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Abstract
This paper presents a technique to adapt an acoustically based
language classifier to the background conditions and speaker
accents. This adaptation improves language classification on
a broad spectrum of TV broadcasts. The core of the system
consists of an iVector-based setup in which language and chan-
nel variabilities are modeled separately. The subsequent lan-
guage classifier (the backend) operates on the language factors,
i.e. those features in the extracted iVectors that explain the ob-
served language variability. The proposed technique adapts the
language variability model to the background conditions and
to the speaker accents present in the audio. The effect of the
adaptation is evaluated on a 28 hours corpus composed of doc-
umentaries and monolingual as well as multilingual broadcast
news shows. Consistent improvements in the automatic iden-
tification of Flemish (Belgian Dutch), English and French are
demonstrated for all broadcast types.
Index Terms: language recognition, iVectors, language factor
extraction, model adaptation

1. Introduction
Belgium has three official languages, namely Dutch (Flemish),
French and German. As a consequence, Flemish news broad-
casts often encompass French speech segments (German only
occurs rarely). Moreover, foreign speech in international news
items is not dubbed but presented with subtitles. Other pro-
grams, such as documentaries, use a native narrative voice to
tell the story, but the sound track also contains foreign lan-
guage speech fragments that are subtitled or are presented as
background while the narrator is telling the story. As a result,
language recognition (LR) is an indispensable preprocessor in
any computer assisted TV captioning system for a Flemish TV
broadcaster.

Several LR techniques have been developed over the last
couple of years. They can be regarded as either phonotactic or
acoustic. Phonotactic methods (e.g. [1]) are based on the fre-
quencies of short phone sequences in the output of a phone rec-
ognizer. Acoustic methods on the other hand directly classify
the speech segments on the basis of their acoustic properties.

In this paper we depart from a state-of-the-art acoustic sys-
tem that employs iVectors [2] to characterize the speech of a
speaker. However, contrary to common practice, it does not
project all variability in a single Total Variability space, but
combines iVectors with Joint Factor Analysis (JFA) [3] in or-
der to separate the language variability from the channel vari-
ability [4]. In other words, it extracts language factors as well
as channel factors per speaker. Similar to [5] we use the term
channel variability to refer to all sources of variability different
from the language. Hence, in an LR setup the channel factors
encode both channel and speaker variability.

To cope with foreign accents and the everlasting influence
of dialect on the standard language we propose to adapt the lan-
guage factors to the language variants encountered in the audio
file that is processed. We also propose modifications to the lan-
guage classifier (the backend), so that it can process the adapted
language factors more effectively.

To evaluate the systems, we compiled a dataset containing
monolingual and multilingual news broadcasts as well as a large
variety of documentaries. The system is judged on its ability to
identify English, Flemish and French speaker segments. The
collected dataset exposes a large variety in background condi-
tions and it contains a fair amount of non-native speakers and
native speakers with strong accents. Our experiments show re-
ductions of the Speaker Error Rate (SER) by more than 20%
relative by adapting the language variability model. Compared
to a standard iVector system, the relative improvements can be
as large as 50%.

2. Baseline system

For this work, we focus on the automatic language recognition
per speaker from a closed set of languages. We start from a
manual labeling of the speakers and retain only these speech
fragments complying with the closed language set for training
and evaluation.

2.1. Feature extraction, selection and normalization

The acoustic inputs are shifted delta cepstral (SDC) feature vec-
tors [6]. They are acknowledged to constitute a richer repre-
sentation of the signal dynamics than the standard dynamical
features derived from the MFCCs. SDC features are defined by
four parameters: N , d, P and k. The first (2k+1)N features of
frame t consist of the delta’s of the N static MFCCs c1 . . . cN ,
computed for frames t+ iP (i = −k . . . k). A delta at frame t
is computed over the window (t−d, t+d). We foundN = 10,
d = 2, P = 3 and k = 2 to perform optimal on broadband data.
Supplementing the SDCs with 19 static MFCCs (the c1 . . . c19
of frame t) and a normalized log-energy finally leads to a fea-
ture vector of dimension 70.

