
Jabba: Hybrid Error Correction for Long
Sequencing Reads using Maximal Exact Matches

Giles Miclotte, Mahdi Heydari, Piet Demeester,
Pieter Audenaert, and Jan Fostier?

Ghent University - iMinds, Department of Information Technology,
Internet Based Communication Networks and Services (IBCN)

Gaston Crommenlaan 8 (bus 201), B-9050 Gent, Belgium
{giles.miclotte,mahdi.heydari,piet.demeester,

pieter.audenaert,jan.fostier}@intec.ugent.be

www.ibcn.intec.ugent.be

Abstract. Third generation sequencing platforms produce longer reads
with higher error rates than second generation sequencing technologies.
While the improved read length can provide useful information for down-
stream analysis, underlying algorithms are challenged by the high error
rate. Error correction methods in which accurate short reads are used to
correct noisy long reads appear to be attractive to generate high-quality
long reads. Methods that align short reads to long reads do not optimally
use the information contained in the second generation data, and suffer
from large runtimes. Recently, a new hybrid error correcting method has
been proposed, where the second generation data is first assembled into a
de Bruijn graph, on which the long reads are then aligned. In this context
we present Jabba, a hybrid method to correct long third generation reads
by mapping them on a corrected de Bruijn graph that was constructed
from second generation data. Unique to our method is that this mapping
is constructed with a seed and extend methodology, using maximal exact
matches as seeds. In addition to benchmark results, certain theoretical
results concerning the possibilities and limitations of the use of maximal
exact matches in the context of third generation reads are presented.

Keywords: sequence analysis, error correction, de Bruijn graph, maxi-
mal exact matches

1 Introduction

The accurate determination of the DNA sequence of an organism, i.e., establish-
ing the precise order of the nucleotides A, C, G and T in a DNA molecule, is a
fundamental and challenging problem in biology. Essentially this process consists
of two steps: (i) sequencing the DNA by means of a chemical process, resulting in
a large number of reads and (ii) genome assembly, where the reads are processed
to reconstruct the complete DNA sequence. Every sequencing technology results

? To whom correspondence should be addressed.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55826435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 G. Miclotte et al.

in reads that contain errors, with error profiles varying greatly between plat-
forms. There is a clear distinction between second generation reads and third
generation reads, where the latter are characterized by vastly improved read
lengths albeit with much higher error rates. Processing such reads usually in-
volves mapping them to other sequences, either by aligning the reads to each
other to establish potential overlap, or by mapping them to a reference genome.
Errors in the reads introduce noise to these alignments, leading to weaker align-
ments than the corresponding error-free reads would have. Lower rated align-
ments may then be discarded for further analysis, potentially discarding crucial
information. This can be especially problematic when dealing with low quality
reads in a region with low coverage. To deal with this sequencing noise, error
correction methods can be applied. By correcting the errors in the reads, the
optimal alignments can be more accurately identified and more appropriately
rated, leading to better downstream analysis, as shown in e.g. [1] for de novo
assembly.
In Jabba third generation reads are aligned to a de Bruijn graph built from
second generation reads, using a seed-and-extend approach. The resulting paths
in the graph dictate the read correction. The seeds are maximal exact matches
(MEM) between an individual read and a node of the graph. The usage of MEMs
as seeds has several advantages over k-mers. Firstly, the seeds can be longer. Even
though long seed occur only rarely, few longer seed can be sufficient to have a
rough estimate of how the read should be aligned to the graph. Shorter seeds
can then be used to further refine this. Secondly, given an enhanced suffix array,
seeds of arbitrary lengths can be sought without the need to rebuild this index.
This is not the case for a k-mer index (e.g. a hash table). In case different values
for k are to be used during the alignment process, different k-mer indexes need
to be build. Finally the MEMs are not required to have the same size as the
nodes. Since the high error rates of the third generation reads are the limiting
factor on the minimal seed size, this allows the use of a larger value of k to build
the de Bruijn graph, resulting in a less complex de Bruijn graph.

