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Objectives, abstract and conclusions 

The objective of this paper is to illustrate the evaluation of the value of Structural Health Monitoring 
(SHM) in the framework of pre-posterior analysis, elaborating the joint modeling of the time-varying 
structural performance and hazard function in inspection/repair planning and expected total life 
cycle cost calculation. The hazard function in the joint model is updated by the assumed monitoring 
outcome, which results in a change of inspection/repair plan and expected Total Life Cycle Cost 
(TLCC). The difference of expected TLCC is defined as the value of SHM which changes as 
decision parameter h(t)T related to the inspection time changes within the maximum acceptable 
value hmax.  

Technical information 

The joint modeling of the time-varying structural performance and hazard function is introduced in 
the framework of Bayesian decision making. This framework is taken as basis to update the 
inspection/repair planning, expected TLCC and correspondingly the value of SHM.  
 
Abstract: In this article, we present a framework for evaluating the value of structural heath 
monitoring (SHM) in order to optimize the SHM implementation and to estimate the 
inspection/repair investment. A joint model consisting of a time-varying structural Performance 
Indicator (PI) prediction and a hazard function is proposed. Structural condition data used to 
estimate and update predictions of PI can be obtained from monitoring and a Bayesian dynamic 
model is proposed to forecast structural performance. For the survival process the time-dependent 
PI values and their changing rates are incorporated in the hazard function, in which the risk of 
structural failure depends on both the current value of PI and the slope of its trajectory at time t. A 
Bayesian approach using the Markov-chain Monte Carlo method can be adopted for the parameter 
estimation. The advantageous feature of these predictions is that they are dynamically updated as 
extra monitoring data are collected, providing real time risk assessment using all recorded 
information. Furthermore, inspections, with a probability of detecting damage followed by a 
probability of repair action, are planned when the hazard function at time t crosses a threshold 
value. Subsequently, the problem of optimizing the strategy of monitoring and maintenance can be 
solved by minimizing the expected total cost during the expected service life of the structure. 
Finally, the Value of SHM (VoSHM) is obtained by calculating the difference between the expected 
Total Life Cycle Costs (TLCC) of the inspection/repair plans with and without SHM implemented.  

5 Introduction 

Civil engineering structures are subjected to time-dependent degradation processes which require 
considerations of a wide range of uncertainties. When it is required to forecast or make decisions 
under uncertainty and risk, gathering further information prior to making the decision is often 
crucial. Such information reduces the uncertainty and thus facilitates improved decision making. As 
Structural Health Monitoring (SHM) provides a way for collecting information and reducing 
uncertainty, it has received a lot of attention and is also widely implemented in practice. Since 
monitoring systems and inspection methods are due to costs limited in time, the decisions should 
be based on the evaluation of its benefit, which should be done prior to its installation. The general 
decision can be characterized by whether or not to apply SHM, which strategy to apply, and when 
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to apply it if it’s a short term monitoring strategy. Among these decisions, whether or not to apply 
SHM plays a fundamental role, based on which also decisions related to which kind of SHM and 
when to apply it can be investigated as well as their characteristics (e.g. precision, time intervals). 
The value of a certain SHM strategy is quantified by the value of information it provides, in 
monetary form. This can be calculated in the framework of decision theory introduced in Raiffa and 
Schlaifer (1961) as the difference between the expected life-cycle cost, or expected benefits, of 
performing SHM or not, as also presented by Faber and Thöns (2014). In order to calculate the 
expected TLCC, a threshold-based inspection/repair planning should be decided prior to further 
analysis of e.g. inspection times, repair rules and related costs. It requires a decision tree 
describing all possible events and the calculation of probabilities for each event. To do that, a joint 
modeling of the time-varying structural Performance Indicator (PI) and the hazard function is 
proposed first to calculate the failure rate (cf. infra). A threshold approach, as described in Straub 
and Faber (2006), is then adopted for planning the inspection time based on maximum failure rate 
and pre-posterior analysis for calculating the expected total life-cycle cost. The effect of SHM is 
accounted for by incorporating the monitoring outcome, including its uncertainty, to update the 
probability distribution of parameters related to the time-varying PIs, which in turn results in a 
change of inspection planning and expected total life-cycle cost. The VoSHM is then evaluated as 
the difference between the expected TLCC with and without SHM implemented. In the next parts, 
the process of this joint modeling and the parameter estimation methodology are first introduced. 
Then a framework for hazard based maintenance planning and determination of the VoSHM is 
elaborated.  

