
THE FOURTEENTH MICROOPTICS CONFERENCE 
 

 

 
 

 
 

TECHNICAL DIGEST 
 

 
 

Organized by 
Vrije Universiteit Brussel 

Department of Applied Physics and Photonics 
 

September 25 (Thu.) – September 27 (Sat.), 2008 
 

 
 

Diamant Conference and Business Centre 
Brussels – Belgium 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55826636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Printed in Brussels, 2008 
 

No part of this publication may be presented without the written permission of publisher. 
 
 

Copyright © 2008 by Microoptics Group 
The Optical Society of Japan, The Japan Society of Applied Physics 

 
 

C/o Microsystem Research Centre, Tokyo Institute of Technology 
R2-39, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

September 25 (Thu.) – September 27 (Sat.), 2008 
 

Diamant Conference and Business Centre 
Brussels – Belgium 

 

 
 
 

Organized by 
 

Vrije Universiteit Brussel 
Department of applied Physics and Photonics 

 
 
 

Financially supported by 
 

  
 

 
 
 

 
 

Cooperating organisations 
 

 
 
 

TECHNICAL DIGEST OF 
 

THE FOURTEENTH 
 

MICROOPTICS CONFERENCE 



 Templates               ‘08 p.1/2 

FUNCTIONAL POLYMER MATERIALS FOR OPTICAL APPLICATIONS 
 

Tim Van Gijseghem(1), Geert Van Steenberge(2), Peter Van Daele(2), Thomas Geernaert(3), Tomasz Nasilowski(3), Heidi Ottevaere(3), 
Hugo Thienpont(3), Michael De Volder(4), Dominiek Reynaerts(4), Etienne Schacht(1), Peter Dubruel(1) 

 

(1) Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 (S4), B-9000 Gent, tel: 003292644466, (2) 
CMST, Ghent University, (3) TONA, Vrije Universiteit Brussel, (4) PMA, Katholieke Universiteit Leuven 

Peter.Dubruel@ugent.be 

Abstract: One of the main limitations of the current generation of optical materials is the limited flexibility and stretch-ability. In the 
present paper, we therefore report on the development of a series of polymethacrylates in which the glass transition temperature was 
varied to obtain materials with enhanced flexibility. The monomers were selected in such a way that they are compatible with the 
materials often applied for waveguide production and optical fibre embedding. 
© 2008 Microoptics Group (OSJ/JSAP) 

1. Introduction 
Polymer materials have found widespread applications in 
recent decades going from automotive over biomedical 
to optical applications. In the present work we aim to 
develop and characterise a series of functional polymer 
materials to be applied for optical applications: wave-
guide production and optical fibre embedding. 

2. Materials and Methods 
 
2.1 Material development 
As a first generation polymer materials, we selected 
polymethacrylates. The chemical structure of the buil-
ding blocks selected for the production of a series of 
(co)polymers is shown in the figure below. 
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FIG. 1 Chemical structure of methyl methacrylate (MMA, left), 
butyl methacrylate (BuMA, middle) and 2-ethylhexyl 

methacrylate (EHMA, right). 
 
Using the different monomers, homopolymers and 
copolymers with varying composition were synthesized 
by radical polymerisation in toluene using AIBN as 
radical initiator. After 24 hours at elevated temperature, 
the polymers were isolated by precipitation. Purification 
was performed by dialysis and/or reprecipitation. 
 
2.2 Polymer analysis 
The chemical structure of the (co)polymers was analysed 
by 1H-NMR spectroscopy. Molecular weight analysis 
was performed using gel permeation chromatography. 
The thermal properties of the materials were analysed 
using DSC (differential scanning calorimetry) and TGA 
(thermogravimetric analysis) measurements on a TA 
instruments equipment DSC 2920 Modulated DSC and 

Hi-Res TGA 2950 Thermogravimetric Analyzer respect-
tively 

3. Results and Discussion 
In the present work, we report on the development of a 
series of polymethacrylates containing MMA as 
comonomer to be applied for optical applications. The 
applications envisaged include materials for waveguide 
production and optical fibre embedding. The main 
drawback of the current generation optical materials is 
their limited flexibility and stretch-ability. The 
monomers (see figure 1) were selected in such a way that 
the flexibility of the materials obtained can be carefully 
fine-tuned by varying the selected comonomers and the 
comonomer ratios. An overview of the materials 
developed, their chemical composition and their 
corresponding glass transition temperature Tg are shown 
in the table below. 
 

Table 1. Chemical composition as obtained by 1H-
NMR spectroscopy and thermal properties (Tg) of 

polymers developed. 

