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Whereas post-edited texts have been shown to be either of comparable quality to human translations 
or better, one study shows that people still seem to prefer human-translated texts. The idea of texts 
being inherently different despite being of high quality is not new. Translated texts, for example, are 
also different from original texts, a phenomenon referred to as ‘Translationese’. Research into 
Translationese has shown that, whereas humans cannot distinguish between translated and original 
text, computers have been trained to detect Translationese successfully. It remains to be seen 

whether the same can be done for what we call Post-editese. We first establish whether humans are 
capable of distinguishing post-edited texts from human translations, and then establish whether it is 
possible to build a supervised machine-learning model that can distinguish between translated and 
post-edited text. 

1. Introduction 

In our increasingly multicultural society, choices need to be made regarding translation production 

and quality. In order to keep up with the increased need for translation, manual human translation 

has made way for computer-assisted translation, and – in some circumstances – for the post-editing 

(PE) of machine-translated texts (Koponen, 2016). Several professional translators are still opposed 

to the use of machine translation (MT), claiming that it negatively affects the quality of a translation. 

Research, however, has shown that post-edited (PE) texts are often judged to be of comparable 

quality to human translations (HT) (Fiederer & O’Brien, 2009; Garcia, 2010; O’Curran, 2014; Plitt 

& Masselot, 2010) and even of better quality than HTs (Green, 2013; Koponen, 2016). These quality 

judgements are usually performed by language experts or researchers with a background in 

linguistics. While they are indeed qualified to perform analyses of textual quality, the perspective of 

the end-user (the reader) is barely taken into account when judging a text’s quality. In fact, to the 

best of our knowledge, only the research done by Bowker has investigated how recipients of texts 

evaluate PE and human-translated texts. In 2009, Bowker found that people’s tolerance of post-

editing and MT depended greatly on the goal of a text and the community under scrutiny, with 

members of the Fransaskois (a French-speaking Canadian community) greatly preferring HT and 

West Quebecers mostly preferring PE when they were informed about the production cost and time 

of HT and PE. A comparable study was performed by Bowker and Buitrago Ciro (2015) with 

Spanish-speaking immigrants in Canada. They presented readers with different versions of a text 

(HT, maximally PE, rapidly PE, raw MT) and asked them which text they preferred. Of interest in 

this study is the fact that the participants first had to give their preference without knowing the 

source of the text. The respondents chose the HT version of a text in 42% of the cases, compared to 
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only 24% for the maximally PE texts. This is striking, considering the research into the quality of PE 

texts. If a fully PE text is indeed of comparable quality to a HT text, what is it that still makes 

readers prefer HT?  

The finding is especially puzzling when compared to the research on Translationese. The term 

“Translationese” was coined by Gellerstam in 1986, and it has since been used to indicate any type 

of difference between original text and translated text. In contrast with research on HT and PE texts, 

user-perception studies are somewhat more common in the field of Translationese. From these 

studies, it seems that readers are not capable of identifying the difference between an original text 

and a translated text (Baroni & Bernardini, 2006; Tirkkonen-Condit, 2002). Interestingly, computers 

have successfully been trained to detect these differences by taking lexical and grammatical 

information into account (Baroni & Bernardini, 2006; Ilisei, Inkpen, Corpas Pastor, & Mitkov, 2010; 

Koppel & Ordan, 2011; Volansky, Ordan, & Wintner, 2015). 

In this study, we aim to take the first steps towards an identification of what we call “Post-

editese”: the expected unique characteristics of a PE text that set it apart from a translated text (and, 

in future work, from original text). The relevance of this work is manifold. Like Translationese, 

insights into Post-editese can help us to understand both the translation process and the more elusive 

aspects of translation quality, that is, the aspects of a translated text that make readers prefer it over a 

PE text of high quality. In the case of Translationese, it seems that despite objective measures of 

differences between original text and translated text, the intended reader does not usually perceive a 

difference. In the case of Post-editese, more research is required to investigate further the findings by 

Bowker (2009) and Bowker and Buitrago Ciro (2015). Some of the more practical applications of 

Translationese detection as suggested by Baroni and Bernardini (2006) are an assessment tool for 

translators and translation students, a web-based parallel corpus extractor and multilingual 

plagiarism detection. A practical application of detecting Post-editese would, for example, be the 

automatic extraction of non-PE texts to ensure that MT systems are trained on original texts and 

translations only; another could be a way for post-editors to monitor the output of their work 

automatically. Considering that PE texts are often of comparable quality to HTs or even of better 

quality, identifying elements of Post-editese would not necessarily imply identifying elements of 

lesser quality, but rather identifying those elements that human readers dislike about a PE text that 

make them prefer an HT text, because this is of importance to people wanting to publish a text.  