Feature Warping [7] by means of a monotonic non-linear
function is applied to achieve a standard normal distribution for
each individual feature. The Feature Warping is preceded by a
frame selection module which retains mainly frames from the
syllable nuclei because these high-energetic frames are the least
affected by background noise. The frame selection sometimes
retains less than 50% of the frames, but nevertheless improves
the LR dramatically, at least for our type of data [4].
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2.2. iVector extraction

A favored concept in LR is that of iVectors [2] or Total Variabil-
ity (TV) modeling. All variability is modeled in a single low
dimensional subspace. A low rank rectangular matrix T , called
the TV matrix or the iVector extractor, is used to approximate
the GMM mean supervectorms of speaker s as

ms =m+ Txs,Ls (1)

with m being the Universal Background Model (UBM) super-
vector and xs,Ls being the iVector that contains all the infor-
mation concerning speaker s and language Ls spoken by that
speaker. The procedure for extracting iVectors is described in
detail in [8].

We determine matrix T by means of Principal Compo-
nent Analysis (PCA) initialization [9] followed by iterating the
non-simplified Expectation-Maximization (EM) algorithm de-
scribed in [8] until it converges.

2.3. Language factor extraction

In (1) the matrix T models both language and channel variabil-
ity. In order to suppress the effect of the channel variability on
the LR, we conceived a method for separating (factorize) these
two sources of variability [4].

Let the low rank rectangular matrices U and V be the
channel variability matrix and language variability matrix re-
spectively. Then one can model the GMM supervector ms of
speaker s as

ms =m+Uxs + V xLs (2)

with xs and xLs being the channel and language factors re-
spectively. These factors can be extracted simultaneously by
stacking U and V into one matrix and by following the con-
ventional iVector extraction procedure. The emerging vector x
can then be decomposed as x = [xs ; xLs ] and all relevant
language information is supposed to be included in xLs .

The training of channel variability matrixU is similar to the
training of the Total Variability matrix T . First we compute the
eigenvectors of the within-class (within-language) covariance
matrix and subsequently, the EM training is performed. In the
EM stage, the first order moments are centered around the ML
means of the (annotated) speaker language, as motivated in [3].

Since the number of languages is small, there is no need to
rely on the EM algorithm for finding a compact representation
V of the language sub-space. Instead, we assign one vector di-
rectly to each of the languages and set the values of the column
vectors Vl of V equal to the offset between the ML supervector
ml of the corresponding language l (obtained by ML training
initialized with the UBM) and the UBM supervectorm:

Vl =ml −m (3)

This ensures that the UBM can be shifted towards the language
dependent GMMs when performing adaptation with matrix V .

2.4. Language classifiers

The backend of the LR system consist of a simple classifier.
The input ys of this classifier for speaker s consists of either
the iVectors xs,Ls or the language factors xLs .

2.4.1. Language factor maximum detector (MAX)

The MAX classifier interprets the language factors xLs as lan-
guage scores and simply selects the language producing the
highest score.

2.4.2. Gaussian Backend (GB)

The GB classifier models the distribution of the score vectors
ys of target language l by means of a multivariate normal dis-
tribution N (µl,Σ) with Σ a full covariance matrix shared by
all target languages [10]. The classification is based on the fol-
lowing language score:

y∗s,l = (Σ−1µl)
Tys −

1

2
µT

l Σ
−1µl (4)

2.4.3. Cosine Distance Scoring (CDS)

The use of Cosine Distance Scoring (CDS) for LR consists of
the following steps [11]. First a Linear Discriminant Analysis
(LDA) is conducted on the inputs so as to maximize the inter-
class variability and to minimize the intra-class variability. The
resulting vectors are then normalized to have a unit length. Fi-
nally, by assuming that each language can be modeled by a von
Mises-Fisher distribution, one can retrieve the ML mean of lan-
guage l from the normalized vectors y′s as follows:

µl =

∑
∀s∈l y

′
s

‖
∑
∀s∈l y

′
s‖

(5)

The sum is taken over all speakers s belonging to the training
data for language l. Assuming identical spreads (κ) for all lan-
guage distributions, the language score y∗s,l for a test segment
y′s is computed as follows:

y∗s,l = κµT
l y
′
s (6)

3. Proposed methods
3.1. CDS in the supervector domain

It seems odd to retrieve the main language directions from (5)
as similar information is represented by the supervectors Vl

(columns) of the language variability matrix V . We therefore
propose to construct a classifier by relying solely on informa-
tion stored in V . This also allows us to adapt the classifier by
adapting V to the test conditions, as is explained in the next
section.

