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Abstract. In this note we describe explicitly irreducible decompositions of kernels of the Hermitean Dirac Operators. In
[3], it is shown that these decompositions are essential for a construction of orthogonal (or even Gelfand-Tsetlin) bases of
homogeneous Hermitean monogenic polynomials.
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PRELIMINARIES OF HERMITEAN CLIFFORD ANALYSIS

Let (e1, . . . ,em) be an orthonormal basis of Euclidean spaceRm and letCm stand for the complex Clifford algebra
constructed overRm such that

eαeβ +eβ eα =−2δαβ , α,β = 1, . . . ,m. (1)

As a basis forCm one takes for any setA = { j1, . . . , jh} ⊂ {1, . . . ,m} the elementeA = ej1 . . .ejh, with
1 ≤ j1 < j2 < · · · < jh ≤ m, together withe/0 = 1, the identity element. Euclidean spaceRm is embedded in
Cm by identifying (X1, . . . ,Xm) with the Clifford vectorX = ∑m

α=1eα Xα , for which it holds thatX2 = −|X|2. Any
Clifford numbera in Cm may thus be written asa = ∑AeAaA, aA ∈ C and its conjugation is defined bya† = ∑AeAac

A,
where the bar notation stands for the main anti–involution for whicheα = −eα , and ac

A denotes the complex
conjugation ofaA. The Fischer dual ofX is the vector valued Dirac operator∂X = ∑m

α=1eα ∂Xα
, underlying the

notion of monogenicity of a function, the higher dimensional counterpart of holomorphy in the complex plane. More
explicitly, a function f defined and continuously differentiable in an open regionΩ of Rm and taking values in the
Clifford algebraCm is called (left) monogenic inΩ if ∂X[ f ] = 0 in Ω. As the Dirac operator factorizes the Laplacian:
∆m = −∂ 2

X, monogenicity can be regarded as a refinement of harmonicity. As usual, inside the Clifford algebraCm

we can realize the Pin group Pin(m) as the set of finite products of unit vectors ofRm endowed with the Cliffford
multiplication. The group Pin(m) is a double cover of the orthogonal groupO(m). ForCm-valued functionsf (X), the
so-calledL-action ofPin(m) is given by[L(s)( f )](X) = sP(s−1X s), s∈ Pin(m). This is the framework for what is
sometimes called Euclidean Clifford analysis. A standard reference is e.g. [5].

The transition to Hermitean Clifford analysis consists in adding a complex structureJ to the above Euclidean setting,
i.e. an SO(m)–elementJ for whichJ2 =−1 (see e.g. [1] for details). Note that a complex structure can exist only in the
even dimensional casem= 2n. In the sequel, the complex structureJ is chosen to act upon the generatorse1, . . . ,e2n
of C2n asJ[ej ] = −en+ j andJ[en+ j ] = ej , j = 1, . . . ,n. The projection operators12(1± iJ) associated withJ produce
the main objects of the Hermitean setting by acting upon the corresponding ones in the Euclidean framework. First the
so–called Witt basis elements(f j , f

†
j )

n
j=1 for C2n are obtained:

f j =
1
2
(1+ iJ)[ej ] =

1
2
(ej − ien+ j), j = 1, . . . ,n

f†j = −1
2
(1− iJ)[ej ] = −1

2
(ej + ien+ j), j = 1, . . . ,n
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They satisfy the respective Grassmann and duality identities

f j fk + fkf j = f†j f
†
k + f†kf

†
j = 0, j,k = 1, . . . ,n

f j f
†
k + f†kf j = δ jk, j,k = 1, . . . ,n

whence they are isotropic. Next, a vector inR2n is now alternatively denoted by(x1, . . . ,xn,y1, . . . ,yn) and identified
with the Clifford vectorX = ∑n

j=1(ej x j +en+ j y j), producing the Hermitean Clifford variablesz andz†:

z =
1
2
(1+ iJ)[X] =

n

∑
j=1

f j zj and z† =−1
2
(1− iJ)[X] =

n

∑
j=1

f†j zc
j

where complex variableszj = x j + iy j have been introduced, with complex conjugateszc
j = x j − iy j , j = 1, . . . ,n.