6 Joint model of longitudinal data and hazard function 

The joint modeling of longitudinal data, or in other words time sequent performance data, and the 
time to the occurrence of a particular event is an active area of research in statistics, mainly 
applied in medical related research, where two types of outcomes are recorded: (1) time sequent 
response measurements and (2) the time to an event of interest, such as time to death. These two 
types of outcomes are often analyzed using joint modeling of time sequent and time-to-event data, 
facilitating a prognostic tool for estimation and evaluation of risk rate for patients subjected to a 
certain disease, see Baghfalaki et al. (2014). Statistical methods for estimating and evaluating risk 
scores using reference data have been extensively studied in this field. It is clear that a similar 
procedure might be of interest for civil engineering structures. The joint modeling procedure and 
parameter estimation method are presented in the following section. Figure 1 shows an illustrative 
example of the joint modeling. 

6.1 Process for modeling the time dependent structural performance:  

The time dependent PIs can be expressed as: 
 

 (1) 

  

where  denotes the value of the time dependent observation outcome at any particular time 
point t,  is the underlying structural state which is a function of t and random effects denoted 

by bi, and  the error terms that are assumed independent of the random effects. We assume 
that   N(0, σ1

2) and Cov.  = 0 for . 

6.2 Survival process defining the hazard function:  

 

 
(2) 

  

Where  is the baseline hazard function. This formulation postulates that the risk for a failure 
event at time t is associated with parameters α1 and α2 which quantify the strength of connection 
between the value of , its derivative over time  and the failure rate for an event (failure 
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according to a limit state function) at the same time point. There are several association structures 
between  and  for an event. For the functional forms one can refer to Rizopoulos et al. 
(2014). Here we formulate the joint model of the two process based on the assumption that the 
failure risk depends on both the current value of the  and its changing rate , which is 
often the case for degrading structures. For purpose of illustration, see Figure 2. For a certain limit 

of PI, the curve with higher  value and lower decreasing rate  at time t leads to a lower 
failure rate h(t), as for PI1(t) (as indicated by the red curve in Figure 2). From comparing PI2(t) and 

PI3(t) with similar deceasing rate  at time t, it is observed that higher  leads to a lower 
risk of failure.  is a another regression coefficient. Under the assumption that the hazard of the 

failure event is mainly based on the value of  and its decreasing rate ,  can be 
predefined to a certain value.  
 
More specifically, for the survival process, we consider a parametric proportional hazard model 
with Weibull baseline hazard, as in equation (3). The use of the Weibull proportional hazard model 
has the advantage that it is the only one that is a hazard model proportional to the baseline hazard 
as well as an accelerated failure time model. This is suitable for modeling degrading structures, as 
the failure risk accelerates with time, especially in the end period of the service life.  
 

 
 

(3) 

    

  
           (a)  

 
(b) 

Figure 1. Joint modeling for (a) time-dependent structural performance and (b) hazard function  

 
Details for the estimation of parameters in the two processes are provided in the Appendix. As 
soon as the evaluated value of the parameters are available, the failure rate h(t) at a time point and 
the failure probability during a period of time can be calculated and used for inspection time 
planning.  
 
Under the Bayesian specification of the joint model, we can derive estimations and predictions for 
the hazard rate for a subject based on the observed time-dependent structural performance 
outcomes. Although the model fitting process can require considerable calculation and simulation 
work, it is very efficient for use once the joint model is formulated. Moreover, the hazard value h(t) 
can be updated when new monitoring information is recorded for updating the performance 
indicator, thus proceeding in a time-dynamic manner.  
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Figure 2 Illustration of interaction of PI(t) and PI’(t) with hazard function 

 
One advantage of applying the joint modeling in civil engineering is that the functional form of the 
time-dependent feature of the structural performance, i.e. PI(t), is often available. Simulations of 
reference datasets can be performed by using a prior pdf assumption, which afterwards can be 
implemented into the joint modeling of the time-dependent performance and survival process. In 
this paper, the simulation based parameter estimation is not treated in detail and focus is given to 
the quantification of value of SHM, which is presented in the following part. 

