
Making Space & Time Uniformly Identifiable
in the Web via Media Fragments

(Invited Paper)

Erik Mannens
Ghent University - IBBT
ELIS - Multimedia Lab

Ghent, Belgium
Email: erik.mannens@ugent.be

Davy Van Deursen
Ghent University - IBBT
ELIS - Multimedia Lab

Ghent, Belgium
Email: davy.vandeursen@ugent.be

Rik Van de Walle
Ghent University - IBBT
ELIS - Multimedia Lab

Ghent, Belgium
Email: rik.vandewalle@ugent.be

Abstract—There’s a gap in consumer communications on how
networks, devices, and services handle and identify space & time
in media resources in the Web. W3C’s Media Fragments URI
specification, which we edited and contributed to over the last
couple of years, not only bridges this gap by homogeneously
opening up time-related media to the Internet crowd, but also
makes time-related annotation feasible for hyperlinking into that
media, thus finally also providing the necessary support for this
already omnipresent ‘third dimension’ time into the Internet. As
such, this uniform approach using the standardised (semantic)
web technology stack will improve search, discovery, usage,
management, security, and linking of related media resources
and its fragments.

I. INTRODUCTION

Media resources on the WWW used to be treated as
‘foreign’ objects as they could only be embedded using
a plugin that is capable of decoding and interacting with
these media resources. The HTML5 specification, however,
is a game changer and most of the popular user agents
have committed to support the newly introduced <video>
and <audio> elements [1]1. However, to make media,
and in particular video, a ‘first-class citizen’ on the Web,
it needs to be as easily linkable as a simple HTML page.
In order to share or bookmark only the interesting parts of
a video, we should be able to link into or link out of this
time-linear media resource. If we want to further meet the
prevailing accessibility needs of a video, we should be able to
dynamically choose our preferred tracks that are encapsulated
within this media resource, and we should be able to easily
identify only specific Region Of Interests2 (ROI) within
this media resource. And last but not least, if we want to
browse media resources based on (encapsulated) semantics,
we should be able to master the full complexity of rich media
by also enabling standardised media annotation [2], [3].

The mission of the W3C Media Fragments Working
Group (MFWG) [4], which is part of W3C’s Video in the
Web activity3, is to provide a mechanism to address media

1At the time of writing, the following browsers support the HTML5
media elements: IE 9, Firefox 3.5, Chrome 4, Safari 4, Opera 10

2http://en.wikipedia.org/wiki/Region of interest
3http://www.w3.org/2008/WebVideo/Activity.html

fragments on the Web using URIs [5], [6]. The objective of
the proposed specification is to improve the support for the
addressing and retrieval of sub-parts of media resources, as
well as the automated processing of such sub-parts for reuse
within the current and future Web infrastructure [7]. Example
use cases are the bookmarking or sharing of media fragment
URIs with friends via social network notifications by linking
to specific regions of joint images, the automated creation of
fragment URIs in search engine interfaces by having selective
previews, or the annotation of media fragments when tagging
audio and video spatially and/or temporally [8]. The examples
given throughout this paper to explain the Media Fragments
URI specification are based on the following scenario: Steve
–a long-time basketball enthusiast– posts a message on his
team’s blog containing a Media Fragment URI, that highlights
10 seconds of an NBA video clip showing the same nifty
move as he did in last Saturday’s game. Needless to say that
this Media Fragments specification will have a major impact
on the complete end-to-end media production chain. From
the moment footage is shot, edited and enriched with extra
information down the media production workflow chain, until
a specifically chosen clip is viewed by an interested end-user,
one will be able to uniquely identify, link to, display, browse,
bookmark, re-composite, annotate, and/or adapt spatial and/or
temporal sub-clips of media resources, e.g., a camera might
automatically annotate footage with the exact geo-coordinates
the moment it is shot, a news editor might quickly browse
through a months’ footage by means of highlight captions
in search of one particular item, whereas an end-user might
create a video mash-up from his bookmarked video segments
to share with his friends on a social platform.