We can realize our goal by calculating the cosine distance
based on angles in the language supervector space L defined
by the range of V instead of directly interpreting the language
factors as coordinates in the Euclidean space RNl with Nl the
number of languages, as it was done in Section 2.4.3.

Since computing cosine distances is easier in an orthonor-
mal space, we first determine an orthonormal basis Q for the
space L via the Gram-Schmidt QR decomposition:

V = QR (7)

The coordinates of the supervectors in V with respect to the
orthonormal basisQ are given by the Nl ×Nl upper triangular
matrixR.

During evaluation the language-dependent shift of the
UBM supervector for speaker s is given by V xLs . The co-
ordinates ys of this vector in space L with respect to Q are
determined by

ys = RxLs (8)

To compute the CDS in the supervector domain, we normalize
the length of ys and retrieve the language scores from (6). Re-
member that column l ofR contains the coordinates of the lan-
guage mean Vl in the orthonormal space defined by Q, hence
the mean vector µl for each language l equals Rl

||Rl||
.



3.2. Adaptive language factor extraction

3.2.1. Motivation

The targeted broadcasts include a considerable amount of non-
native speakers and speakers with a heavy accent. For instance,
one of the documentaries in our evaluation data contains a lot of
African French, which has a distinct pronunciation that clearly
differs from the French spoken in our training set. We therefore
propose a method for adapting the language variability matrix
V to the data seen in the audio file that needs to be processed.

3.2.2. Implementation

We use the MAP-adaptation framework [12] to adapt the mix-
ture components Vl,k of supervector Vl (k indexes one of the
Gaussians in the UBM). The updated component V̂l,k is calcu-
lated as a weigthed sum between the original Vl,k and an ML
estimation El,k(VkxLs) of this component given the adapta-
tion data:

V̂l,k = (1− αl,k)Vl,k + αl,kEl,k(VkxLs) (9)

The estimation El,k(VkxLs) is computed across all speakers
appearing in the test file:

El,k(VkxLs) =

∑
s P̂ (l|s)

∑
t∈s γk(t)VkxLs

nl,k
(10)

nl,k =
∑
s

P̂ (l|s)
∑
t∈s

γm(t) (11)

P̂ (l|s) = ey
∗
s,l∑Nl

j=1 e
y∗
s,j

(12)

As expressed by (3), Vl,k equals the ML estimates of the
language-dependent shifts of the Gaussian means relative to the
UBM origin. Test data specific estimates for each language can
be obtained by weighting each speaker in the test file with the
posterior probability P̂ (l|s) that he speaks language l. Note
that posteriors P̂ (l|s) are retrieved from the language scores
emerging from the non-adapted language classifier. As the
MAX classifier does not produce log-likelihood scores, we fall
back to hard decisions in that case. In cases where we do use
P̂ (l|s) we set it to zero when it turned out to be smaller than
the prior probability 1/Nl of language l. This suppresses the
impact of unreliable decisions.

By including the UBM mixture occupation probabilities
γm(t) in (10), we achieve that estimated shifts VkxLs emerg-
ing from more reliable language factors (based on more data)
have a larger impact on the final outcome. It also means that
if there was no evidence for mixture k in the observation data,
Vl,k will not be updated.

Using the standard MAP procedure one can define the
weighting factor αl,k in (9) as

αl,k =
nl,k

nl,k + rV
(13)

The relevance factor rV determines how strongly the adaptation
data can change the original model.

With the newly obtained V̂l,k we can then compute the new
language factors x∗Ls

by substituting V by V̂ in (2) and supply
these to the language classifiers.