Finally, the Euclidean Dirac operator∂X gives rise to the Hermitean Dirac operators∂z and∂ †
z :

∂
†
z =

1
4
(1+ iJ)[∂X] =

n

∑
j=1

f j ∂zc
j

and ∂z =−1
4
(1− iJ)[∂X] =

n

∑
j=1

f†j ∂zj

involving the Cauchy–Riemann operators∂zc
j
= 1

2(∂x j + i∂y j ) and their complex conjugates∂zj = 1
2(∂x j − i∂y j ) in the

zj–planes,j = 1, . . . ,n. The Hermitean vector variables and Dirac operators are isotropic, i.e.z2 = (z†)2 = 0 and
∂ 2

z = (∂ †
z )2 = 0, whence the Laplacian allows for the decomposition

∆2n = 4(∂z∂
†
z +∂

†
z ∂z) = 4(∂z+∂

†
z )2

while also
(z+z†)2 = zz† +z†z= |z|2 = |z†|2 = |X|2

Finally, a continuously differentiable functiong in an open regionΩ of R2n with values in the complex Clifford
algebraC2n is called (left) Hermitean monogenic (or h–monogenic) inΩ if and only if it satisfies inΩ the system
∂zg = 0 = ∂ †

z g. As ∂X = 2(∂ †
z −∂z) h–monogenicity can be regarded as a refinement of monogenicity.

In comparison with the Euclidean setting the symmetry in the Hermitean framework is given not by the whole
group Pin(2n) but only by its subgroup PinJ(2n). The subgroup PinJ(2n) consists of elements of the group Pin(2n)
commuting with the elementsJ which corresponds to the complex structureJ under the double cover ofO(2n) by
Pin(2n). Moreover, the group PinJ(2n) is a double cover of the groupOJ(2n), the subgroup ofO(2n) containing just
elements which commute with the complex structureJ. Let us note that the groupSOJ(2n) defined analogously can
be seen as a realization of the unitary groupU(n).

In what follows, we consider spinor valued functions. Spinor spaceS is realized within the Clifford algebraC2n as
S = C2nI ∼= CnI whereI is a suitable primitive idempotent, sayI = I1 . . . In with I j = f j f

†
j , j = 1, . . . ,n. As f j I = 0,

j = 1, . . . ,n, we also have thatS∼=
∧∗†

n I where
∧∗†

n stands for the complex Grassmann algebra generated by{f†1, . . . , f†n}.
Hence spinor spaceS decomposes further into homogeneous parts as

S =
n⊕

r=0
S(r) with S(r) = (

∧†
n)

(r)I = spanC
(
f†k1

f†k2
· · · f†kr

: {k1, . . . ,kr} ⊂ {1, . . . ,n}
)

.

FISCHER DECOMPOSITIONS

Recently in [1], an analogue of the Fischer decomposition for homogeneous polynomials has been obtained also in
the setting of Hermitean Clifford analysis. From the point of view of representation theory, the Fischer decomposition
is nothing else than an irreducible decomposition of a given invariant space of polynomials. More explicitly, let us
denote byP r

a,b the space ofS(r)-valued polynomialsp in R2n which area-homogeneous in the variableszj and at the
same timeb-homogeneous in the variableszc

j , that is,

p(λz1, . . . ,λzn,µzc
1, . . . ,µzc

n) = λ
a
µ

bp(z1, . . . ,zn,z
c
1, . . . ,z

c
n).



Moreover, letM r
a,b stand for the space of polynomials ofP r

a,b which are Hermitean monogenic. Then, under the
action of the group PinJ(2n), the spaceP r

a,b has the following irreducible (not multiplicity free) decomposition (see
[1, Proposition 1] or [4]):

P r
a,b = M r

a,b⊕
min(a,b−1)⊕

j=0

|z|2 jz†M r−1
a− j,b− j−1⊕

min(a−1,b)⊕
j=0

|z|2 jzM r+1
a− j−1,b− j ⊕ (2)

⊕
min(a−1,b−1)⊕

j=0

(z†z) j+1M r
a− j−1,b− j−1⊕

min(a−1,b−1)⊕
j=0

(zz†) j+1M r
a− j−1,b− j−1.

