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Abstract—A sensitivity and correlation analysis of EEG
sensors influenced by uncertain conductivity is conducted. We
assume a three layer spherical head model with different and
random layer conductivities. This randomness is modeled by
Polynomial Chaos (PC). On average, we observe the least
influenced electrodes along the great longitudinal fissure. Also,
sensors located closer to a dipole source, are of greater influence
to a change in conductivity – this is in agreement with previous
research. The highly influenced sensors were on average located
temporal. This was also the case in the correlation analysis,
which was made possible by our approach with PC. Sensors in
the temporal parts of the brain are highly correlated. Whereas
the sensors in the occipital and lower frontal region, though
they are close together, are not so highly correlated as in the
temporal regions.

Index Terms—Polynomial Chaos, Electroencephalography,
Uncertain conductivity, Sensitivity analysis, Correlation anal-
ysis.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) is one of the
most influential tools in the diagnosis of epilepsy and

seizures, as it provides a record of ongoing electrical activity
in the brain [1], [2]. The electrodes, connected to the EEG
machine, measure signals produced by electrical discharge of
neurons in the brain. The quasi-static approximation of the
Maxwell equations is justified by the very low frequencies
(typically < 100 Hz) involved. The total electric current J
can be partitioned [3] into two flows: a primary (driving)
current Jp related to neural sources, and an ohmic volume
(passive) current Jv that results from the effect of the electric
field in the volume: J = Jp + Jv = Jp + σE = Jp − σ∇V ,
where V is the electric potential. Since the total current is
divergence free and no current flows outside the head, we
obtain

∇ · (σ(r)∇V (r)) = ∇ · Jp(r), in H (1)
ν · σ(r)∇V (r) = 0, on ∂H (2)

where H is the head, σ the conductivity and ν the outward
unit normal on ∂H .

A. Model assumptions

Usually, the head is assumed to be made up of disjoint lay-
ered regions (the scalp, skull, cerebrospinal fluid, grey matter
and white matter, etc.) in each of which the conductivity is
constant. We will use a spherical head model with three
layers: the inner sphere (radius .87) represents the brain, the
intermediate layer (radius .92) represents the skull an the
outer sphere (radius 1) corresponds to the scalp, see Fig.
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1(b). The outer and inner layer are assumed to have similar
electrical properties, meaning that σscalp = σbrain. Although
we only consider a fixed (spherical) geometry, more realistic
models exist and the effect of choice has been studied [4].

A widely used approximation of the neural activity of
patients suffering from epilepsy [5] is the representation of
the primary current as an electric dipole with dipole moment
d located at rd inside the cortex; Jp(r) = dδ(r − rd) with
r the position in the head measured from the center of the
concentric spheres and δ the Dirac measure. It is clear that
the sensitivity and correlation of the electrodes is key for a
full understanding of EEG measurements.

B. Aim and novelty

The conductivity is in fact not constant in each layer and
determining the conductivity values in the human head has
been subject of research since many years [6]. Instead of
working with the two different conductivities σskull and σbrain,
we consider the conductivity ratio X = σscull/σbrain. Based
on in vivo measurements [7] we assume it to be uniformly
distributed with mean .026 and standard deviation of .0092.
Some authors use a Gamma distributed conductivity ratio,
this incorporates more as a priori knowledge. Instead, we
use the most uninformative distribution, thus reflecting the
least a priori knowledge about the conductivity ratio.

(a)
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(b)

Figure 1. A standard 27 electrode placement (a) and a spherical head
illustration (b) with sensors si.

We want to investigate the influence of this uncertainty
on the sensitivity of EEG sensor measurements at sensor
locations si. To this end, we will employ Polynomial Chaos.
Previous studies use statistical error measures [8], the relative
difference measure (RDM) [9], analysis of variance with
related Cramér-Rao bound [10], etc. In Fig. 1(a) a standard
27 electrode placement is shown. Polynomial Chaos has the
advantage that each sensor is represented as a single random
variable, directly relating to the uncertain input.

This representation has another benefit. We can investigate
the correlation between sensors very effectively. Since the
27 sensors are random variables, correlation is investigated
through the correlation function of random variables. Though
noise correlations and heteroscedasticity across sensors [11],
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[12] has been investigated, to our knowledge no studies about
intrinsic EEG sensor correlation exist.