1.1 Related work

For second generation sequencing we mainly consider Illumina. The different
Illumina technologies produce many short (100-250 nucleotides) reads with a
high accuracy (<2% errors, mainly substitutions) with high throughput and at
a low financial cost. New algorithms, based on de Bruijn graphs, were specifi-
cally developed to efficiently deal with the assembly of huge amounts of second
generation sequencing data. Overlap between short reads is then established in
linear time between reads that share a k-mer, i.e., a substring of length k.

Algorithms to correct second generation reads have been classified [2] into
three types. The k-mer spectrum-based methods rely on coverage thresholds to
determine whether a k-mer represents part of the actual DNA sequence, these
methods have been used for second generation error correction [3, 4], but also in
de novo genome assembly algorithms [5] and hybrid error correction methods [6].



Jabba: Hybrid Error Correction for Long Sequencing Reads 3

The suffix tree-based methods [7, 8] generalize the k-spectrum methods by han-
dling multiple k values at once, while the multiple sequence alignment-based
methods [9] correct the reads after aligning several similar reads.

Recently, third generation sequencing technologies (Pacific Biosciences, 2013;
Oxford Nano Technologies, 2014) began to emerge. Pacific Biosciences SMRT se-
quencing results in much longer reads (avg. >5000 nucleotides), albeit with sig-
nificantly higher error rates (15%, mostly insertions and deletions and to a lesser
extent substitutions). Despite this high error rate, the errors are uniformly dis-
tributed over the read, leading to a very high consensus accuracy if the coverage
is sufficiently high and overlap between the reads is correctly established. Com-
puting such overlap can not be efficiently achieved by means of a de Bruijn graph,
because the high error rate leads to an overabundance of incorrect k-mers. Other
efficient methods have been developed to compute pairwise alignments between
third generation reads [10, 11].However, the coverage required for high accuracy
consensus-based correction can still lead to a prohibitively high financial cost for
many sequencing projects.

From this perspective, the use of hybrid error correction methods appears to
be an attractive alternative. The goal is to correct long third generation reads
using the more accurate sequence information contained in second generation
reads. The idea is that a sufficient coverage in (cheap) second generation data
might be sufficient to correct the long reads, regardless of the coverage of third
generation data. This may result in a reduced financial cost for sequencing as low
coverage third generation data might suffice. It should be noted that lower third
generation coverage can directly result in lower assembly quality, no matter the
quality of the reads, because of the uneven length distribution of the reads [12].
However, hybrid error correction methods also appear attractive from a compu-
tational point of view as they avoid pairwise comparisons between long reads,
thus circumventing the quadratic computational complexity. The first type of
hybrid error correction methods [13–15] rely on mapping short reads to long
reads, and then calling the consensus sequence from this multiple alignment.
However, such methods map short reads individually and do not exploit the
context in which the short read occurs. A newer hybrid error correction method,
LoRDEC [6], first constructs a de Bruijn graph from the short reads and then
maps the long reads on this graph. The sequence implied by the path in the
graph to which the long read aligns then represents the corrected read. The
use of a de Bruijn graph has the advantage that overlap between short reads
is established prior to mapping them to long reads. In [6], it was shown that
LoRDEC achieves similar accuracy as other error correction methods, but with
significantly improved runtimes.

2 Methods

2.1 Overview

In this work, we further build upon the idea of using a de Bruijn graph for
hybrid error correction of long reads. Specifically, our main goal is the use of



4 G. Miclotte et al.

Illumina data to correct Pacific Biosciences SMRT reads. A de Bruijn graph is
then constructed from Illumina data and corrected using standard procedures
(see further). Subsequently, long reads are aligned along a certain path in the
graph in order to correct them. Whereas LoRDEC relies on shared k-mers to
align long reads to a de Bruijn graph, we explore the idea of using maximal exact
matches (MEMs). MEMs are exact matches between two sequences that can
not be extended in either direction, this as opposed to common k-mers, which
are exact matches of a fixed length k, which may or may not be extendable.
Alignment methods based on maximal exact matches have been developed for
read mapping [16–18]. It is shown in [16] that these methods can be more efficient
than alignment techniques based on k-mers and Burrows-Wheeler transforms [19,
20]. From the definition of a MEM, it is clear that every MEM of size l ≥ k can
be represented as a consecutive sequence of k-mers, and vice versa. As such,
finding and storing MEMs can be achieved in a more efficient manner, since
MEMs can compactly represent multiple k-mers. The remainder of this section
is dedicated to a more in-depth description of all steps involved (Fig. 1).