The outline of this paper is the following. Firstly, we
describe the boundaries and semantics of a Media Fragments
URI in Section II and show how the syntax should look
like, whereas Section III elaborates on how a media fragment
specified as a URI fragment can be resolved stepwise using
the HTTP protocol [9]. We then highlight our reference
implementation in Section IV. Finally, future work is outlined
and conclusions are drawn in Section V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55826941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. MEDIA FRAGMENTS URI’S

A. Media Resource Model

We assume that media fragments are defined on top of
‘time-linear’ media resources, which are characterised by a
single timeline (see also Figure 1). Such media resources
usually include multiple tracks of data all parallel along this
uniform timeline. These tracks can contain video, audio, text,
images, or any other time-aligned data. Each individual media
resource also contains control information in data headers,
which may be located at certain positions within the resource,
either at the beginning or at the end, or spread throughout
the data tracks as headers for those data packets. There is also
typically a general header for the complete media resource. To
comply with progressive decoding, these different data tracks
may be encoded in an interleaved fashion. Normally, all of
this is contained within one single container file.

Fig. 1. Video Resource Model.

B. Requirements

We formally define a number of requirements for the
identification and access of media fragments. Based on these
requirements, we motivate a number of design choices for
processing Media Fragments URIs.

• Independent of media formats. The Media Fragments URI
specification needs to be independent of underlying media
formats, such as MP4 [10] or Ogg [11].

• Fragment axes. Media fragments need to be accessed
along three different axes: temporal, spatial, and track.
Additionally, media fragments also could be identified
through names.

• Context awareness. A media fragment must be a sec-
ondary resource of its parent resource. This way, the
relationship between the media fragment and its parent
resource is kept. Moreover, when accessing media frag-
ments, user agents need to be aware of the context of
the media fragment, i.e., where is the fragment located
within the original parent resource.

• Low complexity. The Media Fragment URI specification
should be kept as simple as possible. For instance,
defining spatial regions is limited to the definition of

rectangular regions which should be sufficient for most
applications.

• Minimize impact on existing infrastructure. Necessary
changes to all software components –be it user agents,
proxies, or media servers– in the complete media delivery
chain should be kept to a bare minimum. Furthermore,
the access to media fragments should work as much as
possible within the boundaries of existing protocols, such
as FILE, HTTP(S), and RTSP [12].

• Fragment by extraction. Preferably, it should be possible
to express media fragments in terms of byte ranges
pointing to the parent media resource. This makes the
fragments real sub-resources of the ‘de facto’ media re-
source. Therefore, we consider media segments obtained
through a re-encoding process to not be treated as media
fragments.

C. Fragment Dimensions

1) Temporal Axis: The most obvious temporal dimension
denotes a specific time range in the original media, such as
‘starting at second 10, continuing until second 20’. Temporal
clipping is represented by the identifier ‘t’, and specified
as an interval with a begin and an end time (or an in-point
and an out-point, in video editing terms). If either or both
are omitted, the begin time defaults to 0 second and the end
time defaults to the end of the entire media resource. The
interval is considered half-open: the begin time is part of the
interval, whereas the end time on the other hand is the first
time point that is not part of the interval. The time units that
can be used are Normal Play Time (npt), real-world clock
time (clock), and Society of Motion Picture and Television
Engineers (SMPTE) timecodes [12], [13]. The time format is
specified by name, followed by a colon, with ‘npt:’ being
the default. Some typical temporal examples can be seen in
band 1 of Table I.

2) Spatial Axis: The spatial dimension denotes a specific
spatial rectangle of pixels from the original media resource.
The rectangle can either be specified as pixel coordinates or
percentages. A rectangular selection is represented by the
identifier ‘xywh’, and the values are specified by an optional
format ‘pixel:’ or ‘percent:’ (defaulting to pixel) and
4 comma-separated integers. These integers denote the top
left corner coordinate (x,y) of the rectangle, its width and its
height. If percent is used, x and width should be interpreted
as a percentage of the width of the original media, and y and
height should be interpreted as a percentage of the original
height. Some typical spatial examples are shown in band 2 of
Table I.