To (partially) validate our technique we compare our
results with recent studies [9], [13], [14] about the fact that
the location and orientation of the dipole source is one factor
influencing the sensitivity: for the same electrode placement,
sensitivity is maximum to dipole sources oriented parallel to
the line of the electrodes regardless of source location.

II. METHODS

A. The EEG lead field model

To calculate the potential at the 27 sensor locations si one
needs to solve system (1)-(2) for V and evaluate Si = V (si).
Analytic solutions exist only for special cases [15]; in general
the system of equations has to be solved numerically. The
most prominent technique is the boundary element method
(BEM). Instead of directly solving for the electric potential
induced by a current dipole (e.g. through BEM), one can
solve for the electric lead fields [16]. Invoking this method,
the sensor measurements are given by

S = L(rd, X)d, S = (Si)
27
i=1,

where L ∈ R27×3 is the lead field matrix which depends only
on the dipole position, conductivity ratio, and the geometry.

We turn to the modeling of the uncertain conductivity
ratio.

B. Polynomial Chaos expansion

Consider a probability space (Ω,F ,P) where Ω is the
sample space, F ⊆ 2Ω a σ-algebra and P a measure.
The Hilbert space of random variables Y : Ω → R, for
which E

[
Y 2
]
< +∞ is denoted L2(Ω,F ,P). The space

L2(Ω,F ,P) can be decomposed [17] into orthogonal spaces
of polynomials with a random argument. According to this
result (and its generalizations [18]) a random variable Y can
be represented as a truncated series expansion

Y (ω) =

n,p∑
i=0

aiΨi(ξ(ω)), n, p+ 1 =

(
n+ p

p

)
,

where ξ = (ξ1, . . . , ξn) is a vector of i.i.d. random variables,
{Ψi}i∈N a family of orthogonal polynomials (expansion
basis) and p is the chaos order. When n = 1 then p = 3 is
usually sufficient. Since E [Ψi(ξ)Ψj(ξ)] = δij , the expansion
coefficients are given by ai = E [YΨi(ξ)]. Depending on
the type of random input variable Y an optimal (in the
sense of convergence rate) expansion basis can be found.
This expansion is in general referred to as the Wiener-Askey
Polynomial Chaos since the basis polynomials are these
from the Askey-scheme of the hypergeometric functions. E.g.,
Hermite polynomials correspond to a Gaussian variable and
the Legendre polynomials correspond to a uniform variable.

C. Uncertainty propagation

We assume all input is stochastic. This means the con-
ductivity ratio as well as the moment and location of the
dipole are modeled by random variables. As assumed in
the Introduction, the uncertainty is uniform, so we employ
Legendre Chaos. The conductivity ratio is then written as

X(ξX) = .026 + .0159ξX where ξX is uniformly dis-
tributed on the interval [−1, 1]. Likewise the position rd
resp. moment d are written in terms of uniform variables
ξrd = (ξrdr , ξ

rd
θ , ξ

rd
φ ) resp. ξd = (ξdr , ξ

d
θ , ξ

d
φ ) and are

confined to the inner sphere. By Doob-Dynkin’s lemma the
solution can be expressed in terms of ξ = (ξrd , ξd, ξX). A
Legendre Chaos of order p of the i-the sensor reads (with
λj the j-th 7-variate Legendre polynomial)

Si(ξ) = L(rd(ξrd), X(ξX))d(ξd) =

7,p∑
j=0

Vijλj(ξ). (3)

The coefficients Vij = E [Si(ξ)λj(ξ)] ∈ R were computed
through a regression method, in this context referred to as a
stochastic response surface. Since we have n = 7 random
dimensions, we consider a Legendre Chaos of order p = 7.
The effect of increasing the order of the chaos expansion
may be of interest, but for our purposes we verified that 7
suffices; 7, 7 = 3431.