The research presented in this article attempts to answer two main questions: (1) Can readers 

spot the difference between HT and PE texts? and (2) Can we identify objective, quantifiable 

differences between HTs and PE texts? In the following sections, we first elaborate on the 

importance and features of Translationese and the expected features of Post-editese. This is followed 

by an outline of the research setup and methodology used, an analysis of our data, and some 

conclusions and directions for future work.  

2. Translationese and Post-editese 

While the term “Translationese” has been used to denote bad translation, Gellerstam (1986) 

originally intended it to mean statistical differences between translated and original text. Baker 

(1993) introduced the notion of translation universals: typical features of translation, independent of 

language combination. She proposed four such translation universals: simplification, explicitation, 

normalization and interference. Simplification means that complex features are replaced by simpler 

features in a translated text; explicitation means that implicit information is made explicit more often 

in a translated text; normalization means that translated texts are often more standardized, using 

conventional grammar; and interference means that the source language’s (SL) influence is visible in 

the translation. Corpus studies tried to find proof of these universals by, for example, looking at the 

type–token ratio (lexical variety) (Al-Shabab, 1996), sentence length and the ratio of content to non-

content words (lexical density) (Laviosa, 1998) in translated text.  

More recently, machine-learning strategies have been used to identify differences between 

translated and original texts, which has also led to the notion of translation universals being 

challenged. Volansky et al. (2015), for example, established that some of the characteristics of 
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translation depend greatly on the language pair. Baroni and Bernardini (2006) were, to the best of 

our knowledge, the first to use support vector machines (SVMs) to identify translated texts. They 

found that function words, personal pronouns and adverbs are some of the main features used by the 

SVMs to identify translated Italian. Ilisei et al. (2010) found proof for the simplification universal in 

Spanish, also using SVMs. Their system relied heavily on lexical richness, the proportion of 

grammatical words to lexical words, sentence length, word length and – compared to what Baroni 

and Bernardini (2006) found – morphological attributes. The previous two studies were examples of 

supervised machine-learning studies. Rabinovich and Wintner (2015) successfully applied 

unsupervised machine learning to the identification of Translationese, mostly using function words, 

character trigrams and part-of-speech (PoS) trigrams.  

As this is, to the best of our knowledge, the first article to consider the possible features and 

perceptions of what we will call “Post-editese”, our assumptions are naturally limited to what we 

know about Translationese and PE in general. Where we expect there to be source text (ST) 

interference in Translationese, we expect there to be MT interference in Post-editese, as post-editors 

are primed by the MT output (Green et al., 2013). Aharoni, Koppel and Goldberg (2014) were able 

to automatically identify sentences as being MTs or HTs, using features such as PoS and information 

about function word frequency. Lapshinova-Koltunski (2013) built a corpus containing HT texts, 

various types of MT and computer-assisted translation. She managed to discriminate between HTs 

and MT on the basis of conjunctions, personal pronouns and adverbs. Verbs, adjectives and nouns 

helped to discriminate between three groups: computer-assisted translation and rule-based MT, HT 

and statistical MT. There therefore seems to be a type of Machine Translationese, although the 

question remains whether its features can also be found in Post-editese. The only study moving in 

the direction of identifying Post-editese is that by Čulo and Nitzke (2016): they compared the 

terminology used in MT, PE texts and HT and found that the PE terminology was closer to that of 

the MT output than to that of the HT.  

3. Corpus collection and processing 

The research presented in this article comprises two studies: a reader-perception study in which 

participants had to label texts as being either PE or HT, and a quantitative study in which textual 

information was analysed across translation methods. The main goal was to identify whether 

translations and PE texts of publishable quality still exhibit (perceived) unique characteristics that set 

them apart from one another.  

The corpus was collected during a previous study (Daems, 2016), in which 13 professional 

translators (age range 25–51) and 10 master’s students of translation (age range 21–25) post-edited 

and translated eight different newspaper articles of approximately 150–160 words long from English 

into Dutch. The goal in both tasks was to obtain a text of publishable quality. With the exception of 

one translator, who had two years of experience, all the translators had a minimum of five years and 

a maximum of 18 years of experience working as a full-time professional translator. The students 

had all passed their final English Translation examination. The participants had limited to no 

experience with PE. Text topics varied for each text: for example, from “the impact of climate 

change on violence” to “criticism on using lie detector tests in job application procedures”. For a full 

discussion of how the texts were selected as well as an overview of the different texts, see Daems 

(2016). After discarding incomplete data, the corpus consisted of 87 translations and 87 PE Dutch 

texts (10 to 11 versions of each source text, approximately half of which were made by each 

participant group). The study was approved by the Ethical Commission of the Faculty of Psychology 

and Educational Sciences at Ghent University. All the participants gave their written informed 

consent. 