The main aim of this note is to describe Fischer decompositions which are essential for a construction of orthogonal
(or even Gelfand-Tsetlin) bases of homogeneous Hermitean monogenic polynomials. In [3], it is explained that for the
construction it is important to know irreducible decompositions of the spaces

Ker r
a,b∂z = {p∈P r

a,b| ∂zp = 0} and Kerra,b∂
†
z = {p∈P r

a,b| ∂
†
z p = 0}.

Now we obtain such decompositions.

Theorem 1. Let1≤ r ≤ n−1. Then the following statements hold:

(i) Under the action ofPinJ(2n), the spaceKer r
a,b∂z has the multiplicity free irreducible decomposition

Ker r
a,b∂z = M r

a,b⊕
min(a,b−1)⊕

j=0

|z|2 jz†M r−1
a− j,b− j−1⊕

min(a−1,b−1)⊕
j=0

|z|2 j(z†z+
(a− j−1+ r)

(a+ r)
zz†)M r

a− j−1,b− j−1.

(ii) Under the action ofPinJ(2n), the spaceKer r
a,b∂ †

z has the multiplicity free irreducible decomposition

Ker r
a,b∂

†
z = M r

a,b⊕
min(a−1,b)⊕

j=0

|z|2 jzM r+1
a− j−1,b− j ⊕

min(a−1,b−1)⊕
j=0

|z|2 j(zz† +
(b− j−1+n− r)

(b+n− r)
zz†)M r

a− j−1,b− j−1.

Remark1. It is easy to see that Ker0
a,b∂z = M 0

a,b, Ker n
a,b∂z = Pn

a,b, Ker 0
a,b∂ †

z = P0
a,b and Kerna,b∂ †

z = M n
a,b.

In order to prove Theorem 1 we need some lemmas. But first define the following Euler operators:

Ez =
n

∑
j=1

zj∂zj , Ezc =
n

∑
j=1

zc
j∂zc

j
and β =

n

∑
j=1

f†j f j .

For p ∈ P r
a,b, it is easy to see thatEzp = ap, Ezc p = bp andβ p = rp. See [1] for details. PuttingA = Ez+ β and

B = Ezc +n−β , we have thus that, for eachp∈P r
a,b, Ap= (a+ r)p andBp= (b+n− r)p. Moreover, we have that

{z,∂z}= A, {z†,∂ †
z }= B and {z,∂ †

z }= 0 = {z†,∂z} (3)

where{T,S}= TS+ST (see e.g. [1]). Using these relations, it is easy to prove the following ones.

Lemma 1. We have that

[∂z, |z|2 j ] = j |z|2( j−1)z†, [∂z,(z†z) j+1] =−|z|2 jz†A, [∂z,(zz†) j+1] = |z|2 jz†(A+ j +1),

[∂ †
z , |z|2 j ] = j |z|2( j−1)z, [∂ †

z ,(zz†) j+1] =−|z|2 jzB, [∂ †
z ,(z†z) j+1] = |z|2 jz(B+ j +1)

where[T,S] = TS−ST.

Lemma 2. We have that

P r
a,b = Ker r

a,b∂z⊕ zKer r+1
a−1,b∂z = Ker r

a,b∂
†
z ⊕ z† Ker r−1

a,b−1∂
†
z .

Moreover, the projections P and P† of the spaceP r
a,b onto the spacesKer r

a,b∂z andKer r
a,b∂ †

z are given by P= ∂z zA−1

and P† = ∂ †
z z†B−1, respectively.



Proof. We may refer to [2], but it is also clear from the relations (3). �

Proof of Theorem 1.Applying the projectionsP andP† of Lemma 2 to the Fischer decomposition (2), we easily get
the required decompositions of the spaces Kerr

a,b∂z and Kerra,b∂ †
z . Indeed, using the relations (3) and Lemma 1, we

have that
P(P r

a,b) = Ker r
a,b∂z, P(M r

a,b) = M r
a,b, P(|z|2 jz†M r−1

a− j,b− j−1) = |z|2 jz†M r−1
a− j,b− j−1

and

P((z†z) j+1M r
a− j−1,b− j−1) = |z|2 j(z†z+

(a− j−1+ r)
(a+ r)

zz†)M r
a− j−1,b− j−1

Moreover, the operatorP vanishes on the remaining pieces|z|2 jz M r+1
a− j−1,b− j and (z z†) j+1M r

a− j−1,b− j−1. Similar

computations are, of course, valid for the operatorP†, which completes the proof. �
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