 

 
Composition (mol%) Tg °C 

TVG1 MMA/BuMA75/25 96 

TVG2 MMA/BuMA42/48 66 

TVG3 MMA/BuMA24/76 51 

TVG4 MMA/EHMA79/21 51 

TVG5 MMA/EHMA51/49 29 

TVG6 MMA/EHMA21/79 -4 

 
From the above data, it can be concluded that the 
flexibility of the materials can be significantly enhanced, 
as reflected by the decrease in Tg. The effect can be 
controlled by varying the chemical composition of the 
materials (e.g. BuMa versus EHMA). Similar effects on 
the Tg as observed using BuMA could be obtained using 
lower amounts of EHMA. 
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It has been reported before that vinyl polymers are 
often prone to monomer residues after isolation of the 
polymer. These residues can affect the optical properties 
of the materials developed. Therefore, an extensive 
purification method was established to remove any 
unreacted monomer. The procedure involves a 
combination of dialysis and repeated dissolution 
precipitation of the polymers. NMR spectroscopy 
revealed a successful purification procedure (as 
evidenced by the absence of monomeric vinyl peaks). 

Using the materials developed, the applicability for 
optical applications was investigated for the production 
of waveguides. One of the materials which are often 
applied for optical applications is Truemode. In a first 
attempt to enhance the flexibility of these formulations 
after curing, varying amounts of the (co)polymers 
developed were used as flexibilising agent. Due to the 
compatibility with Truemode, the polymer materials 
could be combined with Truemode by dissolution. 
Thermal analysis revealed that the polymers developed 
remain stable at the processing temperatures of 
Truemode (± 200°C). 

 Preliminary tests indicate that the flexibility of 
Truemode can indeed be enhanced. The effect is 
dependent on the polymer type and its concentration. At 
present, this effect is being quantitatively studied using 
rheology, mechanical testing and thermal analysis on 
Truemode/polymethacrylates based materials. 

 
To ensure a proper anchoring of the flexibilising 

polymers in the final cross-linked Truemode network, an 
alternative approach was also investigated in which 
polymethacrylates containing cross-linkable side-groups 

were developed. The chemical structure of the polymers 
developed is shown in the following figure. 
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Fig 2. Chemical structure of X-linkable polymethacrylates. 
 
At present, these materials are under evaluation for 
preparing formulations with Truemode. The results of 
this ongoing research will be presented during the 
meeting. 

7. Conclusions 

In the present work we have developed and characterized 
different methacrylate based homopolymers and 
copolymers that are applied for adjusting the flexibility 
of Truemode based formulations. The same polymers are 
currently also under evaluation for optical fibre 
embedding. For this purpose, a mould was already 
developed. 
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Introduction
During the last decade, the development of smart flexible skins has attracted large 
attention for a variety of applications such as tactile sensors. [1]-[4] In the present work, 
we report on the development of flexible polymethacrylate based copolymers which will 
be applied for the embedding of optical fibres, waveguides and data processing units.

Materials and methods
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The selection of the monomers, which are depicted in the figure below, was based on 
different crireria: biocompatibility, chemical resemblance with commercial materials 
(e.g. TruemodeTM) and fibre coating, ability to introduce functionalities and to change 
mechanical properties

Fig. 1: Chemical structure of methyl methacrylate (MMA), butyl methacrylate (BuMA), 

2-ethylhexyl methacrylate (EHMA) and 2-hydroxyethyl methacrylate (HEMA)
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As depicted for the copolymerization of MMA and BuMA (see figure 2), the 
(co)polymerization reactions were carried out in toluene, in the presence of the radical 
initiator AIBN. After reaction, the (co-)polymers were isolated by precipitation (10-fold 
excess of non-solvent) and filtration. Pure (co-)polymers were obtained by repeated 
redissolution and precipitation in combination with dialysis.

Code Theoretical composition 
(mol%)

Experimental composition 
(mol%)

Tg (°C) Td (°C)

TVG 1 MMA/BuMA 80/20 MMA/BuMA 75/25 96 228
TVG 2 MMA/BuMA 50/50 MMA/BuMA 52/48 66 231
TVG 3 MMA/BuMA 20/80 MMA/BuMA 24/76 51 ---
TVG 4 MMA/EHMA 80/20 MMA/ EHMA 79/21 51 222
TVG 5 MMA/EHMA 50/50 MMA/ EHMA 51/49 29 230
TVG 6 MMA/EHMA 20/80 MMA/ EHMA 21/79 - 4 229
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Fig. 2: Copolymerization reaction of MMA and BuMA

Structural characterisation and composition determination of the (co-)polymers was 
performed by means of 1H-NMR in CDCl3 . Spectra were recorded on a Brüker 300 
MHz spectrometer. Thermal properties of the materials were determined by means of 
DSC (differential scanning calorimetry) and TGA (thermogravimetric analysis)  
measurements on TA Instruments equipment DSC 2920 Modulated DSC and Hi-Res 
TGA 2950 Thermogravimetric Analyzer respectively.