The translations and PE texts in the original study were manually annotated by two of the 

authors of this article using a two-step translation quality-assessment approach1 (Daems, Macken, & 

Vandepitte, 2013). This approach takes two aspects of quality into account: acceptability, or 

adherence to target norms, language, and structure, on the one hand, and adequacy, or a comparison 

of ST and target text (TT), on the other, to see whether the information contained in the first was still 
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present and unchanged in the latter. The annotators first annotated the text for acceptability by 

looking at the TT only, then annotated the text for adequacy by considering both the ST and the TT 

in parallel. After annotation, a consolidation phase took place, during which the annotators discussed 

the annotations they did not agree on. Inter-annotator agreement was calculated during pretests of 

the method, showing a high level of agreement between annotators after consolidation (from 67% 

with κ = .65 in an earlier experiment to 95% with κ = .94 in a later pretest). Only the annotations that 

both annotators agreed on after consolidation have been used for further analysis. Both the 

acceptability and the adequacy categories contain a variety of subcategories that receive error 

weights depending on the severity of the error (for example, the acceptability subcategory 

“capitalization error” receives an error weight of 1, whereas the adequacy subcategory 

“contradiction” receives an error weight of 4). The average error weight (EW) per word was 

calculated for each translation and PE text. A linear mixed effects model2 with average error weight 

as dependent variable and translation method (HT and PE) as predictor variable did not outperform 

the null model, indicating that there is no statistically significant difference in quality between the 

HTs and the PE texts in the corpus.  

After creating the corpus, we selected the texts to be used in both studies. In order to have as 

many data points as possible, the whole corpus was used to perform the quantitative study. For the 

reader perception study, a subset of the corpus was used in order to have multiple reader evaluations 

for each text. To create the subset, we selected the two translated versions and two PE versions with 

the highest quality for each of the eight source texts, regardless of the participant group. Highest 

quality was determined by the lowest average EW per word.  

Table 1 shows information on the average EW, across all the texts and across the selected 

texts only. As can be seen, the average EWs of the selected texts are well below those of the full text 

set. To verify that the high quality of the PE texts was not simply due to the translators’ deleting the 

MT output and creating their own translation from scratch, we calculated the Translation Edit Rate 

(TER) on the PE texts. TER measures the edit distance between the MT output and the final PE text, 

using a score from 0 to 100, with a lower TER score meaning that fewer edits are needed to turn an 

MT sentence into the final PE sentence. While TER is not an indication of the actual editing effort, it 

is an indication of the correspondence between the MT output and the final PE product, regardless of 

how the translation was produced. As we were looking for Post-editese in a finished text only, and 

we expected Post-editese to manifest itself through priming from the MT output, the most important 

parameter is the amount of overlap between MT output and the PE product. As such, it does not 

matter whether that priming was caused by post-editing only select parts of the MT output or by 

typing a new translation that was heavily primed by the MT output. Both are expected to exhibit 

comparable characteristics of Post-editese. As can be seen in Table 2, the edit rate of the selected 

texts is comparable to that of the rest of the texts, and is never higher than 74.3%. Figure 1 shows the 

distribution of TER values across all PE texts.  
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Table 1: Comparison of average EW for all texts and for the subset used for the reader perception 

study. 

 EW min EW max EW mean EW median 

All texts 0 0.167 0.051 0.048 

Subset 0 0.066 0.015 0.011 

Table 2: Comparison of the TER for all PE texts and for the subset used for the reader perception 

study. 

 TER min TER max TER mean TER median 

All PE texts 26.9 76.3 52.3 52.1 

Subset 40.6 74.3 58.4 60.7 

Figure 1: Distribution of TER values across PE texts. 

4. Reader perception study 

4.1 Survey 

A survey was created using the Qualtrics online data-collection software (Qualtrics, Provo, UT). We 

converted the 32 texts (two HT versions and two PE versions for each of the eight source texts) to 

images in order to be able to integrate them in a graphic horizontal multiple-choice question and to 

ensure that the formatting would stay consistent across devices. Each question showed the 

participant two text versions of the same source text in parallel. An example question is shown in 

Figure 2. 
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Figure 2: Example of graphic horizontal multiple-choice question. 

