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Modern standards for wireless telecommunication, such as IEEE 802.16e (WiMAX),
foresee in several power-saving mechanisms. One of the main mechanisms is sleep-mode
operation, which allows the mobile device to switch off the antenna during a negotiated
time (it goes to sleep), thus reducing energy consumption. However, traffic that arrives
at the base station (BS) incurs an extra delay, because its delivery can only start after
the sleep period has ended. The sleep-mode mechanism in WiMAX has provisions to
vary the lengths of subsequent sleep periods, which allows to exploit correlation in the
arriving traffic. We depart from our earlier analyses and study the model of the sleep-
mode mechanism specifically under light-traffic conditions. This results in relatively
short and simple formulas that give a lot of insight.
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1. INTRODUCTION

We study the performance of the energy saving mechanism defined in the IEEE

802.16e [1] standard for Broadband Wireless Access networks. Consider the downstream
communication between a Mobile Station (MS) and its serving Base Station (BS) over
a wireless link. To allow the MS to extend its battery life, the standard provides a
sleep-mode mechanism that allows the MS to turn off its radio interface for a certain
time whenever the BS has no packets in its queue. Specifically, if the BS’s queue is
empty, the MS starts a sleep period during which it remains powered down and thus
cannot be reached by the BS. After this period, the MS is briefly reactivated to check
whether there are packets waiting for it at the BS. If not, the MS initiates a second
sleep period, a third, and so on. However, if any packets arrived at the BS during the
last sleep period, the MS remains powered and enters awake mode. This allows the BS
to transmit all the packets in its buffer exhaustively, after which the whole procedure is
repeated. In case of IEEE 802.16e, an exponential update strategy is used, where the
sleep periods double in length every time until a certain maximum is reached. However,
in this paper, we allow more general sequences of sleep period lengths.
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Quite a few authors have already investigated the performance of the IEEE sleep-
mode mechanism. We refer to [2] for an overview. Our paper was the first to take into
account traffic correlation.

The structure of the paper is as follows. We elaborate on the model in section 2. The
light-traffic technique is explained in section 3. We give the main results in section 4.
Finally, we numerically verify the exact results we obtained in our previous paper [2]
with the light-traffic results we derived here in section 5.

2. MODEL AND PROBLEM STATEMENT

We model the BS as a discrete-time single-server queue with infinite capacity and a
first-come-first-served discipline. Time is divided into fixed-length intervals called slots

such that changes in the system can occur at slot boundaries only. The service (i.e.
transmission) times of the packets, expressed as a number of slots, are independent
and have common probability generating function (pgf) S(z) and mean E[S]. Packets
arrive in the queue according to a D-BMAP with M phases. This arrival process is
characterised by the values a(k, j|i), (k ≥ 0, i, j ∈ {1, · · · ,M}), denoting the proba-
bility that, given phase i in a slot, there are k packet arrivals and the phase switches
to j in the next slot. These probabilities can conveniently be arranged in the M ×M

probability generating matrix (pgm) A(z) with entries [A(z)]ij =
∑

∞

k=0 a(k, j|i)z
k. The

stationary probabilities of the phases are given by the entries of a row vector a that

satisfies a = aA(1) and a1 = 1, where 1 is a column vector of ones of appropriate
length. The mean number of arrivals per slot is given by λ = aA′(1)1.

The sleep-period update strategy is denoted by a sequence (t1, t2, . . .) where the
integers tn (n ≥ 1) are the lengths of the subsequent sleep periods of the same idle
period. Let us also define τn =

∑n

i=1 ti (n ≥ 1) and τ0 = 0 indicating the starting slots
of the sleep periods relative to the start of the idle period. We assume that the lengths
of the sleep periods become equal above a certain value J , i.e. tn = tJ , for n ≥ J .