Fig. 1. To align a read to the de Bruijn graph, a seed-and-extend algorithm is used.
First MEMs are found between the read and the graph, then a path in the graph is
found between these seeds, creating the final alignment.

2.2 Correction of the de Bruijn graph

Errors in short reads lead to erroneous paths in the de Bruijn graph. The errors
in the graph can be corrected as described in [5]. Two types of errors can be
discerned based on their position in the read. An error that is located at least
k − 1 nucleotides away from both ends of the read will lead to k erroneous k-
mers. In turn, this leads to the formation of a ‘bubble’, i.e. a path of length
k that runs parallel to the real path. Assuming a sufficiently low error rate
and a high coverage the correct path will typically have a higher coverage than
the parallel erroneous paths, and the graph can be corrected by removing the
erroneous path. On the other hand, errors positioned close to the ends of the
read lead to the creation of less than k erroneous k-mers, thus forming ‘dead
ends’ (tips) in the de Bruijn graph. These can be identified and removed based



Jabba: Hybrid Error Correction for Long Sequencing Reads 5

on topology and coverage considerations. Errors in the reads may also result
in erroneous connections between unrelated parts of the graph, and because of
coverage biases certain paths could be absent or underrepresented in the graph.
This vastly complicates the graph correction procedure and erroneous paths may
remain present in the final corrected graph.

2.3 Aligning reads to a de Bruijn graph

To align the reads to the graph a seed-and-extend approach is applied. By prop-
erly indexing the graph the seeds can be found in O(m) time, where m is the
size of the read that is being mapped.

Finding Maximal Exact Matches To rapidly find MEMs between the nodes
of the graph and the long reads, essaMEM [21] is used. These MEMs will be
used as seeds for our alignment. By concatenating the sequences of every node
and their reverse complement, a sequence is constructed. From this sequence
an enhanced sparse suffix array is built by essaMEM. The sparseness factor of
the index sharply reduces the space requirement for the index, compared to
traditional suffix trees or enhanced suffix arrays, but this comes at the cost of a
small increase in runtime. The required space could be even further reduced by
only indexing the nodes and not their reverse complements. This would however
double the search time, since the reverse complements of the reads then also
have to be matched.

Chaining Seeds To chain the seeds several passes over the read are performed.
In each iteration the algorithm considers every region of the read that has not yet
been corrected. For every such region separately, the largest seeds are considered.
From these seeds it is determined to which nodes the current region of the read
could map. For each such node the list of all seeds between this node and the
current region of the read is considered, and an optimal placement of these seeds
is decided, removing the ones that do not fit. Seeds are compatible if the distance
between the two seeds on the read is contained in an interval determined by the
estimated error rates and the distance of the seeds in the node.

Generally larger MEMs are less likely to be noise than shorter seeds, since
the number of all k-mers increases exponentially if k increases and the number of
k-mers contained in a sequence is similar to the size of the sequence, independent
of k. There can still be noisy long seeds, especially when the genome contains
imperfect repeats. In this case, the correct seeds can usually be recognized amidst
the noisy seeds by considering the context. Firstly, the local context is considered,
by comparing the seeds in the same node. This way seeds that occur in the same
order in a node and in the read can be chained together to form inexact matches.
Secondly, if the situation is still ambiguous, the global context is considered, by
comparing the alignments in the neighborhood of the ambiguous region. If this
neighborhood has not yet been chained in previous passes, the chaining of the
current region is delayed to the next pass.



6 G. Miclotte et al.

After obtaining the presumed layout of the seeds, the quality of the alignment
is checked. Large gaps or a relatively large amount of mismatches may indicate
incorrect alignments. The following cases are filtered:

1. Local mappings that are not super maximal, i.e., local mappings that are on
the read contained in a larger local mapping.

2. Local mappings that cover less than 20% of a node. The absence of any
seeds in the rest of the node makes it less likely that this is actually a
correct mapping.