3.2.3. Adaptation of the language classifier

The interpretation of language factors as language scores still
holds after adaptation. Hence, the maximum detection classifier
can process the new x∗Ls

directly.
However, since the language factor distribution may have

changed due to the adaptation, the GB classifier should be
adapted. To that end, we use the language factors x∗Ls

to per-
form MAP-adaption of the language mean vectors µl of the
different languages:

µ̂l = (1− αl)µl + αlEl(x
∗
Ls

), αl =
nl

nl + rGB
(14)

with rGB being the relevance factor and with

nl =
∑
∀s

P̂ (l|s)Nf (s) (15)

representing the number of frames involved in the adaptation.
In this expression, Nf (s) is the number of available frames for
speaker s and P̂ (l|s) is the weight of these frames in the adap-
tation. Clearly, the relevance factors rGB and rV should not be
chosen independently. We set rGB = rVNm with Nm being
the number of mixtures. The language mean vector El(x

∗
Ls

) of
the adaptation data is estimated as

El(x
∗
Ls

) =

∑
∀s P̂ (l|s)Nf (s)x

∗
Ls

nl
(16)

Since the amount of adaptation data may be limited, no adapta-
tion of the shared covariance matrix is considered.

For the CDS classifier it suffices to insert V̂ in the algo-
rithms described in Section 3.1.

4. Experiments
The experiments assume that every speaker speaks a single
language and hence LR is applied on the concatenation of all
data assigned to that speaker. Such a concatenation is called a
speaker segment and only segments of speakers that are known
to speak English, Flemish or French are considered.

4.1. Data

4.1.1. Training and development data

The Flemish data are taken from the CGN corpus [13]: 23 hours
of speech (935 speakers) are used for model training and an-
other 6 hours are used as development data. The English mod-
els are trained on 63 hours of speech from the 1996 HUB4
Broadcast News training data (3748 speakers). The remaining 3
hours constitute our development set. We harvested 16 hours of
speech from public RTBF podcasts1 (403 speakers) as French
training data and 7 hours as development data.

4.1.2. Evaluation data

The investigated techniques are evaluated on a custom dataset
composed of three parts. The so-called MONO part consists of
3 hours of monolingual news files per language. The Flemish
data is retrieved from Flemish news broadcasts of the Flemish
public broadcaster2 VRT. The English data is the 1997 HUB4
Broadcast News corpus. The French data is extracted from
French news radio podcasts3.

1http://www.rtbf.be/radio/podcast
2http://www.vrt.be
3http://www.rfi.fr



The BN (broadcast news) part consists of 9 hours of news
shows of the public as well as the commercial Flemish broad-
caster4. Flemish accounts for 92% of the speech, English for
5% and French for 3%.

The DOCU part consists of 10 hours of documentaries,
broadcasted by the VRT. It holds a completely different lan-
guage distribution: Flemish 40%, English 22% and French
38%. Details of the speaker distribution of each test set can
be found in Table 1.

EN FL FR total

MONO 92 139 92 323
BN 91 524 45 660

DOCU 53 23 113 189

Table 1: Number of speakers per part of the evaluation data.

4.2. Evaluation Measures

We compute the Speaker Error Rate (SER) as the percentage of
incorrectly classified speaker segments. Since the SER strongly
depends on the prior language probabilities, we also introduce
the ratio CY X :

CY X =
I(X;Y )

H(X)
(17)

I(X,Y ) is the mutual information between the recognized and
the correct language. H(X) is the entropy of the correct lan-
guage. The probabilities needed for calculating CY X are re-
trieved from the confusion matrix summarizing the LR results.

Both SER and CXY give equal weight to each speaker, ir-
respective of how long each speaker was speaking. We there-
fore also evaluate the systems in function of Frame Error Rate
(FER), i.e. the percentage of misclassified frames.

4.3. Baseline systems

The performance of five baseline systems is given in the upper
section of Tables 2 and 3. The number of UBM mixtures is set
to 256. The rank of matrices U and T is 50. Language Factor
Extraction (LFE) clearly outperforms the corresponding iVector
systems on the MONO and BN data and is competitive on the
DOCU data. We also note that the simple MAX classifier is
not significantly outperformed by the more complex language
classifiers GB and CDS.