7 Hazard based maintenance planning and value of SHM 

7.1 Value of SHM 

An event tree model of a structure (e.g. the beam of a bridge) with or without monitoring is 
presented in Figure 3. For the time being, it is assumed that the structure returns to its original 
state after repair. This assumption makes it convenient to calculate the probabilities of occurrence 
of each branch in the event tree; for details refer to section 3.2.  
 
As illustrated previously in Figure 1, the implementation of SHM can provide more information of 
the structure which would lead to a significant change of inspection/maintenance planning and as a 
result, the TLCC. Before making the decision of whether or not to implementing a certain SHM 
system, a prior estimation of the value of information that can be provided by the SHM is essential. 
Since the structural state and monitoring results are both uncertain, the decision problem can be 
described in terms of the following notations and events in a pre-posterior framework for Bayesian 
decision theory as developed in Raiffa and Schlaifer (1961): 
 
Θ: Time-dependent structural state with prior pdf Θ . Its time-dependent evolution is described 

by the joint model introduction in section 2;  
 
Z: The inspection outcome which has an influence on the probability of detection and repair;  
 
e: The inspection decision (i.e. inspection date, type of inspection, etc.). Inspection decision e 
varies according to the value of threshold h(t)T which is applied ;  
 
a: The maintenance action determined by the decision rule d and as a function of the inspection 
outcome Z and inspection decision e, i.e. a=d(e, z); 
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X: The monitoring result variable which leads to an updating of the probability distribution of Θ to 

Θ . We denote M0 for the case without taking SHM, and M1 for undertaking a certain monitoring 

strategy, as in the first node illustrated in Figure 3.  
 
Analysis is then carried out for determining the expected TLCC (cf. infra).  

 
 

Figure 3 Decision tree model for inspection/repair planning with and without monitoring 
 

For M0, the true structural state Θ is described by a prior probability density function Θ  and the 

expected TLCC is:  

Θ Θ

Θ

 
(4) 

For M1, the analysis is in principle identical, except that new monitoring information is available and 
taken into account. Based on the additional monitoring information, the prior pdf Θ  is updated 

to the posterior Θ  leading to a change of the inspection and repair decisions. The expected 

TLCC is thus: 

Θ Θ

Θ

 

 

(5) 

In addition, based on the prior pdf of Θ and the monitoring strategy M, the probability of occurrence 
of the possible monitoring outcomes can be evaluated as: 
 

X Θ  (6) 

 
The monitoring data enable to determine the equivalent stress ranges, of course, 
accounting for the measurement uncertainties.The value of information obtained by one monitoring 
outcome X, denoted as Condition Value of Sample Information (CVSI), has therefore the value  
 

Θ Θ  (7) 

  

The expected value of this SHM strategies can, therefore, be determined by the Expected Value of 
Sample Information (EVSI) as 

X X Θ Θ X  
(8) 

By assigning different pdfs for the monitoring result X, different monitoring strategies can be 
defined and the optimal decision on the monitoring strategy is the one with maximum value 
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In order to be able to evaluate the expected TLCC (see section 3.5), we need first to calculate the 
probabilities related to the decision tree based on a risk acceptance criterion hmax and decision 
rules.  

7.2 Probabilities related to the decision tree  

For a certain monitoring strategy (M0 or M1), calculation of the expected TLCC is needed based on 
the branches after the first node. This requires again pre-posterior analysis since the inspection 
results are also uncertain prior to being carried out. Hazard (failure rate) based inspection planning 
is applied in this contribution. The probability of occurrence of the branches after the first node in 
the decision tree is calculated based on the probabilities of detection of a certain deterioration state 

and probabilities of taking repair action  given a detected deterioration state with no repair 

before t as in equation (9) and (10) in accordance with Frangopol et al. (1997), Kim et al. (2011) 
and Barone (2013) .  
  

