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Abstract: Recent advances in the parallelization of the Multilevel Fast Multipole Algorithm (MLFMA)

have resulted into fully scalable parallelization schemes. By means of an asynchronous implementation of

the hierarchical partitioning scheme, we demonstrate this ability by employing up to 512 processor cores.

Furthermore, we demonstrate the capabilities of the solver through the simulation of a very large 2D canon-

ical example with a diameter of three million wavelengths.
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1. Introduction

The Multilevel Fast Multipole Algorithm (MLFMA) is arguably the most successful algorithm to accelerate

the matrix-vector multiplication that arises during the iterative Method of Moments (MoM) solution of

boundary integral equations. Indeed, the algorithm lowers the complexity from O(N2) to only O(N log N),
where N denotes the number of unknowns. This close to linear increase of computational resources with

respect to the number of unknowns makes the algorithm a good candidate for parallelization. In the past

decade, a lot of research has been invested into this topic [1, 2, 3, 4, 5, 6, 7, 8, 9]. The key focus in these

efforts has been the reduction of the amount of communication between the computational elements on the

one hand and methods to ensure a good load balancing on the other hand.

The initial efforts to parallelize the MLFMA were based on techniques that existed for the solution of

Laplace equation problems with the Fast Multipole Method (FMM). They relied on the distribution of the

boxes in the tree data structure of the FMM algorithm. Because the amount of data stored inside a box is

constant for Laplace problems, this method proved fruitful. For Helmholtz kind of problems, the amount of

data inside a box increases significantly when traveling upwards in the tree, and the simple distribution of

boxes led to a non-scalable algorithm and poor parallel efficiencies.

The first attempts to resolve the bottleneck at the top levels relied on a hybrid distribution of the

workload [1, 2, 3]. For the lower levels, where the content of the boxes is limited, distribution of boxes

(called ‘spatial partitioning’) is used. For the higher levels, the boxes are shared between the nodes, and the

content of the boxes (i.e. radiation pattern sampling points or so-called ‘k-space partitioning’) is distributed.

This method could significantly improve parallel efficiencies [1, 3], but could not resolve the scalability

breakdown.

Recently, the hierarchical partitioning algorithm was introduced [4]. It provides for a gradual tran-

sition between spatial and full k-space partitioning. The algorithm distributes the data at every level of the

MLFMA tree evenly among all participating nodes, and hence provides for a good load balancing and again

delivers improved parallel efficiencies [3, 9]. Furthermore, under certain conditions, the algorithm can pro-

vide for a scalable MLFMA [7]. This means that larger problems can be handled on proportionally larger

parallel machines, without loss of efficiency (P = O(N), with P the number of processors).

In this contribution, we review a two-dimensional implementation of the MLFMA that has been

parallelized using the hierarchical approach. Using a large cluster consisting of 512 computational cores, the
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Figure 1: Schematic representation of the hierarchical k-space partitioning: the squares represent a set of

boxes in the MLFMA tree; the circle segments represent a portion of the radiation pattern samples that are

stored in the box; the different colors indicate the processor in which the samples are stored.

scattering at a perfectly electrically conducting (PEC) cylinder with a diameter of three million wavelengths

is simulated and compared to the analytical solution. The problem is discretized in 94 247 780 unknowns.

In terms of wavelengths, this problem is the largest scattering problem that has been solved up to date.

2. 2D Parallel MLFMA: hierarchical partitioning

In this Section, we briefly review the parallelization of the MLFMA tree and the hierarchical k-space par-

titioning. For an introduction to the MoM that is used, we refer to e.g. [6], for an introduction to the

(sequential) MLFMA, we refer to [10].

First, each node constructs the global MLFMA tree for the geometry under consideration and the

boxes at each level are ordered according to a Hilbert space filling curve. This is a sequential step. It is

a known fact that each level contains O(N) sampling points [10]. At the lowest levels, there are O(N)
boxes containing a constant number (or O(1)) sampling points, at the highest levels, there are O(1) boxes
containing O(N) sampling points. Subsequently, O(N/P ) sampling points (with P = O(N)) are allocated
to each node at each level in the following manner (see also Fig. 1). At the lowest level, each node is

allocated O(N/P ) = O(1) boxes with their O(1) sampling points as a whole (spatial partitioning). At

the next level, the boxes are shared between two nodes. However, each node now holds only half of the

radiation pattern samples. At the next level, the boxes are shared by four nodes, each containing only one

fourth of the sampling points. This process continues until at the top level, the box is shared by all nodes,

each node containing 1/P th of the radiation pattern. The transition from spatial to k-space partitioning

requires log2(P ) levels. For more information regarding this repartitioning process, we refer to [4, 5].