3. Local mappings to nodes of size smaller than half of the largest local map-
ping. It is preferred to extend from those larger local mappings, since those
are more reliable.

These filters are linearly relaxed with each pass of the algorithm, in the last itera-
tion all local mappings are considered. After the local alignments are computed
for the current pass, the next phase begins: chaining the alignments between
different nodes by following unique paths in the graph. During this phase every
local alignment is extended by considering the possible paths in the graphs. Both
directions of the alignments are extended in the same manner, as follows:

1. If there is a unique edge, this edge must be correct and the local alignment
is extended along this edge.

2. If there are several edges, the lengths of the end nodes are considered. Since
the extension takes place between two regions of the read, certain estimates
can be made for the maximal distance between the alignments, edges that
are too long are then not considered.

3. If at any point there are no suitable edges to extend along, a mistake was
made at some point. Either the graph is incorrect or the original local chain-
ing was erroneous. In either case the erroneous region is reprocessed in a new
local chaining step.

In the rest of this section the distance between corrected regions on a read is de-
noted as n and the estimated insertion and deletion rates of the data are denoted
as i and d. After the unique-extension step, the resulting chains may overlap in
the graph, in which case they can be linked together to make one consecutive
path. Overlapping chains are however not a sufficient condition for linking, the
sequences represented by the path and the read need to be compared. If the
sequence on the path is smaller than (1 + 2i)−1n, the shortest cycle at the com-
mon point is considered. If this shortest cycle can not adequately fill the gap,
then the paths are not joined and the gap is left for the next pass. To determine
whether the shortest cycle is a good fit a local alignment is performed between
the sequence dictated by the path and the read, using a Smith-Waterman ap-
proach [22]. Likewise, if the resulting chains do not meet, the shortest path
between both end points is considered. If this shortest path can not adequately
fill the gap, the gap is again left for the next iteration.
By building from seeds and only using shortest path algorithms to chain the
nodes, computationally expensive path searching can be avoided, however, this



Jabba: Hybrid Error Correction for Long Sequencing Reads 7

can not be avoided indefinitely. After the final iteration a bounded path search
is performed between consecutive corrected regions, in an attempt to fill the
remaining gaps. This search looks for paths that contain a sequence with length
bounded by the interval [(1 + 2i)−1n, (1 + 2d)n].

Read Ends The parts of the read beyond the extremal seeds, i.e., the ends of the
read, are not corrected. Such a correction can be trivial, if the end is completely
contained within the same node as the extremal seed, or in the unique path
flowing from that node. In this case correcting the end would not provide any
information about the genome that is not already contained in the graph. The
correction can also be far from trivial, if there are several possible paths. In
this case the correction of the end requires aligning the possible paths against
the read. This can be done by looking for seeds with a lower threshold, or by
performing direct global alignments with a dynamic programming approach.
This is not done in Jabba, since it is a relatively expensive operation for a small
gain.

Settings Jabba takes several parameters that can affect the results. Most im-
portantly the minimal length l of MEMs for the initial search can be specified,
the standard value is l = 20, but this should be chosen based on the discussion
in section 3.1 in function of the data. The maximal number p of iterations of
the algorithm can be specified, the standard value is p = 5. A third parameter
allows Jabba to trim the reads beyond the extremal corrected positions.

3 Results concerning Maximal Exact Matches

In this section the occurrence of maximal exact matches in reads is investigated.
Insertions and deletions have a different effect on the size of maximal exact
matches than substitutions. A substitution error puts a firm stop to any running
exact matches, while an insertion or deletion may allow for the exact match
to continue, effectively looking like an error at a further point in the read. In
the following this difference is ignored and all errors are treated like they were
substitutions. Because of this, the size of MEMs is slightly underestimated for
sequences that contain insertions or deletions. It is also assumed that errors
are uniformly distributed in the sequences, as is the case for Pacific Biosciences
SMRT reads.