Φ  

 

(9) 

 

 

(10) 

in which Φ = standard Gaussian cumulative distribution function.  and  are damage 
intensity at time t and maximum acceptable damage intensity; δ0.5 and σ0.5 are parameters 
describing the quality of the inspection procedure, representing the damage intensity 

corresponding to a 50% probability of damage detection, and its standard deviation;  is a model 
parameter reflecting the attitude of the decision maker towards a repair action. 
 
The branch of a failure event in the event tree requires the calculation of a failure probability  
during time t given no repair before t. It can be calculated as soon as the hazard function is 
determined.  

7.3 Risk acceptance criterion  

The risk acceptance criterion used in this contribution is denoted by hmax, the maximum acceptable 
annual failure rate. It is related to the failure consequences of a structure and can be obtained from 
the Probabilistic Model Code, JCSS (2002), where the target reliability index as a function of the 
consequence of failure and the risk reduction cost is defined. For existing structures of which the 
relative cost for increasing the safety is generally large, the acceptance criterion can be lowered as 

also suggested in JCSS (2002), i.e. for large consequences,

 for moderate consequences and for minor consequences, where 

 is the maximum acceptable annual probability of failure, Straub (2004). Of course decision 

makers can decide to use other values than the latter ones. It can be noticed from the definition of 
the hazard function in section 2 that the value of hazard h(t) in this paper corresponds to the 
annual probability of failure . Similarly, the maximum acceptable hazard value hmax can be 

specified in accordance with .  

7.4 Decision rule 

As the probabilities of detecting a deterioration state and the corresponding repair are both function 
of the structural state which is a time dependent variable described by PI(t), the planning of 
inspection times will have a large influence on the probability of occurrences of each branch in the 
decision tree. The threshold approach introduced in Straub (2006) is thereby implemented in such 
a way that inspection is carried out in the year before the threshold of failure rate h(t)T is crossed. 
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The h(t)T is a decision parameter that can be changed as long as it remains lower than . For 
decisions on repair, it requires the specification of the parameters used in equation (10) : 
 

 
 for inspection (11) 

  for repair 

    

In which  and  are values assigned by the decision makers. The decision for repair needs a 
direct indication of unacceptable defect sizes for a specific spot, (e.g. max pit depth of a rebar or 
maximum allowable crack depth). After an inspection was carried out, the repair decision is made 
based on the inpection result, detected structural states and repair attitude of the decision maker.  

7.5 Expected TLCC 

The expect TLCC for an inspection plan is calculated based on the occurrence of each branch in 
the decision tree as well as the cost of the basic events, i.e. the expected cost of failure, 
inspection, repair and monitoring if undertaken. The expected cost for each branch is calculated as 
the sum of all the events that happened in the branch. The expected TLCC for this inspection plan 
then takes weighted sums of the costs for all branches based on the occurrence probability of each 
branch introduced in section 3.2.  
 
Specifically, the expected TLCC of a structural component during its design service life tSL consists 
of the cost of failure, inspection, repair and monitoring (if undertaken): 
 

 
 

(12) 

Where  is the expected TLCC, and , , , 

 are the expected cost of failure, inspection, repair and monitoring respectively, 
which can be calculated in accordance with Straub (2004) and Faber and Thöns (2014). 
 

 

 

 
 

(13) 

 
 

 

 

 
 

(14) 

 
 

 

 
 

 
 

(15) 

 
(16) 

Where is the time for the nth planned inspection,  is the discount rate. 

 are the expected cost of failure, cost of inspection, cost of repair and cost of 

monitoring consisting of system investment , installation  and operation  respectively,  

Faber and Thöns (2014). For details, we refer to Straub (2004) and Thöns (2012).  
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It should be mentioned that with a different value of h(t)T, the planning of inspection times changes, 
leading to a change of the expect TLCC. Similarly, given a certain h(t)T, the expected TLCC can 
also be different for M0 and M1, since the planned inspection times are likely to be different in case 
the monitoring outcome leads to a different joint model. Therefore, the maximum VoSHM can be 
found by changing h(t)T, considering the risk acceptance criterion, to maximize the EVSI. The 
evaluation process is illustrated in the following flow chart in Figure 4: 
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Figure 4. Flow chart for evaluating the value of SHM 