We cite here the results we obtained in [2] regarding the virtual waiting time and
the energy consumption. We also derived the distributions of the queue content and
the packet delay, but in this paper we focus on the two aforementioned quantities. The
vector generating function W(z) is a row vector of M generating functions with entries
defined as follows:

[W(z)]i =
∞

∑

k=0

Pr[w = k, b = i]zk, (1)

where b and w are random variables denoting the phase and the virtual waiting time
at the beginning of a random slot in stationary regime. The virtual waiting time at a
time instant is defined as the time until the server is ready to serve a virtual packet
that arrives exactly at that time instant. We found in [2] that

W(z) = w

∞
∑

n=1

A(0)τn−1(ztn − 1)(zI− A(S(z)))−1, (2)

where w is a 1 ×M vector that can be determined by a variety of techniques.
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We define the energy consumption E of the base station as the probability that
during a random slot the antenna is switched on. Note that the antenna is switched on
during every busy slot and also during every last slot of a sleep period. We found that

E = ρ+ w

∞
∑

n=0

A(0)τn1. (3)

Although the above sketched solution technique is very powerful, there are a couple
of drawbacks to it. Firstly, computing the vector w is a numerically complex process,
especially if the number of background states M is large. Secondly, the exact influence
of arrival correlation is not evident from the equations. We try to circumvent these
problems by considering a Taylor expansion in the region that –for this application– is
most interesting from a practical point of view, namely where the traffic is low.

3. LIGHT-TRAFFIC TECHNIQUE

Although perhaps less well-known than their heavy-traffic counterparts, light-traffic
approximations have a long history, and very different approaches have been developed
to tackle a wide variety of systems. For an excellent overview, see e.g. [4].

It is very important how light-traffic conditions are reached: different ways of reach-
ing low traffic can give different results. Here we take the so-called π-thinning approach:
we start from a ‘normal’ arrival process, and then consider the family of related pro-
cesses where each arrival is retained with a probability π, independent from anything
else. Light-traffic conditions are then reached in the limit π → 0.

We want to obtain the mean virtual waiting time and the mean power consumption
under light traffic. Generally, these quantities are studied by relating the distributions
at different time instants and then, by invoking stationarity, we get an equation for the
desired quantity. Under light traffic, we can take the more direct approach of averaging
over all sample paths.

For this technique to work, we assume that the operation of the system has started
at time t = −∞, and hence, assuming that the system is stable, has reached stationarity
in slot 0. Let S be the set of sample paths. A sample path s for this model records
the arrival times and the service durations of each packet, resulting in two sequences
i1, i2, · · · and j1, j2, · · · , as well as a variable g signifying the number of slots until the
service of the very first packet starts. Note that g is uniformly distributed between 0
and tJ − 1. Let ψ be the quantity of interest, for example the virtual waiting time W
at the beginning of slot 0 or the energy consumption E during slot 0. Then we can
compute the expectation of this quantity under π-thinning as follows:

Eπ[ψ] =
∑

s∈S

Pπ(s)f(s), (4)

where Pπ(s) measures the probability of a sample path under π-thinning, and function
f(.) computes the quantity ψ for given sample path s. As the variable g and the service
times are independent of the arrival process, and moreover not subject to π-thinning,
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average over them separately. From henceforth we only include the arrival times in the
sample path.

Such probabilities are functions of π, of which we can make a Taylor expansion.
Under light traffic, we consider only coefficients in, say, the n lowest powers of π. As
we will see, this leads to an enormous reduction in the amount of sample paths we need
to consider. Note that the probability matrix generating function of the arrival process
under π-thinning is given by:

Aπ(z) = A(1 − π + π z), (5)

which gives rise to the following Taylor-expansion in π = 0:

Aπ(z) =
∞

∑

n=0

1

n!
A(n)(1)πn(z − 1)n

=
∞

∑

k=0

zk

∞
∑

n=k

(−1)n−k

(

n

k

)

1

n!
A(n)(1)πn

=
∞

∑

k=0

zkCk(π). (6)

Note that the probability of a sample path can written as an infinite product of
transition matrices Ck(π), premultiplied by vector a and postmultiplied by vector 1,
where each k signifies the number of arrivals during a certain slot. From this we observe
that the probability of a sample path with n arrivals is a power series in π where the
lowest non-zero coefficient is in πn.

We state, without proof the following theorem, which shows the formula for a second
order light-traffic approximation of a quantity ψ. The proof follows the lines of the
expositions in [3] and [5], but must be adapted to D-BMAP arrivals. It is quite technical
due to a tricky interchange of limits.