3.1 Coverage by exact regions

In this section the expected ratio of a long read that should be covered by MEMs
larger than a given size is explored, under the assumption that the reference con-
tains no errors. Variations on this topic have been explored in [23–25]. In the
following n is the length of the read, p is the error-rate and m the threshold
for maximal exact matches. An exact region of size k on a read is defined as k



8 G. Miclotte et al.

correct consecutive bases in that read. The coverage by exact regions is the ratio
of bases that are contained in exact regions.
The expected number of exact regions (including those of length 0) is the ex-
pected number of errors, i.e., np. The expected coverage of a read by exact
regions of size k is then the product of (i) the coverage of the read by one exact
region of size k: k/n, (ii) the expected number of exact regions: np, and (iii) the
probability that an exact region has size k: (1− p)kp. This results in:

k(1− p)kp2 . (1)

Summing (1) over all k ≥ m gives the expected coverage of the read by exact
regions of size k ≥ m:

∞∑
k=m

k(1− p)kp2 = (1− p)−
m−1∑
k=0

k(1− p)kp2 , (2)

the right hand side provides a finite formula to compute this expected coverage.
Figure 2 shows the expected coverage by exact regions larger than m, for error-
rate p = 15% and p = 35%. The maximum 1 − p is obtained at {0, 1} since
every correct base is contained in an exact region of size ≥ 1. It can be seen that
increasing p leads to a steeper descent near the inflection point. While it was a
priori clear that a lower error rate leads to larger exact regions, this also shows
that the equilibrium between a sufficient amount of seeds and a sufficiently large
minimal seed length, is less stable for higher error rates.

10 20 30 40 50

20%

40%

60%

80%

100%

Minimum size m

E
x
p

ec
te

d
co

v
er

a
g
e

10 20 30 40 50

20%

40%

60%

80%

100%

Minimum size m

E
x
p

ec
te

d
co

v
er

a
g
e

Fig. 2. Expected coverage by exact regions of size k ≥ m for reads of size 10000 with
15% errors (left) and 35% errors (right), expressed as percentages of the whole read as
a function of the minimal size of the exact regions.



Jabba: Hybrid Error Correction for Long Sequencing Reads 9

3.2 Occurrence of Exact Regions

The expected length of the longest exact region in a read of size n is denoted
by ERp(n). If np(1 − p)m ≥ 1 then at least one exact region of size k ≥ m is
expected in a read of size n, hence the expected length of the longest run can
be approximated by solving np(1− p)m = 1 for m:

ERp(n) ≈ − log1−p np. (3)

The distribution around this average can be approximated by the complement
of a Gumbel distribution with cumulative distribution function

F (x) = exp−(1− p)x+1; (4)

the probability that a read of length n will have an exact region of size k ≥ m
is then approximated by

P (n, p,m) = 1− F (m + ERp(n)) = 1− exp
(
−np(1− p)m+1

)
. (5)

These approximations are highly accurate when p and n are sufficiently large.
Figure 3 shows the ratio of reads of length n that are expected to have an exact
region of size m. For sufficiently large values of n, replacing n by n′ > n shifts the
graph to the right by a term log1−p n/n

′, replacing p by p′ < p shifts the graph
to the left and steepens the descent near the inflection point. This again shows
that larger error rates make the determination of a proper seed size threshold
less stable.

20 40 60 80 100

20%

40%

60%

80%

100%

Minimum size m

R
a
ti

o
o
f

re
a
d
s

20 40 60 80 100

20%

40%

60%

80%

100%

Minimum size m

R
a
ti

o
o
f

re
a
d
s

Fig. 3. Expected percentage of reads of size 10000 that contain at least one exact
region of size k ≥ m, for reads with 15% errors (left) and 35% errors (right).



