, n = 1, 2, . . .
}

constitute a sequence of iid random vectors, characterised by the common joint proba-
bility generating function,

N(x) =
K
∏

k=1

E
[

xN
(k)
n

k

]

. (4)

Finally let µik = E
[

M
(i,k)
1,1

]

denote the average type k offspring of a type i packet and

let νk = E
[

N
(k)
1

]

denote the mean number of new type k arrivals in a slot. Collecting

these elements in the K × K matrix M = [µik] and in the column vector V = [νk], the
mean number of arrivals in a slot can be expressed as follows,

ρ = E [A1] = e (I −M)−1V , (5)

with e a row vector of ones and with I the identity matrix. In the remainder, we assume
|M| < 1, | · | denoting the largest eigenvalue of its argument. Hence, the arrival load is
finite.
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With the notation of the arrival process established, we now focus on the queueing
analysis. Let Un denote the queue content at the beginning of slot n. The queue
contents at the beginning of consecutive slots are then related as follows,

Un = (Un−1 − 1)+ + An . (6)

Here (·)+ is the usual shorthand notation for max(·, 0).
The state of the queueing system at slot boundary n is completely described in the

Markovian sense by the vector of state variables (Un, X
(1)
n , . . . , X

(K)
n ); see equations (1),

(2) and (6). Therefore, let P (x, z) denote the joint probability generating function of
this vector in steady state,

P (x, z) = lim
n→∞

E

[

K
∏

k=1

xX
(k)
n

k zUn

]

. (7)

It can be shown that the queueing system reaches steady state for ρ < 1 and |M| < 1.
In view of equations (1), (2) and (6) and by standard z-transform techniques, it is

found that P (x, z) satisfies the following functional equation,

P (x, z) = P (M(xz), z)
1

z
N(xz) − P (0, 0)

1 − z

z
N(xz) , (8)

with 0 a row vector of zeros. Here, we also used the fact that no packets arrive during
slot n − 1 when the queue is empty at the beginning of slot n. Let Q(i)(x, z) denote
the row vector, recursively defined as follows,

Q(i)(x, z) = M(Q(i−1)(x, z)z) , Q(0)(x, z) = x , (9)

for i = 1, 2, . . .. Successive application of the functional equation (8) then yields,

P (x, z) = P (0, 0)(z − 1)
∞

∑

j=0

j
∏

i=0

N(Q(i)(x, z)z)

z
. (10)

Finally, the normalisation condition determines the remaining unknown P (0, 0) = 1−ρ.
Clearly, the probability generating function of the queue content equals U(z) =

P (e, z). Furthermore, given the probability generating function of the queue content,
the probability generating function of the packet delay — the number of slots between
the end of a packet’s arrival and departure slot — is easily obtained by the distributional
form of Little’s result for discrete-time queues with single-slot service times [8],

D(z) =
1

ρ
(P (e, z) − (1 − ρ)) . (11)

The moment generating property of probability generating functions then yields the
various moments of the queue content and packet delay.
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3. NUMERICAL RESULTS
With the formulae at hand, we now study the mean delay of the Galton-Watson

queueing system where the arrivals stem from a two-type Galton-Watson source with
neither migration between the types (µ12 = µ21 = 0) nor correlation between the new
arrivals of the different types. For this simplified arrival process, we introduce a simple
parameter estimation procedure.

The autocorrelation function α(n) of this arrival process adheres,

α(n) =
φ2

1

φ2
µ11

n +
φ2

2

φ2
µ22

n , φ2
i =

θ2
i (1 − µii) + νiσ

2
i

(1 + µii)(1 − µii)2
(12)

Here φ2
i is the variance of the number of type-i arrivals in a slot and φ2 = φ2

1 +φ2
2 is the

variance of the number of arrivals in a slot. Further, σ2
i and θ2

i denote the variances of

M
(i,i)
1,1 and N

(i)
1 , respectively.

To limit the number of parameters, assume that (i) M
(i,i)
1,1 is Bernoulli distributed

and that (ii) N
(1)
1,1 and N

(2)
1,1 have the same index of dispersion (or variance-to-mean

ratio), β = θ2
1/ν1 = θ2

2/ν2. In Fig. 1 the autocorrelation function of the arrival process
is depicted for various parameter settings. The tangent α0(n) in 0 and the asymptote
α∞(n) are depicted as well in the logarithmic plot. These are given by,

α0(n) = exp(n(κ ln µ11 + (1 − κ) ln µ22)) ,

α∞(n) = exp(n ln µ11 + ln(κ)) . (13)

with κ = φ2
1/φ

2. Here, we assumed µ11 > µ22, without loss of generality. Fig. 1
illustrates the versatility of the arrival model in capturing arrival correlation. Long-
and short-time correlation can be adapted by modifying the decay rate of the tangent
and the asymptote, respectively.

Clearly, the tangent and asymptote uniquely determine the parameters κ, µ11 and
µ22 which in turn uniquely determine the autocorrelation function; see equations (12)
and (13). Additionally fixing the total arrival load ρ and the variance of the number
of arrivals in a slot φ2, then uniquely determines the first and second order parameters
of the arrival process, which are sufficient to obtain the mean delay. Hence, parameter
estimation for a given trace reduces to (i) the estimation of the mean and variance of
the number of arrivals in a slot and to (ii) estimating α0(n) and α∞(n) for the empirical
autocorrelation function of the trace. It can be shown that this procedure can always
be applied for φ2 ≥ ρ.

In Fig. 2, the mean delay is depicted versus the arrival load ρ for the various au-
tocorrelation curves of Fig. 1 and for an index of dispersion φ2/ρ = 2. Given the
load, the index of dispersion and the autocorrelation curve, all arrival process parame-
ters are determined in accordance with the estimation procedure above. Fig. 2 clearly
demonstrates the effect of arrival correlation on the various performance measures. In
particular, a slow decay of long term correlation (cor3 and cor4) seriously affects the
performance of the system. A similar observation also holds for short-term correlation
(cor2 and cor4). However, the latter performance degradation is not as marked as the
former
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Fig. 1. Autocorrelation function of the arrival process for different parameter settings:

(κ, µ11, µ22) = (0.4, 0.999538, 0.992660) for cor1, (0.4, 0.999538, 0.998391) for cor2, for

(0.5, 0.999839, 0.990991) cor3 and (0.5, 0.999839, 0.997861) for cor4.
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Fig. 2. Mean packet delay vs. the arrival rate for the parameter settings of Fig. 1 and for an

index of dispersion φ2/ρ = 2.
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4. CONCLUSIONS

In this paper, we provided closed-form expressions for the probability generating
functions of the queue content and packet delay for the discrete-time queueing sys-
tem with multi-type Galton-Watson arrivals. This queueing model is a versatile and
tractable model for the analysis of buffers with arrival correlation. We showed that
the parameters of a simplified Galton-Watson-type arrival process for a given empirical
autocorrelation function are easily estimated. Given these parameters, the performance
measures of interest are easily found. For a more accurate arrival characterisation, a
more general Galton-Watson arrival model can be adopted.
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