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Introduction

Periodic structures are of great practical use in many applications in antenna systems, mi-

crowave electronics and optics. Efficient modelling techniques rely on the Floquet-Bloch

theorem to limit the simulation domain to a single unit cell. Up to now, little has been

published about the 1D periodic 3D Green’s function, especially when also considering the

presence of a stratified dielectric background medium. In [4] the 1D periodic 3D Green’s

functions for a microstrip substrate are derived in the spectral domain first, and the corre-

sponding spatial-domain quantities are obtained through an efficient sum of inverse Fourier

transforms.

We propose a Perfectly Matched Layer (PML) based formalism to derive a fast converging

series expansion for the 1D periodic 3D Green’s function of layered media. The PMLs

are used to transform the open layered medium into a closed waveguide configuration. This

results in an efficient expansion for the 3D Green’s function of a point source in the stratified

background medium in terms of a set of discrete modes of the closed waveguide containing

the PML, while the PMLs mimic the open character. As both the spectral and spatial domain

series suffer from slow convergence, the Ewald transform is applied to accelerate the PML-

based series.

Theory

Figure 1: 1D periodic set of point sources on a PML-terminated microstrip substrate.

Consider a planar multilayered dielectric background medium in which we place a 1-D

grid of point sources (Fig. 1), resulting in a periodic problem in the x-direction with the

period given by b; two adjacent point source excitations differ by at most a phase factor

e− jkxb. For a faster evaluation of the 1D periodic 3D Green’s functions, we construct a par-

allel plate waveguide by terminating the free space with two perfect electrically conducting

plates backed by a Perfectly Matched Layer (PML) with thickness dPML and with material

parameters κ0 and σ0 [1].This results in a series expansion for the 3D Green’s function for

978-1-4244-2042-1/08/$25.00 ©2008 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55826715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a 1D periodic grid of point sources:
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with βn and the expansion coefficients An(βn,z|z′) given in [2]. Applying of the Poisson

transform yields following equivalent series expansion
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For a successful acceleration of convergence by means of the Shanks algorithm, (1) or (2)

must asymptotically behave as a geometric series. In general, this is not the case for (1) as

a function of m, when considering small values of the PML-based mode order n and hence,

the Shanks algorithm is not very effective in accelerating the slow convergence. Therefore,

an Ewald transform is applied for mode orders n < N. To this end, we rewrite the periodic

Green’s functions as a sum of the modified spectral domain series (2)
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and the modified spatial domain series (1)
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in which Eq+1 [z] =
∫ +∞

1
e−zt

tq dt is the qth order exponential integral. A suitable choice

for the Ewald splitting parameter E has to be made. Based on the theory developed

in [3] for the periodic 2D Green’s function series in free space, a suitable choice is E =

max

{√
π

b
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N
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, where H2 is the maximum exponent permitted in

the spectral series (3), ε the desired error and Q the number of q-terms necessary to achieve

convergence in the spatial series (4). Typical choices are H2 = 9, ε = 10−7, and Q = 13 [3].

In practice, we choose N = 4 for G
per,1D
A (x,y,z;x′ ,y′,z′) and N = 8 for G

per,1D
V (x,y,z;x′ ,y′,z′).

The two series are to be complemented with either the remaining spectral domain series,

i.e. the part of series (4) starting from n = N + 1 instead of N = 1, or the remaining spatial

domain series, i.e. the part of series (3) starting from n = N + 1 instead of N = 1.



Examples

Consider a microstrip substrate with thickness d = 9 mm, εr =3 and µr = 1. To obtain

an expansion into PML-based modes, a closed waveguide is formed by adding a per-

fect electrically conducting plate above the substrate, such that dair = 5 mm, dPML = 3.5

mm. A strongly absorbing PML is obtained for κ0 = 15 and σ0

ωε0
= 10. The free-space

wavelength at the operating frequency is chosen to be λ0 = 2 cm. We determine the

Green’s function G
per,1D
V (x,y,z;x′ ,y′,z′) for a 1D periodic set of point sources with spac-

ing b = 1.5 cm (Fig. 1). Fig. 2 presents the Ewald-transform accelerated series expansion

for
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with kx = 0, as a function of k0|y − y′|, which is in

excellent agreement with the classic Sommerfeld integrated spectral series, accelerated fol-

lowing [4]. On a Pentium T7400 Centrino Duo 2.16 GHz machine with 2GB RAM, the

evaluation of 200 points based on the Ewald-transform accelerated series expansion takes 3

s, whereas the accelerated classic Sommerfeld integrated spectral series requires 1 min 38

s of CPU time. Fig. 3 shows the Green’s function series
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inside the dielectric substrate, calculated as a function of k0|y−y′| for kx = 0. Again, an ex-

cellent agreement is found between the Ewald-transform accelerated series expansion and

the accelerated [4] classic Sommerfeld integrated spectral series, together with a significant

speedup (3 s for the new approach versus 5 m 47 s). Finally, Fig. 4 proposes the Green’s

function series

∣

∣

∣
G

per,1D
V (0,y,9 mm;0,y′,7 mm)

∣

∣

∣
for the excitation at the substrate-air inter-

face and the observation point inside the dielectric substrate.
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Figure 2: 1D periodic 3D Green’s function
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Figure 3: 1D periodic 3D Green’s function
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Figure 4: 1D periodic 3D Green’s function
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