10 G. Miclotte et al.

3.3 Applications

During the local chaining step from section 2.3 one can apply the results of
section 3.1 to decide whether a local mapping is plausible or not. For each
mapping the coverage by exact regions can easily be computed by counting seed
sizes. The resulting number can then be compared to the expected coverage
that can be obtained from section 3.1. If there is a significant deviation in either
direction, the local mapping gets a lower rating.
When computing mappings it is required to have at least 1 seed available, hence
the results from section 3.2 propose good upper bounds for the minimum length
of seeds, depending on the read size and error rates. To a certain extent this
result can also be used to estimate the probability of a read containing several
exact regions of a minimal size. If a read of size n contains a MEM of size
k ≥ m, then this MEM divides the read in two pieces, one of size n′ and the
other of (approx.) size n − n′. This approximation of the piece-sizes is made
since typically k is significantly smaller than n, and k is not known a priori. The
conditional probability of the read containing a second MEM of size larger than
m then becomes 1 − (1 − P (n′, p,m))(1 − P (n − n′, p,m)), with P as in (5).
Since n′ depends on the read, it is a priori not known and integrating over n′ is
required. The distribution of the size of n′ can be approximated by the uniform
distribution on {0, . . . , n}, and because of symmetry this leads to the following
estimate of the a priori probability of a read of size n containing at least 2 exact
regions with size larger than m:

P (n, p,m)
2

n

n/2∑
n′=0

(
1−

(
1− P (n′, p,m)

)(
1− P (n− n′, p,m)

))
. (6)

Equation (6) can in a similar fashion be extended to multiple seeds, possibly
of different minimal sizes. However one should be careful when using (6) and
other extensions of (5), since the approximation made by P (n, p,m) becomes
less accurate when n decreases.

4 Results

4.1 Data

Datasets were simulated from reference genomes of varying size, two bacterial
genomes: N. meningitidis and A. hydrophila; and one eukaryotic genome: D.
melanogaster (fruit fly). For all genomes tests are performed on a perfect de
Bruijn graph built from the reference genome. For the bacterial genomes short
reads are simulated from which additional de Bruijn graphs are built. Illumina
paired-end reads of length 100 were simulated with ART [26] with 100x coverage.
PacBio reads of average length 10000 were simulated with pbsim [27] and 10x
coverage, with 15% errors distributed as 60% insertions, 30% deletions and 10%
substitutions. Real Illumina and PacBio datasets were used for E. coli. For D.
melanogaster real PacBio data was mapped on the de Bruin graph built from
the reference genome. The sources of the data are specified in table 1.



Jabba: Hybrid Error Correction for Long Sequencing Reads 11

Table 1. The data sets and reference genomes. The D. melanogaster reference genome
can be accessed on http://www.fruitfly.org/sequence/release5genomic.shtml.

N. meningitidis Reference genome NC 003116.

A. hydrophila Reference genome NC 008570.

D. melanogaster Reference genome Release 5.
PacBio data from http://datasets.pacb.com.s3.amazonaws.com/
2014/Drosophila/reads/list.html.

E. coli Reference genome NC 000913.
Illumina data accession number ERR022075.
PacBio data from https://github.com/PacificBiosciences/DevNet/
wiki/E coli K12 MG1655 Hybrid Assembly

4.2 Parameters

LoRDEC was run with k = 19 for the bacterial data sets, as suggested in [6].
For the larger fruit fly the values k = 20 . . . 23 were tested. The best results were
obtained for k = 21 and these results have been included in the results tables.
For Jabba the de Bruijn graphs were built with k = 31 and the minimum MEM
size was 20.

4.3 Evaluation metrics

In [6] it is demonstrated that LoRDEC performs better than both LSC [13]
and PacBioToCA [14]. Hence, Jabba is only compared to LoRDEC. By using
simulated data, the corrected read can be aligned to the original sequence from
which the read was simulated. This way a multiple alignment of the original
read, the corrected read and the genomic region is created. In this alignment
each position is analyzed separately, in order to obtain a confusion matrix as
follows:

– True Positive, an erroneous position was corrected.
– False Positive, a new error was introduced at a correct position.
– True Negative, a correct position remains unchanged.
– False Negative, an erroneous position remains unchanged.

To interpret this confusion matrix the following statistics are computed:

– Sensitivity = TP/(TP + FN). This expresses the relative amount of errors
that were corrected.

– Specificity = TN/(TN +FP ). This expresses the relative amount of correct
positions that were recognized as such.

– Precision = TP/(TP + FP ). This expresses how reliable a correction is, if
one is made.

– Gain = (TP −FP )/(TP +FN). This expresses the quality of the corrected
reads compared to the original read.