It is clear that every node containsO(1) boxes andO(1) samples at each level. Because the calculation

time is proportional to the number of sampling points, it is also O(1) per node and per level. It can be shown
that the amount of communication per node and per level is also O(1) [7], which means that this approach

indeed allows for a number of processes P = O(N). The hierarchical partitioning technique not only

strongly reduces the amount of communication [5], it also reduces the number of communication events.

Indeed, a certain node only has to communicate to O(log N) other nodes (i.e. O(1) nodes per level).

The use of the hierarchical partitioning technique requires a local interpolator. In this case, a Dirich-

let kernel with a Gaussian taper is used [11] although an interpolator based on periodic approximate prolate

spheroidal (APS) functions [12] is slightly more performant. In a practical situation, the number of processes
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Table 1: Simulation parameters for the canonical example.

# unknowns 94 247 780

# processor cores 512

smallest box size 0.25 λ
# MLFMA levels 25

precision FMM interactions 10−5

# iterations 1 761

preconditioner 16 λ× 16 λ
setup time 28 min.

solution time 6h 40min.

time for matrix-vector product 6.49s

# RCS output points 74 547 200

P is much smaller than 2L, with L the number of levels in the tree. This means that typically spatial parti-

tioning is used for the first 6 or 7 levels, after which the hierarchical partitioning scheme is deployed. For

these lowest levels, a global interpolator based on Fast Fourier Transforms (using the FFTW [13] package)

is used because it is more accurate and faster. For the remaining top levels, if any, full k-space partitioning

is used.

3. Example

We consider the Transverse Magnetic (TM) plane-wave scattering at a 2D PEC cylinder with a diameter of

3 000 000λ. The problem was solved on a cluster consisting of 64 machines, each containing 2 quad-core

Intel Xeon L5420 processors and 16 Gigabyte RAM (512 cores and 1 TByte RAM in total). The machines

are connected through a fast 20 Gigabit/s Infiniband network and the proprietary ‘Intel MPI’ implementation

of the Message Passing Interface (MPI) was used as a communication library. Double precision arithmetics

were used for all calculations.

Using a λ/10 segment size, the problem is discretized in 94 247 780 unknowns. Using the TFQMR

iterative method, the problem was solved in 1 761 iterations to a relative residual error of 10−3, using the 512

cores and 1 TByte of RAM memory in total. Other simulation parameters of interest are listed in Table 1.

The bistatic radar cross-section (RCS) σc was numerically calculated for N equidistant angles θi and

compared to the analytical solution σa. The evaluation of the analytical solution can be accelerated using

the fast cosine transform, allowing for an evaluation in only a few minutes. We determine the root mean

square (RMS) error as follows

RMS =

√

√

√

√

1

N

N
∑

i=1

|σa(θi) − σc(θi)|2 (1)

For the full [0◦. . . 360◦] range, the RMS error is only 0.165 dB, indeed yielding very accurate results. Fig. 2

both shows the full bistatic RCS and a detail around 0◦.

Fig 3 shows the total amount of communication between the 512 different computation cores. One

can notice that the hierarchical approach indeed leads to very sparse communication patterns, i.e. a certain

node only has to communicate to a limited number of other nodes. The total amount of data communication

by e.g. the first node is 104.5 MByte (outgoing) and 102.5 MByte (incoming). These data are transmitted

or received by only 22 other nodes. The largest amounts of communications occur during the repartition

events. The number of such events is equal to 2 log2 P (both upward and downward pass), assuming that a
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Figure 2: Comparison between the analytical and simulated bistatic RCS for the scattering at a PEC

cylinder with a diameter of 3 000 000λ. The full RCS θ ∈ [0◦ . . . 180◦] (left) and detail for θ around

0◦ ∈ [0◦ . . . 0.0005◦] is given.

complete transition between spacial and k-space partitioning is made. In the case of this example, there are

2×9 repartitioning events. The other communication events include the communication of k-space samples

at the edges of the partitions for local interpolation, the communication of sampling points to complete

translations and the communication of small portions of the unknown vector in order to complete the near

interactions.

Conclusion

We have reviewed and analyzed a scalable parallel implementation of a 2D Method of Moments solver that

is accelerated through the Multilevel Fast Multipole Algorithm. An example containing over 94 million of

unknowns was solved on a large cluster using 512 computational cores, demonstrating the ability to solve

extremely large scattering problems. Because of the scalability of the parallel algorithm, it is to be expected

that the size of the problems can be increased even further, provided that a sufficiently computational cluster

is provided.
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Figure 3: Communication map between the different processor cores. Each dot in the graph represents the

total amount of communication (incoming + outgoing) between two cores for one matrix-vector multiplica-

tion.
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