 

 

 

 

 

 

 

 

 

 

The question was always ‘mark the texts you think are PE’. The participants could choose to select 

one text, two texts or no texts. The main question was followed by a question for additional 

information, where the participants had to explain why they had made the choice they had. In order 

to prevent influence from seeing the same text more than once and to counter possible fatigue 

effects, each participant was presented with four different questions only (from four different source 

texts). There were six different text combinations for each source text: two HT texts, two PE texts 

and four ways in which a PE text could be presented together with an HT text (PE1HT1, PE2HT1, 

PE1HT2, PE2HT2). The survey setup consisted of eight blocks, one for each source text. In order to 

counter task-order effects and to collect a comparable amount of data across all texts and conditions, 

block randomization was added to Qualtrics, with a selection of four blocks, that is, source texts, per 

participant, and question randomization, with one question randomly selected from the six possible 

text combinations. The position of the text images on the screen (either left or right) was also 

randomized automatically by Qualtrics.  

4.2 Participants 

The survey was presented to two groups of translation students at Ghent University as part of their 

courses on Introduction to Translation Technology, Terminology and Translation Technology, and 

Machine Translation and Post-editing, and was shared with people working at the Translation 

department via email. A total of 195 people completed the survey. Ages ranged from 18 to 64, with 

most participants (135) falling in the 18–22 range.  

4.3 Data analysis 

Data was collected from 18 October to 3 November 2016. Of the 195 surveys received, 174 were 

filled in completely and were therefore retained for the analysis.  

The main goal of the survey was to answer the question: “Are people capable of identifying a 

text as being PE or being translated from scratch?” We looked at the data in two ways: per text 
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combination, and per text. For the first analysis, we looked at the four possible ways in which texts 

could be presented (HT-HT, PE-PE, PE-HT, HT-PE) and the corresponding labels participants 

assigned to the two texts (HT-HT, PE-PE, PE-HT, HT-PE). We then checked how often the correct 

condition was assigned to each set.  

For the second analysis, we looked at individual text assessments. A text could either be HT 

or PE, and we checked whether the label assigned by the participants (HT or PE) corresponded to the 

actual text-production method. The results are presented in contingency tables. To assess the results 

statistically, we calculated precision and recall for the different tables.  

4.4 Results 

Tables 3 and 5 are contingency tables that show the actual labels of the conditions and texts 

alongside the labels assigned by the participants. As can be derived from Table 3, the participants 

assigned the correct labels in just less than 30% of the cases ((13 + 16 + 90 + 87)/694 × 100). This 

means that, in contrast to the findings by Bowker and Buitrago Ciro (2015), and more in line with 

the research on Translationese (Baroni & Bernardini, 2006), readers do not seem to experience a 

difference between HTs and PE texts. 

Table 3: Contingency table per text set. (Correctly assigned labels are marked in italics.)  

  Actual text displayed 

  PE-PE HT-HT PE-HT HT-PE 

Assigned by 

participants    

PE-PE 13 11 21 23 

HT-HT 16 16 31 36 

PE-HT 49 45 90 89 

HT-PE 38 42 87 87 

Interestingly, PE texts in the PE-PE condition and the PE-HT condition are more often incorrectly 

labelled as being HTs than HT texts are incorrectly labelled as being PE. These findings are reflected 

in the precision and recall scores, summarised in Table 4. It is striking that the PE-PE (13, 11, 21, 

23) and HT-HT (16, 16, 31, 36) conditions are chosen much less frequently than the PE-HT (49, 45, 

90, 89) and HT-PE (38, 42, 87, 87) conditions (Table 3) and that they also had worse results overall 

(Table 4).  

Table 4: Overview of precision and recall for each text set condition. 

Text set condition Precision Recall 

PE-PE 19.118% 11.207% 

HT-HT 16.162% 14.035% 

PE-HT  32.967% 39.301% 

HT-PE  34.252% 37.021% 

In Table 5, we see that, for the individual text labels, correct and incorrect labels are almost equally 

common for HT and PE texts. Again, there seems to be a tendency for the participants to select HT 

more often than PE.  
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Table 5: Contingency table per individual text. (Correctly assigned labels are marked in italics.) 

  Actual conditions 

  HT PE 

Assigned by 

participants 

HT 363 364 

PE 331 334 

Table 6: Overview of precision and recall for individual text labels. 

Text label Precision Recall 

HT 49.931% 49.931% 

PE 50.226% 47.851% 

The high level of incorrect labels is also reflected in low precision and recall here (see Table 6). This 

again seems to indicate that the participants are not capable of correctly distinguishing between HTs 

and PE texts.  