12 G. Miclotte et al.

For real data the reads are aligned to the reference genome with BLASR [28]
and the identity of the mapping is computed. All experiments were run on dual-
socket octa-core Intel Xeon Sandy Bridge computing nodes at 2.6 GHz and
64 GB of memory. The runtimes and memory usage are measured using the
standard Linux time command. The runtime includes only the actual mapping
of long reads and does not include the generation and correction of the de Bruijn
graph.

Table 2. Results on simulated data for LoRDEC and Jabba. The subscript p indicates
the usage of a perfect de Bruijn graph built from the reference genome. The absence of
the subscript indicates the usage of a de Bruijn graph built from simulated short reads.
Both real time and CPU time are averages over all reads, with 16 threads in parallel.

Sensitivity Specificity Precision Gain Real Time CPU Time Memory

Neisseria meningitidis

LoRDEC 95.6 % 99.0 % 94.4 % 89.9 % 266.5 ms 1732.5 ms 63 MB

LoRDECp 98.7 % 99.3 % 96.0 % 94.6 % 141.7 ms 921.1 ms 58 MB

Jabba 92.3 % 99.1 % 94.4 % 86.9 % 126.1 ms 1596.5 ms 126 MB

Jabbap 92.3 % 99.1 % 94.5 % 87.0 % 125.0 ms 1583.3 ms 115 MB

Aeromonas hydrophila

LoRDEC 99.2 % 99.7 % 98.4 % 97.6 % 84.1 ms 1093.4 ms 75 MB

LoRDECp 99.8 % 99.9 % 99.1 % 99.0 % 70.5 ms 597.3 ms 46 MB

Jabba 95.7 % 99.4 % 96.4 % 92.1 % 180.0 ms 2315.2 ms 161 MB

Jabbap 95.3 % 99.4 % 96.1 % 91.4 % 178.5 ms 2311.3 ms 168 MB

Drosophila melanogaster

LoRDECp 91.6 % 98.5 % 91.1 % 82.7 % 435.1 ms 2828.6 ms 538 MB

Jabbap 93.9 % 99.2 % 95.3 % 89.3 % 246.4 ms 2285.7 ms 1181 MB

4.4 Evaluation

Table 2 shows the results for LoRDEC and Jabba as they were run on each of
the simulated data sets. The results on the bacterial genomes suggest that a
corrected de Bruijn graph yields comparable results to using a perfect de Bruijn
Graph based on a reference genome. For the bacteria, LoRDEC performs bet-
ter than Jabba, since the MEMs contain the same information as k-mers, this
is most likely due to shortcomings in the chaining algorithm in Jabba. A no-
ticeable drop in the performance of LoRDEC can be observed when using the
frequency-based de Bruijn graph compared to the perfect de Bruijn graph.
The performance of Jabba does not drop when moving from the bacterial genomes
to the fruit fly. On the other hand, our evaluation of LoRDEC shows that
LoRDEC obtains a lower gain for this larger genome, to the point where Jabba
outperforms it. It can be seen in table 2 that Jabba is slower than LoRDEC on
A. hydrophila, but faster on the other two genomes, and that Jabba consistently
requires 2 to 4 times more memory than LoRDEC.



Jabba: Hybrid Error Correction for Long Sequencing Reads 13

Table 3. Results on real data for LoRDEC and Jabba, as obtained by mapping the
reads to the reference genome.

Original LoRDEC LoRDEC Jabba Jabba
Identity Identity Gain Identity Gain

Escherichia coli 83.8 % 98.6 % 91.9 % 98.5 % 90.8 %

Drosophila melanogaster 86.7 % 96.6 % 74.3 % 98.0 % 85.3 %

The results for the real data can be found in table 3. The higher performance of
Jabba on D. melanogaster when compared to LoRDEC might be explained by
the use of MEMs. In LoRDEC the seed size and the k-mer size of the graph are
identical. Since the seed size must be kept relatively low as shown in section 3.2,
the de Bruijn graph has to be built with a small value of k, leading to a tangled
de Bruijn graph. This is expected to become more apparent for larger and more
complex genomes. When using MEMs however, the seed size and k-mer size are
independent of each other and optimal values of k can be chosen to construct
the de Bruijn graph.