III. RESULTS AND DISCUSSION

A. Sensitivity analysis

We will discuss the sensitivity analysis at three stages.
However, first we construct some input to work with. We
consider the stochastic position and moment vectors rd(ξrd)
and d(ξd) evaluated at some fixed stochastic input vectors,
namely

rd(−.7, .2, .43) = (−.027,−.121,−.041) = r1
d,

rd(.6,−.8,−.2) = (−.174, .126, .662) = r2
d,

d(.05,−.1, .2) = (−.365,−.265, .071).

Note that r1
d is rather (deep) central in the cortex (|r1

d| = .13)
whereas r2

d is (shallow) closer to the skull (|r2
d| = .74). Hav-

ing computed the chaos coefficients, we obtain 27 random
variables Si. We do not know its probability distribution but
can regard it as function of the random variable ξ.
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Figure 2. Normalized overall mean degree of influence κ̄. The dashed line
represents the great longitudinal fissure.

The first stage consists in marginalizing with respect to
position and moment of the dipole to obtain the overall mean



sensorial response

S̄(ξX) = E [S(ξ) | ξX ] =
1

26

∫ 1

−1

S(ξ) d ξrd d ξd.

This relates the sensor measurements to the conductivity ratio
with dipole location and moment averaged out. To quantify
the sensitivity of sensor measurements with respect to a
change in the conductivity ratio we define the overall mean
(relative) degree of influence κ̄i as

κ̄i =
κ̄′i∑
j κ̄
′
j

, κ̄′i = max
|ξX |≤1

S̄i(ξX)− min
|ξX |≤1

S̄i(ξX),

for i = 1, . . . , 27. The results are shown in Fig. 3. Due to
geometry arguments, we expect the overall mean influence to
be symmetric with respect to the great longitudinal fissure.
The overall mean degree of influence is normalized and
the sensors are colored accordingly, see Fig. 2. Indeed we
observe the expected symmetry and moreover the sensors
located at the great longitudinal fissure are least influenced
by a change in conductivity ratio. Note that Fig. 2 lacks a
dipole, because there is averaged over location and moment;
only geometry and conductivity play a role here.
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Figure 3. Different degrees of influence (in %) per sensor.

At the second stage we average out only the moment. This
relates the sensor measurements to the conductivity ratio with
fixed dipole location r`d = rd(ξr`d) but the moment averaged
out. We define the located mean sensorial response

S̄`(ξX) = E
[
S(ξ) | ξr`d , ξX

]
=

1

23

∫ 1

−1

S(ξ) d ξd,

with ` = 1, 2. This enables us to quantify the influence of
position regardless of orientation of the dipole source; we
define the located mean (relative) degree of influence κ̄`i as

κ̄`i =
κ̄′`i∑
j κ̄
′`
j

, κ̄′`i = max
|ξX |≤1

S̄`i (ξX)− min
|ξX |≤1

S̄`i (ξX),

for i = 1, . . . , 27 and ` = 1, 2. Sensors located closer to
the source, should have a greater influence w.r.t. a change
in conductivity ratio. To verify these intuitive thought, we
make a plot of the sensors in position with the sources shown
as cubes, see Fig. 4. Our conjectures are indeed supported.
Moreover they agree with previous results of [13], [19].
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Figure 4. The normalized located mean degree of influence κ̄1,2 with the
dipole positions r1,2d shown as cubes. The dashed line represents the great
longitudinal fissure. (Same color coding as in Fig. 2.)

The third stage consists of no averaging. For an observed
position and moment of the dipole source we denote the
observed sensorial response as

Ŝ`(ξX) = S(ξr`d , .05,−.1, .2, ξX), ` = 1, 2,

according to the dipole location r`d = rd(ξr`d). As above, we
define the observed (relative) degree of influence as

κ̂`i =
κ̂′`i∑
j κ̂
′`
j

, κ̂′`i = max
|ξX |≤1

Ŝ`i (ξX)− min
|ξX |≤1

Ŝ`i (ξX),

for i = 1, . . . , 27 and ` = 1, 2. The results are visualized
in Fig. 3 and Fig. 5. Again we observe the location as an
influential factor. But we note that the dipole orientation
is fairly horizontal. When we consider a vertically oriented
dipole, then we observe what is in line with what we already
cited, namely: sensitivity is maximum to sources oriented
parallel to the line of the electrodes [14].
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Figure 5. The normalized observed degree of influence κ̂1,2 with the
dipole positions r1,2d shown as cubes. The dashed line represents the great
longitudinal fissure. (Same color coding as in Fig. 2.)