5. Computational analysis 

Whereas the first study showed that humans are not capable of distinguishing between both types of 

text, we were also interested in verifying whether a computer can identify the difference. Various 

studies have shown that it is possible to identify Translationese (differences between original text 

and translated text) using supervised machine-learning techniques (Baroni & Bernardini, 2006; Ilisei 

et al., 2010; Koppel & Ordan, 2011; Volansky et al., 2015). In this section, similar experiments are 

performed. A first prerequisite is to linguistically process all 174 texts in our corpus and derive text 

characteristics or features. For this feature extraction we were inspired by the readability prediction 

system developed by De Clercq and Hoste (2016) and previous work on Translationese.  

5.1 Feature extraction 

We implemented different types of text characteristic, amounting to 55 distinct features. The features 

can be divided in four groups: traditional,3 lexical, syntactic and semantic. All of these features were 

computed at the text level using state-of-the-art text-processing tools, as explained below. The 

decision was made to include these four feature groups based on previous research on 

Translationese, the intuition being that traditional and lexical features are related to the translation 

universal of simplification, syntactic features can give an indication of interference, and semantic 

features, in particular cohesive markers, are relevant to identifying explicitation. 

The traditional features include four length-related features that have proved successful in 

readability prediction research (François & Miltsakaki, 2012): average word and sentence length, 

ratio of long words in a text (i.e. words containing more than three syllables) and percentage of 

polysyllabic words. These features were obtained after processing the texts with the Dutch 

preprocessor Frog (Van den Bosch et al., 2007) and a designated classification-based syllabifier 

(Van Oosten, Tanghe, & Hoste, 2010). Next, a number of lexical features were calculated, including 

the percentage of words that can be found in the CLIB list (Staphorsius, 1994), which comprises the 

most frequently used words in Dutch, and the type–token ratio in order to measure the lexical 

complexity within a text. Besides these easy-to-calculate features, we also incorporated more 

advanced features inspired by work on language modelling and terminology extraction. Both feature 

types are based on a reference corpus, in our case the SoNaR corpus (Oostdijk, Reynaert, Hoste, & 
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Schuurman, 2013). Because we were working with edited text, we derived a subset of this large 

reference corpus that comprises only text from edited genres: newspaper, magazine and Wikipedia 

material. Two language-modelling features were included: one where the perplexity of a given text 

when compared to a reference corpus is given (perplex) and another where this score was 

normalized over the text length (normperplex). The Term Frequency-Inverse Document Frequency, 

tf-idf (Salton, 1989) and the Log Likelihood (Rayson & Garside, 2000) ratio of all the terms 

included in a particular text were included as terminological features.  

Next, we incorporated two types of syntactic features: a shallow level, where all the features 

are computed based on parts of speech (PoS) tags, and a deeper level based on dependency parsing. 

Based on the PoS, we first incorporated two overall features: the average number of content and 

function words within a text. Next, 25 features were calculated based on the following five PoS: 

nouns, adjectives, verbs, adverbs and prepositions. We indicated the absolute and relative frequency 

for each class in the text and in the sentence, as well as the average type per sentence as determined 

using the Frog preprocessor. For the next phase, however, we used the Alpino dependency parser for 

Dutch (Van Noord et al., 2013) to parse all the texts and calculated the average parse tree height, 

number of subordinating conjunctions, number of passive constructions and the ratio of the noun, 

verb and prepositional phrases. 

Lastly, we also incorporated some basic semantic features based on lists of connectives since 

these serve as an important indication of text cohesion in a text (Halliday & Hasan, 1976). These 

lists were drawn up by a linguistics expert (Denturck, 2014). As features, we counted the average 

number of connectives within a text and the average number of causal, temporal, additive, 

contrastive and concessive connectives at both the sentence and the text level. 

All the features were used in the experiments.  

5.2 Experimental Design 

As mentioned in Section 1, all available texts were used for the experiments. This means we have a 

dataset of 174 texts available for our experiments with an equal class distribution: 87 PE texts and 87 

HTs. In order to perform supervised machine-learning experiments this dataset was subdivided into a 

90% train and a 10% test split, following the same class distribution. This resulted in 158 texts for 

training and 16 texts for testing. The selection of test texts was also influenced by the decision to 

include an equal number of high-quality and low-quality texts based on the average EW per word 

(see Section 1), since this might have offered insight into our models. 