MONO BN DOCU

iVectors + GB 4.0 11.7 9.5
iVectors + CDS 2.5 11.8 7.9
LFE + MAX 4.0 7.1 9.5
LFE + GB 2.5 7.6 8.5
LFE + CDS 1.5 7.3 9.0

LFE + CDS* 1.5 7.3 7.9

Adaptive LFE + MAX 2.5 6.1 6.3
Adaptive LFE + GB 1.2 5.9 5.3
Adaptive LFE + CDS* 1.5 6.2 6.9

Table 2: Speaker Error Rate (%) of the baseline systems and
proposed systems on the evaluation set. The lower the better.

4http://www.vtm.be

MONO BN DOCU

iVectors + GB 86.2 55.0 66.7
iVectors + CDS 89.7 53.1 68.2
LFE + MAX 85.2 67.8 65.6
LFE + GB 90.3 64.5 68.6
LFE + CDS 92.6 62.7 66.8

LFE + CDS* 93.6 63.2 69.6

Adaptive LFE + MAX 89.5 67.5 74.3
Adaptive LFE + GB 94.6 67.7 79.0
Adaptive LFE + CDS* 93.6 65.3 72.6

Table 3: Normalized Mutual Information CY X (%) of the base-
line systems and proposed systems on the evaluation set. The
higher the better.

4.4. Proposed methods

4.4.1. CDS in the supervector domain

The middle sections of the two tables show that the proposed
CDS in the supervector domain (indicated by *) tends to outper-
form the standard CDS, but given the limited amount of evalu-
ation data, statistical significance could not be proved. Con-
structing a language classifier based on information in the lan-
guage variability matrix V shows to be a viable option.

4.4.2. Adaptive language factor extraction

The effects of adaptive LFE can be found in the lower sections
of the tables. Tuning experiments on the development data lead
to a CDS spread κ of 5 and a relevance factor rV = 100.

Adaptive LFE reduces the SER in all experiments (across
datasets and classifiers) which can be attributed to an improved
robustness against speaker accents and background noise.

The largest gains are achieved in combination with the GB
classifier: the SER is reduced by more than 20% for all datasets
and significant improvements are visible inCY X as well. Adap-
tive LFE with GB classification outperforms the original iVector
systems by about 50% relative in terms of SER.

The FER of the top-performing baseline LFE+CDS reduces
from 0.3%, 2.7% and 5.4% for MONO, BN and DOCU respec-
tively to 0.1%, 2.1% and 1.1% for our Adaptive LFE with GB
classification.

5. Conclusions
We presented an adaptive language recognition system for the
challenging domain of TV broadcasts. Since we already used
a baseline language factor extraction system that separates the
Total Variability in the supervectors in a language and a channel
part, we could extend it with a method for adapting the language
variability model on a file by file basis. This way we can better
cope with heavily dialectic or accented speech.

A performance analysis involving three separate classifiers
and three very different evaluation sets, shows that the proposed
adaptation technique helps in combination with any classifier
but especially in combination with a Gaussian-based classifier.
The speaker error rate could be reduced by more than 20% rela-
tive on all datasets with respect to a baseline that is already 30%
better than a standard iVector system using the same classifier.
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native training and channel compensation for acoustic language
recognition,” in Proc. Interspeech, 2008, pp. 301–304.

[6] P. A. Torres-Carrasquillo, E. Singer, M. A. Kohler, and J. R.
Deller, “Approaches to language identification using gaussian
mixture models and shifted delta cepstral features,” in Proceed-
ings of ICSLP 2002, 2002, pp. 89–92.

[7] J. Pelecanos and S. Sridharan, “Feature warping for robust speaker
verification,” in Proceedings of 2001: A Speaker Odyssey, The
Speaker Recognition Workshop, 2001.

[8] O. Glembek, L. Burget, P. Matějka, M. Karafiát, and P. Kenny,
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