Theorem 1. The expectation of a quantity ψ with associated function f(.) under

π-thinning has the following second-order approximation:

Eπ[ψ] = f({}) + πλ

+∞
∑

i=−∞

(f({i}) − f({})) (7)

+ π2
+∞
∑

i1,i2=−∞

R(|i1 − i2|) (f({i1, i2}) − f({i1}) − f({i2}) + f({}) + O(π3), (8)

where {i1, i2, · · · } denotes a sample path with arrivals in slots i1, i2 and so on. The

function R(.) is defined as

R(0) =
1

2
aA′′(1)1,

R(n) =
1

2
aA′(1)A(1)n−1A′(1)1, where n ≥ 1. (9)

We can view R(.) as a sort of autocorrelation function.
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4. MAIN RESULTS
The functions fE(s) and fW (s) that determine respectively the energy consumption

and the unfinished work during slot 0 for a given sample path s follow quite straight-
forwardly from the system equations. For two arrivals, the complete definitions are
already quite lengthy, and hence we omit them in favor of the results themselves.

After some tedious manipulations, we find from formula (8) that the energy con-
sumption is approximated by

Eπ[E] =
1

tJ
+ πλ

{

E[S] + J − 1 −
E[S] + τJ−1

tJ

}

+

+2π2

J−1
∑

j=0

Xj

(

τJ−1 − τj

tJ
− J + 1 + j

)

− R(0)

(

τJ−1 − τj

tJ
− J + 1

)

+ O(π3),

(10)

where the Xjs are defined as

X0 =
1

tJ

tJ−1
∑

i=0

∞
∑

k=1

Pr[S = k]
k+i
∑

n=0

R(n) (11)

Xj =
1

tJ

tJ−1
∑

i=0

∞
∑

k=1

Pr[S = k]
k−1
∑

m=0

R(k +m+ i+ τj−1), if 0 < j < J. (12)

This expression for P [E] has an intuitive basis. The constant term tells what happens
when there are no arrivals at all: the system will forever be in the sleep period with
length tJ , and hence have an energy consumption 1

tJ
. In the first order derivative we

see the amount of extra energy consumption induced by one arrival. The second order
derivative shows the influence of the overlap of two packet ‘life times’ (service time plus
subsequent sleep periods). The terms Xj are such that π2Xj gives the probability of
having a sample path with two arrivals that have exactly j sleep periods in between.
For the mean virtual waiting time we find:

Eπ[W ] =
tJ − 1

2
+ πλ

{

1

2
E[S(S − 1)] + TJ−1 − τJ−1

tJ − 1

2

}

+

+2π2

{

J−1
∑

j=0

Xj

(

tJ − 1

2
τJ−1 − TJ−1 + E[S]

)

+ Y E[S] −X0 E[S]2+

+
J−1
∑

j=1

Xj

(

tJ − 1

2
(E[S] − τj) − Tj − E[S]tj

)

}

+ O(π3), (13)

where

Y =
1

tJ

tJ−1
∑

i=0

∞
∑

k=1

Pr[S = k]

τJ−1+k−1
∑

n=0

nR(n) (14)

Tj =

j
∑

i=1

ti(ti − 1)

2
(15)
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5. NUMERICAL EXAMPLE
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Fig. 1. Plots showing the exact curve of Eπ[E] and Eπ[W ] vs. λ

′ := λπ as well as their first
and second order approximations (in straight lines, dashes and long dashes respectively).

We verified the obtained light-traffic limits with our earlier results for an on/off
arrival source and for sleep strategy (4, 8, 16, 32, 64, · · · ) and found indeed an agreement.

6. CONCLUSION

Light-traffic approximations are a very interesting tool for the analysis of power-
saving protocols. We can not only reconstruct our previous work under light traffic,
but all sorts of generalizations seem possible as well. It is remarkable that the first
order approximation is insensitive to traffic correlation. It would be interesting to find
out whether this is due to either the applied thinning scheme or the Markovian traffic
correlation, or whether this can be established more generally.
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