B. Correlation analysis
It is reasonable to suspect some intrinsic correlation of

EEG sensors, e.g. due to position. To quantify and in-
vestigate this we make use of our stochastic approach at
hand. The correlation between sensor i and sensor j is
ρij = Corr(Si, Sj). This correlation is readily computed
since we have a Legendre Chaos, which enables us to write
the correlation in terms of the chaos expansion coefficients
as

ρij =

∑7,7
k=1 VikVjk√∑7,7

k=1 V
2
ik

√∑7,7
k=1 V

2
jk

.



In Fig. 6 the sensors i and j are connected by a blue dashed
line if 0 ≤ |ρij | < .02, they are connected by a red solid
line if .9 ≤ |ρij | < 1. We observe high correlations in the
temporal region. It is apparent that the sensors in the occipital
and lower frontal region, which are close together, are not
so highly correlated as in the temporal regions. We note that
we are dealing with overall mean sensor correlation, i.e. for
averaged out dipole location, moment and conductivity ratio.
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Figure 6. Visualization of correlation analysis. If 0 ≤ |ρij | < .02 then
sensor i is connected with sensor j by a blue dashed line. If .9 ≤ |ρij | < 1
then sensor i is connected with sensor j by a red solid line.

We remind that it were also these sensors that are on
average most influenced by a change in the conductivity
ratio, see Fig. 2. When solving the inverse problem – of
locating a dipole when sensor measurements are at hand –
one needs to take these results into account: temporal sensors
are highly correlated and highly sensitive to the conductivity
ratio. E.g., one can give them less weight or try to minimize
their influence in the solution of the inverse problem. Ideally
a real time sensitivity and correlation analysis is combined
with the techniques used to address the inversion.

Explaining this results qualitatively is a next step, where
expert medical judgement, physiological and anatomical ex-
pertise are required. This will be dealt with in the near future,
being part of a interdisciplinary project.

IV. CONCLUSION

We discussed the modeling of the stochastic propagation
of uncertain conductivity in EEG. Polynomial Chaos is intro-
duced in the sensitivity and correlation analysis of the sensors
influenced by uncertain conductivity. The analysis was con-
ducted on a three layer spherical head model. We addressed
the sensitivity analysis at three stages: dipole location and
moment averaged out, only the dipole moment averaged out,
and both fixed. On average, we observe the least influenced
electrodes along the great longitudinal fissure. We compared
two different source locations and obtained changes in the
electrodes sensitivity, which we belief, are consistent with
our intuitive hypothesis. The highly influenced sensors were
on average located temporal. This was also the case in the
correlation analysis. Sensors in the temporal parts of the brain
are highly correlated. Whereas the sensors in the occipital

and lower frontal region, though they are close together, are
not so highly correlated as in the temporal regions.

We hope this effective quantification of sensitivity and
correlation can be useful in the EEG inverse problem, where
iteratively the least influenced/correlated sensors are given
more weight in the inverse algorithm. We are now trying
to also make some sensor locations random and look for
optimal placing of these sensors. Also, a more realistic head
model and anisotropic conductivity distributions are a natural
next topic of investigation [8].

Collaboration with researchers specifically dealing with
practical EEG applications in medical investigations, will be
set up in the frame of an interdisciplinary project between
engineers, physicians and mathematicians. We continuously
aim at contributing to the improvement of the reliability
of the interpretation and use of the EEG-results in medical
prognoses and remediation. We hope to report on this further
research in a future WCE.
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for their support.

REFERENCES

[1] M. Nolan, M. Redoblado, S. Lah, M. Sabaz, J. Lawson, A. Cunning-
ham, A. Bleasel, and A. Bye, “Memory function in childhood epilepsy
syndromes,” Journal of Paediatrics and Child Health, vol. 40, pp. 20–
27(8), January 2004.

[2] H. Urbach, “Imaging of the epilepsies,” European Radiology, vol. 15,
pp. 494–500, 2005.
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