Our main research question is: Is it possible to build a supervised machine-learning model 

that can distinguish between translated and PE text? For the research presented here, this boils down 

to a binary classification task: PE (label “1”) or translated (label “0”). We are equally interested in 

discovering whether features modelling lexical, syntactic and semantic text characteristics are up to 

the task and, if so, which features contribute most. To this purpose, we performed two different 

rounds of experiments.  

In Round 1, we first examined the individual feature contributions in our training data. It is 

possible to compute statistics about the relevance of features by looking at those features that are 

good predictors of the class labels based on Information Theory (Quinlan, 1986). Information Gain 

(IG) weighting looks at each feature in isolation and measures how much information it contributes 

to our knowledge of the correct class label. This statistic, however, tends to overestimate the 

relevance of features with large numbers of values, which is why IG is often reported together with 

Gain Ratio (GR), its normalized version (Quinlan, 1993). In subsequent work, White and Liu (1994) 

have shown that the GR measure still has an unwanted bias towards features with more values, and 

propose the chi-squared statistic as an alternative. We calculated all three statistics on our training 

dataset. The resulting values can be interpreted as feature weights and ranked according to the 

amount of information they add to discriminating between the two possible labels. Next, we also 

tried to fit a logistic regression model to our training data in order to discover which features 

contribute most. Finally, this model was also tested on our held-out test set.  
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In these first experiments, all the features were considered independently of one another. This 

is not necessarily the best strategy and often better results can be obtained by leaving features out 

and focusing more on the feature interplay. That is why, in Round 2, we switched to a more 

advanced technique by exploiting a wrapper-based approach to feature selection using genetic 

algorithms. In a wrapper approach, feature informativeness is determined while running an induction 

algorithm on a training dataset and the best features are selected in relation to the problem to be 

solved. Finding a good subset of features requires searching the space of feature subsets. We used 

genetic algorithms (GAs) for this purpose and ran tenfold cross-validation on the training data (see 

Mitchell, 1996 for more information on genetic algorithms). We used TiMBL (Daelemans, Zavrel, 

Van der Sloot, & Van den Bosch, 2010) as our classifier, a nearest neighbour algorithm, ensuring 

that k = 1 because we were dealing with a small dataset. To evaluate, we calculated accuracy. For 

the optimization experiments, we allowed for individual feature selection, which should enable us to 

visualize those features, and especially those feature interplays, that contributed most to the 

classification tasks. We started from a population of 100 individuals and allowed 100 generations. 

We set the stopping criterion to a best fitness score (accuracy) that remained the same during the last 

five generations. All the optimization experiments were performed using the Gallop toolbox 

(Desmet, Hoste, Verstraeten, & Verhasselt, 2013), which is specifically aimed at natural language.  

5.3 Results Round 1  

Based on our training data, we calculated IG, GR and chi-squared. These values can be interpreted 

as feature weights and ranked according to the amount of information they add to discriminating 

between the two possible labels: PE versus HT. Table 7 presents the top ten features according to all 

three statistics.  

Table 7: Top ten features according to three statistics from Information Theory: information gain 

(IG), gain ratio (GR) and chi-squared (× 2). 

IG GR X2 

Avg word length Avg_word_length Avg_word_length 

Avg tfidf Avg_tfidf Avg_tfidf 

Avg LL Avg_LL Avg_LL 

Perplexity Perplexity Perplexity 

Normalized perplexity Normalized perplexity Normalized perplexity 

Ratio long words Ratio of long words  Ratio long words  

Type-token Ratio Type-token Ratio Type-token Ratio 

% frequent DU % frequent DU % frequent DU 

% polysyllable words Avg noun types % polysyllable words 

Avg nouns Avg nouns Avg nouns 

From the results we observe that all three statistics more or less agree on which features are most 

discriminative; these are indicated in italics. These comprise all of the lexical features (percentage of 

frequent Dutch words, type-token ratio, average tf-idf and log-likelihood score and both language 

modelling features), two traditional features related to length (average word length, ratio of long 

words) and one shallow syntactic feature (average number of nouns).  