3) Track Dimension: The track dimension denotes one
or multiple tracks, such as ‘the English audio track’ from a
media container that supports multiple tracks (audio, video,
subtitles, etc). Track selection is represented by the identifier
‘track’, which has a string as a value. Multiple tracks
are identified by multiple name/value pairs. Note that the

interpretation of such track names depends on the container
format of the original media resource as some formats only
allow numbers, whereas others allow full names. Some
informative track examples are highlighted in band 3 of
Table I.

4) Named Dimension: The named dimension denotes a
named section of the original media, such as ‘chapter 2’. It
is in fact a semantic replacement for addressing any range
along the aforementioned three axes (temporal, spatial, and
track). Name-based selection is represented by the identifier
‘id’, with again the value being a string. Percent-encoding
can be used in the string to include unsafe characters (such
as a single quote), as again can be seen in band 4 of Table I.
Interpretation of such strings depends on the container format
of the original media resource as some formats support
named chapters or numbered chapters (leading to temporal
clipping), whereas others may support naming of groups of
tracks or other objects. As with track selection, determining
which names are valid requires knowledge of the original
media resource and its media container format.

As the temporal, spatial, and track dimensions are logically
independent, they can be combined where the outcome is
also independent of the order of the dimensions. As such, the
fragments of band 5 of Table I should be byte-identical.

TABLE I
EXAMPLES OF VALID MEDIA FRAGMENT SYNTAXES

t=npt:10,20 results in the time interval [10,20[

t=,20 results in the time interval [0,20[

t=smpte:0:02:00, results in the time interval [120,end[

xywh=160,120,320,240 results in a 320x240 box at x=160 and y=120

xywh=pixel:160,120,320,240 results in a 320x240 box at x=160 and y=120

xywh=percent:25,25,50,50 results in a 50%x50% box at x=25% and y=25%

track=1&track=2 results in only extracting track ’1’ and ’2’

track=video results in only extracting track ’video’

track=Kids%20Video results in only extracting track ’Kids Video’

id=1 results in only extracting the section called ’1’

id=chapter-1 results in only extracting the section called ’chapter-1’

id=My%20Kids results in only extracting the section called ’My Kids’

#t=10,20&track=vid&xywh=pixel:0,0,320,240
#track=vid&xywh=0,0,320,240&t=npt:10,20
#xywh=0,0,320,240&t=smpte:0:00:10,0:00:20&track=vid

III. RESOLVING MEDIA FRAGMENTS WITH HTTP

In the previous section we described the Media Fragments
URI syntax, whereas in this section we present how a Media
Fragments URI should be retrieved using the HTTP protocol.
We foresee that the logic of the processing of a Media
Fragments URI will be implemented within smart user agents,
smart servers and sometimes in a proxy cacheable way. We

observe that spatial media fragments are typically interpreted
on the user agent side only (i.e., no spatial fragment extraction
is performed on server-side) for the following reasons:

• Spatial fragments are typically not expressible in terms
of byte ranges. Spatial fragment extraction would thus
require transcoding operations resulting in new resources
rather than fragments of the original media resource
according to the semantics of the URI fragments defined
in the corresponding RFC [6].

• The contextual information of extracted spatial fragments
is not really usable for visualization on client-side.

In the remainder of this section, we describe how to resolve
Media Fragments URIs using the HTTP protocol focusing on
the temporal dimension for the sake of simplicity.

A. User Agent mapped Byte Ranges
As stated in our scenario in Section I, Steve can now show

off his awesome play using his smart phone displaying the
specific scene posted on his blog by using the following Media
Fragments URI:

http://example.com/video.ogv#t=10,20

Since Steve does not want to use his entire monthly operator
fee with the unnecessary bandwidth cost of downloading
the full movie, he uses a smart user agent that is able to
interpret the URI, determine that it only relates to a sub-
part of a complete media resource, and thus requests only the
appropriate data for download and playback. In this scenario,
media fragments can be served by traditional HTTP Web
servers. However, a smart user agent is necessary to parse
the Media Fragments URI syntax. Furthermore, it requires
knowledge about the syntax and semantics of various media
codec formats. We assume that Steve’s smart phone runs a
smart user agent (e.g., an HTML5 compliant browser) that
can resolve the temporal fragment identifier of the Media
Fragments URI through a HTTP byte range request. A click
on this URI triggers the following chain of events:

time (s) 0 10 20 30 40

byte (kbytes) 0 2 24 32 40 47

50

59

H

5.1.1.1 UA requests URI fragment for the first time

GET /video.ogv HTTP/1.1
Host: www.example.com
Accept: video/*
Range: bytes=24000-32000

