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ABSTRACT

Coupled problems, such as partitioned fluid-structure interaction (FSI) simulations, often use different
time-integration schemes to discretize the different sub-problems. This approach allows the flow equa-
tions and the structural equations to be solved with schemes that are particularly suited to solve each
individual sub-problem. However, using incompatible time-integration schemes, these simulations can
encounter stability problems. The temporal stability of a problem with one degree of freedom has been
studied before for a one-dimensional damped spring-mass system [1] and the motion of a rigid body in
a moving fluid [2]. In this paper the number of degrees of freedom is extended and a stability analysis
is performed for a simplified model of blood flow in an artery.

First, an analytical study is presented in which the temporal stability of the one dimensional unsteady
flow in a straight, flexible tube is studied. The governing equations are discretized in space and time
and subsequently linearized. The backward Euler scheme (BE) is used for the time discretization of the
flow equations. For the temporal discretization of the structure two schemes are used: (1) the compatible
backward Euler scheme and (2) the operator defined by Hilber, Hughes and Taylor (HHT) in which the
numerical damping is controlled by a single parameter α [3]. In the linearized equations the pressure,
the fluid velocity and the radial displacement are substituted by the sum of N Fourier modes. The
resulting equations are written in matrix form

Axn+1 = Bxn (1)

with x containing the radial displacement of the wall, the radial velocity, the radial acceleration, the
fluid velocity and the pressure. Stability requires that the absolute value of all eigenvalues λi of the
amplification matrix A−1B are less than or equal to one. For a good damping of the spurious modes,
the amplitude of the eigenvalues corresponding to these spurious modes must be close to zero. The
influence of the numerical parameter α and some physiological parameters on the stability and the
damping of the spurious modes are studied.

According to this analysis, the combination of the BE and HHT scheme is stable if the geometrical and
the mechanical parameters are chosen within the physiological range. As can be seen in Figure 1, the
simulation of a wave with a large wave number (small wave length) will experience a better damping
of the spurious modes than the simulation of a wave with a small wave number (large wave length).
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Figure 1: Maximal absolute value of the eigenvalues corresponding to the spurious modes as a function
of the numerical damping factor α for different wave numbers θ.

Only for small wave numbers, the damping of the spurious modes can be improved by increasing the
numerical damping. Besides the wavenumber, also the density of the fluid and the structure, the wall
thickness and the tube radius affect the damping of the spurious modes considerably.

To verify the analytical results, a numerical study is performed in which the propagation of a sinusoidal
flow wave in a straight tube is simulated using nonlinear two-dimensional axisymmetric FSI simula-
tions. In Figure 2 the influence of the numerical damping factor α on the damping of the spurious modes
is illustrated. For the simulation using the BE scheme, the spurious modes are damped immediately and
this simulation can thus be used as a reference for the simulations using the HHT scheme. Large oscil-
lations in the wall acceleration and small oscillations in the pressure are found if no artificial damping
is used (α=0). In case of maximal artificial damping (α=-0.3) both oscillations are damped well.
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Figure 2: Comparison of the evolution of (left) the pressure halfway the tube and (right) the acceleration
of the wall, as a function of the numerical damping factor α.
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