Results and discussion

Acknowledgement

The work presented is financially supported by the IWT-Flanders as part of the SBO 
project 060069 (FAOS, Flexible Artificial Optical Skin).

In order to be sure that the obtained copolymers had the desired composition, 1H-NMR 
spectra of all the products were recorded. Table 1 shows that there was a good 
correlation between the theoretical and experimental composition of the developed 
copolymers.

One of the applications of the materials is the flexibilisation of TruemodeTM waveguides 
by admixing copolymers in the commercial available TruemodeTM formulation. A first 
indication about the flexibility of the copolymers developed can be given by the glass 
transition temperature (Tg ) of the different materials, since the Tg of a material 
decreases with increasing flexibility. The results of the DSC measurements are shown 
in table 1. It can be observed that the glass transition temperature can be substantially 
lowered by partial replacement of MMA by BuMA. The effect is even more pronounced 
when EHMA is used.

Table 1: Copolymer composition and thermal properties

Conclusion

In the present work, we have developed series of methacrylate based copolymers to be 
applied for optical applications (fibre embedding & waveguide applications). For the 
different applications envisaged, flexible materials are a strong requirement. The 
preliminary results indicate that the polymers developed represent an ideal class of 
materials for fine-tuning the properties of existing materials as well as for embedding 
optical fibres.

Thermal stability of the materials was tested using TGA analysis. The temperatures at 
which 95% of the material was still intact, Td , are depicted in table 1. The data show that 
the copolymers are compatible with the waveguide processing scheme, where  
maximum temperatures of 220-230°C are applied.

In another track, the materials will be applied to embed optical fibres. To get an idea 
about the fibre embedding capacities of the (co-)polymers, an UV-transparent glass 
mould was fabricated by ultrasonic milling. Fibre alignment tools were produced by 
micromilling in stainless steel. The mould developed is depicted in the figure below.

Fig. 4: UV transparent glass mould for fibre embedding purposes
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Outlook

The materials described so far, have one major drawback. Due to their chemical 
structure, they can not be chemically incorporated in the TruemodeTM network. To 
create incorporable materials, HEMA based materials can be used, since the hydroxyl 
function can easily be modified into a cross-linkable group. To avoid uncontrolled 
cross-linking during the copolymerization of HEMA and other monomers (e.g. MMA), a 
Me3 Si-protected HEMA derivate was used. After the copolymerization reaction the 
protecting group was released by acid treatment with regeneration of the hydroxyl 
function, which can easily be transformed into a cross-linkable function. The coupling 
reaction of a HEMA based copolymer with methacrylic anhydride is depicted in the 
figure below.

Fig. 5: Introduction of cross-linkable function using HEMA based copolymers

References

3TONA, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Etterbeek, Belgium
4PMA, Katholieke Universiteit Leuven, Celestijnenlaan 300B, B-3001 Heverlee, Belgium

Corresponding authors: Tim.VanGijseghem@UGent.be, Peter.Dubruel@UGent.be

[1] E.-S. Hwang, J.-H. Seo, Y.J. Kim, Journal of 
Microelectromechanical Systems, 2007, 16, 556-563

[2] J.-S. Heo, J.-H. Chung, J.-J. Lee, Sensors and Actuators A, 
2006, 126, 312-327

[3] H.-K. Lee, S.-I. Chang, E. Yoon, Journal of  
Microelectromechanical Systems, 2006, 15, 1681-1686

[4] M.E.H. Eltaib, J.R. Hewit, Mechatronics, 2003, 13, 1163-1177

0

20

40

60

80

100

120

140

cP

η

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 10 20 30 40 50 60s
Average Time tav r

To test the possible influence of the copolymers on the flexibility of a processed 
TruemodeTM formulation, different mixtures with a varying copolymer concentration (10- 
100 mg/ml) were processed. Qualitative analysis confirmed an increased flexibility upon 
copolymer admixing. At present a quantitative mechanical analysis of the materials 
developed is ongoing.
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Fig. 3: Optimization of rotation speed (left), viscosity as a function of polymer concentration 
(middle), viscosity as a function of polymer type (right)

Rheological measurements prove that the added (co-)polymers have an influence on 
the TruemodeTM material properties. An increase of viscosity is observed depending on 
the (co-)polymertype and –concentration. 

In the near future, different properties of the Truemode/polymer combinations will be 
evaluated including mechanical properties and optical properties.
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