HTTP/1.1 206 Partial Content
Accept-Ranges: bytes
Content-Length: 8000
Content-Type: video/ogg
Content-Range: bytes 24000-32000/59000
Etag: "b7a60-21f7111-46f3219476580"

{binary data}

Fig. 2. User Agent requests Fragment for the first Time.

1) The user agent checks if a local copy of the requested
fragment is available in its buffer, which is not the case.

2) We consider that the user agent knows how time is
mapped to byte offsets for this particular Ogg media

format. It just parses the media fragment identifier and
maps the fragment to the corresponding byte range(s).

3) The user agent sets up the decoding pipeline for the
media resource at http://example.com/video.ogv by just
downloading the first couple of bytes of that file that
corresponds to the resource’s header information.

4) The MIME-type of the resource requested is confirmed.
The user agent can use the header information to resolve
the fragment byte ranges. Based on the calculated time-
to-byte mapping and the extracted information from the
resource’s header of where to find which byte, the user
agent sends one or more HTTP requests using the HTTP
Range request header (see Figure 2) for the relevant
bytes of the fragment to the server. In this particular
case, an HTTP 1.1 compliant Web server will be able
to serve the media fragment.

5) The server extracts the bytes corresponding to the re-
quested range and responds with a HTTP 206 Partial
Content response containing the requested bytes.

6) Finally, the user agent receives these byte ranges and
is able to decode and start playing back the initially
requested media fragment.

More profound client side examples (fragment requests
which are already buffered and fragment requests of a changed
resource) can be found in the Media Fragments specifica-
tion [7].

B. Server mapped Byte Ranges

We now assume that the user agent is able to parse and
understand the Media Fragments URI syntax, but is unable to
perform by itself the byte range mapping for a given request.
In this case, the user agent needs some help from the media
server to perform this mapping and deliver the appropriate
bytes. In this case, the server has to help the client to setup
the initial decoding pipeline (i.e., there is no header info from
the resource on client side yet). When Steve starts to play this
by now ‘infamous’ 10 seconds of video, the following events
occur:

1) The user agent parses the media fragment identifier and
creates an HTTP Range request expressed in a different
unit than bytes, e.g., a time unit expressed in seconds.
Furthermore, it extends this header with the keyword
‘include-setup’ (see Figure 3) in order to let the
server know that it also requires the initial header of the
resource to initiate the decoding pipeline.

2) The server extracts the header information of the media
resource as requested with ‘include-setup’.

3) The server, which also understands this time unit, re-
solves the HTTP Range request and performs the map-
ping between the media fragment time unit and byte
ranges, and extracts the corresponding bytes.

4) Once the mapping is done, the server wraps then
both the header information and the bytes requested
in a multi-part HTTP 206 Partial Content response.
As depicted in Figure 3, the first part contains the
header data needed for setting up the decoding pipeline,

whereas subsequent parts contain the requested bytes of
the needed fragment. Note that a new header, named
‘Content-Range-Mapping’, is introduced to pro-
vide the exact mapping of the retrieved byte range cor-
responding to the original ‘Content-Range’ request
expressed with a time-unit. The decoder might need
extra data, before the beginning and/or after the end of
the requested sequence, since this initial period might
not correlate to a random access unit of the clip to
start/end with. In analogy with the ‘Content-Range’
header, the ‘Content-Range-Mapping’ header also
adds the instance-length after the slash-character ‘/’.