These statistics, however, do not give much insight into whether a model would actually be 

able to discern PE from translated text. To investigate this we attempted to fit a logistic regression 

model onto our training data. Inspection of the model fit provides a closer look at those coefficients 

(features) that are considered statistically significant variables. We also analysed the table of 

deviance in a subsequent phase. The features that were found to be statistically significant are 

presented in Table 8. 
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Table 8: Statistically significant variables according to the logistic regression model (left) and the 

table of deviance (right). (Features common to both lists are indicated in italics. Asterisks denote 

significance of results: * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001) 

Coefficients Deviance 

Feature p-value Feature p-value 

avg_adj_types 0.000250*** np_count 0.007383** 

avg_verb_types 0.001429** avgtfidf 0.007767** 

Type-token ratio 0.003396** avg_adj_types 0.009645** 

avg_type_adj 0.004996** perplex 0.011645* 

Avg_type_verb 0.005233** avg_prep_sent 0.02794* 

Avg_adverb_types 0.044568* parse_tree_depth 0.037456* 

 avg_verb_types 0.038163* 

When comparing the two parts of the table, we see that different features are indicated. The only 

features that occur in both lists are the average number of adjective types and the average number of 

verb types (both indicated in italics). These are both shallow syntactic features based on PoS tagging 

information. Actually, if we consider the coefficients only, all but one are derived from PoS 

information. The deviance scores, on the other hand, tell a different story. The feature allowing for 

the highest residual deviance in comparison to the null model is the average number of noun phrases, 

a complex syntactic feature, followed closely by the average tf-idf value.  

Next, we tested our fitted model on our held-out test set to see whether our model was 

actually able to generalize to unseen data. This resulted in an accuracy of 56.23%. Comparing this to 

a baseline relying only on the even class distribution (50%), we can conclude that our model has 

actually learnt something. 

Based on these analyses and the performance gain over the baseline when testing the model 

on our reserved test set, we could conclude that a classifier can learn to distinguish between PE and 

HT text when assigning most weight to lexical and syntactic features. However, the performance 

gain over the baseline is very moderate and for these experiments all the features were still included 

in the model, which is not necessarily the best choice. This brings us to the second round of 

experiments. 

5.4 Results Round 2 

In Table 9 we compare our baseline with ten-fold cross validation experiments on the training data. 

In the first setting we simply used all available features, whereas in the second setting we performed 

the optimization experiments as explained in Section 5.2.  

Table 9: Results of the tenfold cross-validation experiment on the training data, represented by 

accuracy. 

Setting Accuracy 

Baseline 50.00 

All features 51.26 

Optimization 68.31 

These results are promising, especially those from the optimization experiments, where accuracy 

improves by no less than 18 points. An interesting part of the Gallop toolkit is that it also offers its 

users insight into those features that either were or were not selected in the fittest individuals. For the 
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present experiment, 31 of the 55 features were selected. Of the traditional features, three were 

selected (average word length, ratio of long words and percentage of polysyllabic words). 

Examining the lexical features, the two language-modelling features (perplexity and normalized 

perplexity) were selected, as was the average tf-idf value. As for the syntactic features, the two more 

global features representing the average number of content and function words were retained, as well 

as one feature relating to the PoS category noun (average type nouns), four features relating to the 

adjectives, and three features each relating to verbs, adverbs and prepositions. Regarding the more 

complex syntactic features, based on dependency parsing, the numbers of noun phrases, verb phrases 

and passives were also considered important. Finally, regarding the shallow semantic features, the 

average number of connectives at the sentence level is maintained, as are those features that indicate 

causal, additive, contested or concessive relations.  

This leads us to conclude that for this particular task all of the different feature types seem to 

contribute to the actual performance. However, a problem that often occurs when performing cross-

validation experiments on training data is that of overfitting. Therefore, it is important also to test the 

final model on a held-out test set. When we tested our model using all the available features, which 

achieved an accuracy of 51.26 on our training data, the accuracy level dropped to 50.00% when 

testing on the held-out test set; this is the same as our baseline. When we did the same with our 

optimal model and trained and tested only including the selected features, the performance dropped 

dramatically from 68.31 to 43.75 on our held-out test set. This leads us to conclude that it is not 

possible to create a classifier that is able to distinguish between PE and translated text in the current 

setup. Whether this is due to the feature representations or the low amount of training data is 

something that will have to be explored in future research. 

Table 10: Features that were and were not selected in the optimal setting on training data. 