 

8 Conclusive remarks 

The paper proposes a framework for evaluating the VoSHM based on pre-posterior analysis 
incorporating Bayesian decision theory. A joint modeling of a time dependent structural 
performance function and a hazard function is first introduced and the derived hazard function is 
used as a tool for determining optimal inspection/repair plans for deteriorating structures. 
Consequently, also the expected TLCC is calculated. The effects of uncertainties related to the 
quality of monitoring outcomes are considered and incorporated in the joint model which leads to 
an updated the inspection/repair planning and expected TLCC. The difference between the prior 
and posterior expected TLCC is defined as the VoSHM and its dependency on the failure rate 
threshold is explained. Further research on the parameters estimation of joint modeling and 
identification of an optimal SHM strategy among others are needed. 
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11 Appendix  

For the joint model, we assume a reference dataset consisting of N samples each with its 
performance trajectory and time-to-event information available. The time-to-event (or time to 
failure) is defined by the structural performance crossing a limit value. Let Ti denote the observed 
lifetime for the ith individual, i =1, 2, ..., N, which is taken as the minimum of the true failure time 

and the censoring time Ci (e.g. didn’t fail up to the time when the experiment ends), that is, Ti 

=min( , Ci). We define a censoring indicator, δi = I( ≤ Ci), which takes the value 1 when  ≤ Ci, 

and 0 otherwise. Therefore, the time to failure dataset consists of the pairs {(Ti, δi), i = 1, 2, ..., N}. 
Furthermore, we let yi denotes the time dependent PI data for the ith subject, with element yil 
denoting the value of the PI outcome observed at time point til, l = 1, . . . , ni.  
 
One way to estimate the joint model’s parameters is based on the Markov Chain Monte Carlo 
algorithm (MCMC). The likelihood of the model is derived under the assumption that the vector of 
time-independent random effects b, included in m(t) accounts for all interdependencies between 
the observed outcomes. That is, given the random effects, the longitudinal and survival process 
are assumed independent, and in addition, the longitudinal responses of each subject are 
assumed independent. Formally we have:  



 
 
 
 

 
COST TU1402: Proceedings of the 1

st
 Workshop                                       36 

 
 

 
 

 
A(1) 

 A(2) 

In which the parameters included in the two processes of the joint model is denoted by θ =[ α1, α2, 
α3, σ1, σ2, D), where D is the parameter characterizing the random effects b. Thus, the likelihood 
contribution for the ith subject conditional on the parameters and random effects takes the form: 
 

 

 

 

 
 
 
 
 

A(3) 

 
The parameter vector θ is divided into 3 parts, where  denotes the parameters for the failure time 
outcome,  the parameters for the longitudinal outcomes, and  the unique parameters of the 

variance of the random effects, and p(·) denotes an appropriate probability density function, which 

is a normal distribution for , and for  derived from the hazard function.  

 
Therefore, the likelihood function for the complete data Da=(y, T, ) is given by: 
 

 
A(4) 

 
Bayesian specification of the model needs to consider prior distributions for all the unknown 
parameters θ. In the situation where no prior information is available, non-informative prior 
distributions for the parameters should be adopted. Assuming elements of the parameter vector to 
be independent, we can take some traditional prior distributions. In particular, for the regression 
parameters of the survival model α1, α2 and α3 we use independent univariate normal priors. For 
σ1, σ2 and D we take inverse-Gamma priors. In general, we denote the prior distribution of the 
parameters as . 
 
Based on the prior distribution and likelihood function, the joint posterior density of parameters θ, 

, is given by combining A(4) and :  

 
A(5) 

MCMC methods such as the Gibbs sampler and Metropolis–Hastings algorithm can be used to 
draw samples, from which characteristics of the marginal posterior distribution of interest can be 
inferred. As a result of the simulation, the parameters of θ are estimated and the hazard function is 
determined.  
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