5) Finally, the user agent receives the multi-part byte ranges
and is able to setup the decoding pipeline (using the
header information), decodes, and starts playing back
the media fragment requested.

time (s) 0 10 20 30 40

byte (kbytes) 0 2 24 32 40 47

50

59

H

5.1.2.2 Server mapped byte ranges with corresponding binary data and codec setup
data

GET /video.ogv HTTP/1.1
Host: www.example.com
Accept: video/*
Range: t:npt=10-20;include-setup

HTTP/1.1 206 Partial Content
Accept-Ranges: bytes, t, track, id
Content-Length: 12000
Content-Type: video/ogg
Content-Range-Mapping: { t:npt 9-21/0-50;include-setup } =

{ bytes 0-2000, 23000-33000/59000}
Content-Type: multipart/byteranges;boundary=BOUNDARY
Etag: "b7a60-21f7111-46f3219476580"

--BOUNDARY
Content-type: video/ogg
Content-Range: bytes 0-2000/59000
{binary data}
--BOUNDARY
Content-type: video/ogg
Content-Range: bytes 23000-33000/59000
{binary data}

Fig. 3. Server mapped Byte Ranges including Header Information.

More profound server side examples (fragment requests
with an initialised client, proxy cacheable server mapped byte
ranges, and server triggered redirects) can be found in the
Media Fragments specification [7].

IV. A REFERENCE IMPLEMENTATION

Our NinSuna platform4 is a fully integrated platform for
multimedia content selection and adaptation, whose design
and implementation are based on Semantic Web technologies.
Furthermore, a tight coupling exists between NinSuna’s
design and a model for describing structural, semantic,
and scalability information of media resources [14]. Media
resources are ingested into the platform and mapped to this
model. The adaptation and selection operations are based
on this model and are thus independent of the underlying
media formats, making NinSuna a format-independent
media delivery platform [15]. The model (i.e., the NinSuna
ontology5) is implemented using Semantic Web technologies:

4http://ninsuna.elis.ugent.be/
5http://ninsuna.elis.ugent.be/S3MediaOntology

the model is written in OWL, while the metadata instances
are represented in RDF. Multimedia adaptation is then
performed by selecting and adapting portions of the structural
metadata using SPARQL. Additionally, a format-independent
packaging technique is used, based on MPEG-B Bitstream
Syntax Description Language (BSDL) [16], to deliver the
media content in a fully format-independent manner to the
end-user.

Suppose a client wants to retrieve the following Media
Fragment URI: http://foo.com/media.mp4#t=0,10. The
latter identifies the first ten seconds of the media resource
http://foo.com/media.mp4. Of course, the client often has the
desire not to retrieve the full resource, but only the identified
subpart. In the example, only the first ten seconds of the
requested media resource should be delivered to the user
agent. As described above, the Media Fragment URI 1.0
specification currently defines three different axis: temporal,
spatial, and track. When user agents are not able to perform
the fragment extraction, they need help from Media Fragment-
aware servers. Such servers typically handle only the temporal
and the track axis, since extracting spatial fragments at server-
side comes with a number of problems such as re-encoding
and irrelevant fragment context information for user agents.
In Figure 4, the structural metadata of a multimedia resource
are depicted. These structural metadata are compliant to
the model for media bitstreams, as discussed above. The
multimedia resource is described by an AnnotatedMultimedia
instance, which contains two MediaBitstream instances (i.e.,
a video and an audio track). Suppose we only want to
select the video track from the media resource described
in Figure 4, and more specifically only a subpart of the
video track starting from second 2 and ending at second
10, resulting in the following Media Fragment URI:
http://foo.com/media.mp4#track=video1&t=2,10. First, the
track having as name ‘video1’ is selected. Next, data blocks
are selected based on the temporal parameters (i.e., from
second 2 to second 10). As shown in Figure 4, data block
50 corresponds to second 2 in the video stream. However, to
guarantee that the adapted video bitstream can be decoded in
a correct way, cuts in the bitstream should only be performed
at random access points. Hence, data blocks are selected
starting from data block 48.

As such, our model-driven media delivery platform aims
at being a server-side implementation of the Media Frag-
ments URI 1.0 specification. More specifically, the plat-
form is able to deliver temporal and track fragments by
using efficient media segment extraction methods. More-
over, since the platform is independent of underlying me-
dia formats, it is also a generic solution to resolve Media
Fragments URIs. Currently, two demos (available online at
http://ninsuna.elis.ugent.be/mediafragments) exist demonstrat-
ing the W3C Media Fragments Specification:

• Server-side Media Fragment extraction: both query- and
fragment-based Media Fragments URIs are demonstrated.