average_word_length 1 avg_adj_sent 1 avg_conn_doc 0 

average_sentence_length 0 avg_type_adj_sent 1 avg_conn_sent 1 

ratio_long_words 1 avg_adj_types 0 avg_cause_doc 1 

percentage_polysyllable_words 1 avg_verb 1 avg_cause_sent 0 

percentage_frequent_nl_words 0 avg_type_verb 1 avg_temp_doc 0 

type_token_ratio 0 avg_verb_sent 0 avg_temp_sent 0 

Avgtfidf 1 avg_type_verb_sent 1 avg_add_doc 0 

Avgll 0 avg_verb_types 0 avg_add_sent 1 

Perplex 1 avg_adverb 0 avg_cont_doc 1 

Normperplex 1 avg_type_adverb 1 avg_cont_sent 1 

avg_content 1 avg_adverb_sent 0 avg_conc_doc 1 

avg_funct 1 avg_type_adverb_sent 1 avg_conc_sent 0 

avg_noun 0 avg_adverb_types 1 parse_tree_depth 0 

avg_type_noun 1 avg_prep 1 sbar_count 0 

avg_noun_sent 0 avg_type_prep 0 np_count 1 

avg_type_noun_sent 0 avg_prep_sent 0 vp_count 1 

avg_noun_types 0 avg_type_prep_sent 1 pp_count 0 

avg_adj 1 avg_prep_types 1 passives 1 

avg_type_adj 1 

    



Translationese and Post-editese: How comparable is comparable quality? 

 

 

101 

6. Conclusion 

We did not find proof of the existence of Post-editese, either perceived or measurable.  

The user perception study showed that the participants were unable to distinguish between HT 

and PE texts of publishable quality. If anything, they more often incorrectly labelled PE texts as HTs 

than the other way around. This is in contrast to the findings by Bowker and Buitrago Ciro (2015) 

that readers had a clear preference for HT, even when they did not know how a translation was 

produced. As indicated by the Bowker (2009) study, different language communities have different 

attitudes towards MT and PE, and it is possible that our findings can be attributed to the different 

language combination (English–Dutch). Our findings are also more in line with those from 

Translationese research, where readers were unable to distinguish between translated and original 

texts (Baroni & Bernardini, 2006; Tirkkonen-Condit, 2002). It was striking that participants more 

often thought that the two presented texts were from different conditions (HT-PE or PE-HT) rather 

than from the same condition (HT-HT or PE-PE). Perhaps this was caused by the fact that two texts 

were presented on screen and the participants involuntarily felt that they had to find differences 

between the two texts.  

The computational analysis seemed promising at first, with a variety of features and 

combinations of features seemingly being able to help discriminate between HT and PE. Some of the 

promising features correspond to features also found to be useful in related work: sentence length 

(Ilisei et al., 2010), perplexity (Čulo & Nitzke, 2016), average amount of content and function words 

(Ilisei et al., 2010; Laviosa, 1998; Rabinovich & Wintner, 2015), and conjunctions (Lapshinova-

Koltunski, 2013), among others. After testing the suggested models on a held-out dataset, however, 

performance showed that, like humans, the computer is not capable of accurately distinguishing 

between HT and PE.  

Our findings could be an indication that there is indeed no such thing as “Post-editese” and 

that fully PE texts are indistinguishable from HT texts with regard to quality, reader perception, and 

traditional, lexical, syntactic and semantic features. Different results can be expected for texts of 

varying levels of quality, but this study was concerned with identifying possible Post-editese in a 

high-quality scenario to see whether a reader would be able to identify a publishable text as being PE 

or not, so that the comparison with the Bowker and Buitrago Ciro (2015) study could be made. 

While there was no measurable difference in quality between the texts produced by professional 

translators and students, there could be other differences between both, and those differences may 

have had an impact on the identification of Post-editese. Alternatively, our findings could be due to 

the text type and language combination. The computational results in particular have to be 

interpreted with caution. Though the genetic algorithm is computationally highly advanced, the 

current dataset is rather small. The lack of significant results on the held-out data could simply be a 

consequence of insufficient training data in general.  

In future work, our analyses should be repeated on a larger dataset and tested on a variety of 

text genres and language combinations. Depending on the goal of the evaluation, texts of lower 

quality could be compared to see whether Post-editese is more evident for lower-quality texts. The 

user perception study could be improved by either only presenting one text on screen at a time or by 

introducing control trials with two texts that are exactly the same to ensure that the participants are 

engaged in the task. An additional factor to control for in future work would be the post-editor, by 

looking at experience or PE strategies in addition to the level of quality we had already controlled 

for.  
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_____________________________ 

1  http://users.ugent.be/~jvdaems/TQA_guidelines_2.0.html 

2  The average EW was right-skewed because many of the sentences contained no errors, leading to a high number of zero values. 

No transformation was performed, because these values form an integral part of the data and could not be meaningfully 

interpreted otherwise. Fixed effects in linear mixed models are, moreover, robust to deviations from the normality assumption.  

3  The term “traditional” is chosen to refer to those text characteristics that have been used in the first systems to measure the 

readability of a text, namely readability formulas, such as the well-known Flesch Reading Ease (Flesh, 1948).  