DB_48

DB_49

DB_50

R
A

U

Data blocks selected based on the media fragment
http://foo.com/media.mp4#track=video1&t=2,10

DB_x = data block instance with timestamp equal to x

DB_90

DB_91

DB_92

DB_93

DB_94

R
A

U

DB_95

2 s

... ...

MediaBitstream
name = audio1

timestamp rate = 46.875 tps

MediaBitstream
name = video1

timestamp rate = 25.0 tps

AnnotatedMultimedia

=

tps = timestamps per second

... ...

Fig. 1. Extracting temporal and track fragments within Nin-
Suna.

client often has the desire not to retrieve the full resource, but
only the identified subpart. In the example, only the first ten
seconds of the requested media resource should be delivered
to the User Agent (UA).

As introduced above, the Media Fragment URI 1.0 spec-
ification currently defines three different axis: temporal, spa-
tial, and track. When UAs are not able to perform the frag-
ment extraction, they need help from Media Fragment-aware
servers. Such servers typically handle only the temporal and
the track axis, since extracting spatial fragments at server-side
comes with a number of problems such as re-encoding and ir-
relevant fragment context information for UAs.

In Fig. 1, the structural metadata of a multimedia resource
is depicted. These structural metadata are compliant to the
model for media bitstreams (discussed in Sect. 2). The mul-
timedia resource is described by an AnnotatedMultimedia in-
stance, which contains two MediaBitstream instances (i.e., a
video and an audio track). Suppose we only want to select
the video track from the media resource described in Fig. 1,
and more specifically only a subpart of the video track start-
ing from 2 s and ending at 10 s, resulting in the following
Media Fragment URI: http://foo.com/media.mp4#
track=video1&t=2,10.

First, the track having as name ‘video1’ is selected. Next,
data blocks are selected based on the temporal parameters
(i.e., from 2 s to 10 s). As shown in Fig. 1, DB 50 corresponds
to 2 s in the video stream. However, to garantuee that the
adapted video bitstream can be decoded in a correct way, cuts
in the bitstream should only be performed at random access
points. Hence, data blocks are selected starting from DB 48.

4. DEMONSTRATION

A number of demos are available online at http://
ninsuna.elis.ugent.be/mediafragments. Both
server- and client-side Media Fragment URI interpretations
can be tested.

5. ACKNOWLEDGMENTS

The research activities as described in this paper were funded
by Ghent University, the Interdisciplinary Institute for Broad-
band Technology (IBBT), the Institute for the Promotion of
Innovation by Science and Technology in Flanders (IWT), the
Fund for Scientific Research-Flanders (FWO-Flanders), and
the European Union.

6. REFERENCES

[1] Michael Hausenblas et al., “Interlinking Multimedia:
How to Apply Linked Data Principles to Multimedia
Fragments,” in 2nd Workshop on Linked Data on the Web
(LDOW’09), Madrid, Spain, 2009.

[2] Silvia Pfeiffer, “Architecture of a Video Web - Experi-
ence with Annodex,” W3C Video on the Web Workshop,
2007.

[3] Raphaël Troncy et al., “Identifying Spatial and Temporal
Media Fragments on the Web,” W3C Video on the Web
Workshop, 2007.

[4] Raphaël Troncy and Erik Mannens, Eds., Use cases and
requirements for Media Fragments, W3C Working Draft.
World Wide Web Consortium, November 2009.

[5] Raphaël Troncy and Erik Mannens, Eds., Media Frag-
ments URI 1.0, W3C Working Draft. World Wide Web
Consortium, December 2009.

[6] Davy Van Deursen et al., “Format-independent and
Metadata-driven Media Resource Adaptation using Se-
mantic Web Technologies,” Multimedia Systems, vol. 16,
no. 2, pp. 85–104, 2010.

[7] Davy Van Deursen et al., “NinSuna: a Fully Integrated
Platform for Format-independent Multimedia Content
Adaptation and Delivery based on Semantic Web Tech-
nologies,” Multimedia Tools and Applications – Special
Issue on Data Semantics for Multimedia Systems, vol. 46,
no. 2-3, pp. 371–398, January 2010.

[8] ISO/IEC, “Information technology – MPEG systems
technologies – Part 5: Bitstream Syntax Description Lan-
guage,” ISO/IEC 23001-5:2008, February 2008.

Fig. 4. Extracting Temporal and Track Fragments within NinSuna.

• Client-side Media Fragment rendering: a Media Frag-
ments media player (both in Flash and HTML5).

V. CONCLUSIONS AND FUTURE WORK

Currently, it is application dependant for all specified
media fragment axes, how their defined media fragments
should be rendered to the end-user in a meaningful way.
Temporal fragments could be highlighted on a timing bar
whereas spatial fragments could be emphasised by means
of bounding boxes or they could be played back in colour
while the background is played back in grey-scale. Finally,
track selection could be done via dropdown boxes or buttons.
Whether the Media Fragments URIs should be hidden from
the end-user or not is an application implementation issue.

We already have an HTTP implementation for the W3C
Media Fragments 1.0 specification [17] in order to verify all
the test cases defined by our working group. Furthermore,
several browser vendors are on their way of implementing a
HTTP implementation themselves. In the near future, we also
foresee reference implementations for the RTSP, Real Time
Messaging Protocol6 (RTMP), and File protocols.

There is currently no standardised way for user agents
to discover the available named and track fragments. One
could use ROE, which makes it possible to express the track
composition of a media resource, in addition to naming
these tracks and extra metadata info on language, role and
content-type which could further help selecting the right

6Adobe’s Real Time Messaging Protocol available at http://www.
adobe.com/devnet/rtmp/

tracks. Another candidate to use is the Media Multitrack API7

from the HTML5 Working Group8. This is a JavaScript API
for HTML5 media elements that allows content authors to
determine which data is available from a media resource. Not
only does it expose the tracks that a media resource contains,
but it also specifies the type of data that is encapsulated
within the resource –e.g., audio/vorbis, text/srt, video/theora,
etc.–, the role this data plays –e.g., audio description, caption,
sign language, etc.–, and the actual language –e.g., RFC30669

language code.

With such media fragments addressing schemes available,
there is still a need to hook up the addressing with the
actual bytes of the resource. For the temporal and the spatial
dimension, resolving the addressing into actual byte ranges
is relatively obvious across any media type. However, track
addressing and named addressing need to be resolved too.
Track addressing will become easier when we solve the above
stated requirement of exposing the track structure of a media
resource. The name definition, on the other hand, will require
association of an id or name with temporal offsets, spatial
areas, or tracks.

Finally, hyperlinking out of media resources is something
that is not generally supported at this stage. Certainly, some
types of media resources -QuickTime, Flash10, MPEG-4,
and Ogg- support the definition of tracks that can contain
HTML marked-up text and thus can also contain hyperlinks.
It seems to be clear that hyperlinks out of media files will
come from some type of textual track. But a standard format
for such time-aligned text tracks does not exist yet. Re-using
our specification, this challenge is still to be addressed in the
near future.

In the meantime this Media Fragments URI specification,
which we edited and contributed to over the last couple of
years, now really opens up time-related media to the Internet
crowd and makes time-related annotation [7], [8] feasible for
hyperlinking into the media, thus providing the necessary
support for this already omnipresent ‘third dimension’ time
into the Internet.

ACKNOWLEDGMENT

The authors would like to thank the other W3C Media
Fragments’ participants. The research activities that have been
described in this paper were partially funded by W3C/ERCIM,
Ghent University, Interdisciplinary Institute for Broadband
Technology (IBBT), and the Institute for the Promotion of
Innovation by Science and Technology in Flanders (IWT).

7http://www.w3.org/WAI/PF/HTML/wiki/Media MultitrackAPI
8On 6 May 2010 , the HTML5 draft specification introduced the

WebSRT format (Web Subtitle Resource Tracks), a format intended
for marking up external timed track resources.

9http://www.ietf.org/rfc/rfc3066.txt
10http://www.flash.com

REFERENCES

[1] I. Hickson and D. Hyatt, Eds., HTML5 – A Vocabulary and associated
APIs for HTML and XHTML, ser. W3C Working Draft. World Wide
Web Consortium, 4 March 2010, available at http://www.w3.org/TR/
html5/.

[2] S. Pfeiffer, “Architecture of a Video Web - Experience with Annodex,” in
Proceedings of the W3C Video on the Web Workshop, Brussels, Belgium,
December 2007, pp. 1–5.

[3] R. Troncy, L. Hardman, J. Van Ossenbruggen, and M. Hausenblas,
“Identifying Spatial and Temporal Media Fragments on the Web,” in
Proceedings of the W3C Video on the Web Workshop, Brussels, Belgium,
December 2007, pp. 1–6.

[4] W3C Media Fragments Working Group, “Media Fragments Work-
ing Group,” 2010, available at http://www.w3.org/2008/WebVideo/
Fragments.

[5] M. Hausenblas, R. Troncy, T. Burger, and Y. Raimond, “Interlinking
Multimedia,” in Proceedings of the 2nd Workshop on Linked Data on
the Web, Madrid, Spain, April 2009, pp. 1–9.

[6] Internet Engineering Task Force, “RFC 3986: Uniform Resource Iden-
tifier (URI) – Generic Syntax,” 2005, available at http://tools.ietf.org/
html/rfc3986.

[7] E. Mannens and R. Troncy, Eds., Media Fragments URI 1.0, ser. W3C
Working Draft. World Wide Web Consortium, June 2010, available at
http://www.w3.org/TR/media-frags.

[8] R. Troncy and E. Mannens, Eds., Use Cases and Requirements for Media
Fragments, ser. W3C Working Draft. World Wide Web Consortium,
December 2009, available at http://www.w3.org/TR/media-frags-reqs.

[9] Internet Engineering Task Force, “RFC 2616: HyperText Transfer Proto-
col – HTTP/1.1,” 1999, available at http://www.ietf.org/rfc/rfc2616.txt.

[10] ISO/IEC, “Information technology – Coding of Audio, Picture, Multi-
media and Hypermedia Information – Part 14: MP4 file format,” 2003,
iSO/IEC 14496-14:2003.

[11] S. Pfeiffer, “RFC 3533: The Ogg Encapsulation Format Version 0,” 2003,
available at http://www.ietf.org/rfc/rfc3533.txt.

[12] H. Schulzrinne, A. Rao, and R. Lanphier, “RFC 2326: Real Time
Streaming Protocol,” 1998, available at http://www.ietf.org/rfc/rfc2326.
txt.

[13] Society of Motion Picture and Television Engineers, “SMPTE RP 136:
Time and Control Codes for 24, 25 or 30 Frame-Per-Second Motion-
Picture Systems,” 2004, available at http://www.smpte.org/standards.

[14] D. Van Deursen, W. Van Lancker, S. De Bruyne, W. De Neve,
E. Mannens, and R. Van de Walle, “Format-independent and Metadata-
driven Media Resource Adaptation using Semantic Web Technologies,”
Multimedia Systems Journal, vol. 16, no. 2, pp. 85–104, January 2010.

[15] D. Van Deursen, W. Van Lancker, W. De Neve, T. Paridaens, E. Man-
nens, and R. Van de Walle, “NinSuna: a Fully Integrated Platform for
Format-independent Multimedia Content Adaptation and Delivery based
on Semantic Web Technologies,” Multimedia Tools and Applications –
Special Issue on Data Semantics for Multimedia Systems, vol. 46, no. 2,
pp. 371–398, January 2010.

[16] ISO/IEC, “Information technology – MPEG Systems Technologies –
Part 5: Bitstream Syntax Description Language,” 2008, ISO/IEC 23001-
5:2008.

[17] D. Van Deursen, R. Troncy, E. Mannens, S. Pfeiffer, Y. Lafon, and
R. Van de Walle, “Implementing the Media Fragments URI Speci-
fication,” in Proceedings of the 19th International World Wide Web
Conference (WWW), Raleigh, USA, April 2010, pp. 1361–1363.