Acknowledgments. The computational resources (Stevin Supercomputer In-
frastructure) and services used in this work were provided by the VSC (Flemish
Supercomputer Center), funded by Ghent University, the Hercules Foundation
and the Flemish Government – department EWI. We acknowledge the support
of Ghent University (Multidisciplinary Research Partnership “Bioinformatics:
From Nucleotides to Networks”).

References

1. Salzberg, S.L. et al.: GAGE: a critical evaluation of genome assemblies and assem-
bly algorithms. Genome Res., 22, 557–567 (2012)

2. Yang, X., Chockalingam, S.P., Aluru, S.: A survey of error-correction methods for
next-generation sequencing. Brief. Bioinform., 14(1), 56–66 (2013)

3. Kelley, D.R., Schatz, M.C., Salzberg, S.L.: Quake: quality-aware detection and
correction of sequencing errors. Genome Biol., 11:R116 (2010)

4. Greenfield, P. et al.: Blue: correcting sequencing errors using consensus and context.
Bioinformatics, 30(19), 2723–2732 (2014)

5. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using
de Bruijn graphs. Genome Res., 18, 821–829 (2008)

6. Salmela, L., Rivals, E.: LoRDEC: accurate and efficient long read error correction.
Bioinformatics, 30(24), 3506–3514 (2014)

7. Schröder, J. et al.: SHREC: a short-read error correction method. Bioinformatics,
25(17), 2157–2163 (2009)

8. Ilie, L., Fazayeli, F., Ilie, S.: HiTEC: accurate error correction in high-throughput
sequencing data. Bioinformatics, 27(3), 295–302 (2011)

9. Salmela, L., Schröder, J.: Correcting errors in short reads by multiple alignments.
Bioinformatics, 27(11), 1455–1461 (2011)

10. Myers, G.: Efficient local alignment discovery amongst noisy long reads. Algorithms
in Bioinformatics, LNCS, 8701, 52–67 (2014)



14 G. Miclotte et al.

11. Berlin, K. et al.: Assembling large genomes with single-molecule sequencing and
locality sensitive hashing. Nat. Biotech. 33, 623–630 (2015).

12. Boetzer, M., Pirovano, W.: SSPACE-LongRead: scaffolding bacterial draft genomes
using long read sequence information. BMC bioinform. 15(1), 211 (2014).

13. Au, K. F. et al.: Improving PacBio Long Read Accuracy by Short Read Alignment.
PLoS ONE 7(10), e46679 (2012)

14. Koren S. et al.: Hybrid error correction and de novo assembly of single-molecule
sequencing reads. Nat. Biotechnol. 30, 693–700 (2012)

15. Hackl, T. et al.: proovread: large-scale high-accuracy PacBio correction through
iterative short read consensus. Bioinformatics, 30(21), 3004–3011 (2014)

16. Liu, Y., Schmidt, B.: Long read alignment based on maximal exact match seeds.
Bioinformatics, 28(18), i318-i324 (2012)

17. Vyverman, M. et al.: A long fragment aligner called ALFALFA. BMC Bioinfor-
matics, 16, 159 (2015)

18. Li, H.: Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. arXiv:1303.3997 [q-bio.GN] (2013)

19. Li, H., Durbin, R.: Fast and accurate long-read alignment with Burrows-Wheeler
transform. Bioinformatics, 26(5), 589–595 (2009)

20. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat.
Methods, 9(4), 357–359 (2012)

21. Vyverman, M. et al.: essaMEM: finding maximal exact matches using enhanced
sparse suffix arrays. Bioinformatics 29(6), 802–804 (2013)

22. Zhao, M. et al.: SSW Library: An SIMD Smith-Waterman C/C++ Library for Use
in Genomic Applications. PLoS ONE, 8 (2013)

23. Arratia, R., Gordon, L., Waterman, M.S.: An extreme value theory for sequence
matching. The Annals of Statistics, 14(3), 971–993 (1986)

24. Gordon, L., Schilling, M. F., Waterman, M. S.: An extreme value theory for longest
head runs. Zeitschrift fur Wahrscheinlichkeitstheories verwandt Gebeite (Probabil-
ity Theory and Related Fields), 72, 279–287 (1986)

25. Schilling, M.F.: The Surprising Predictability of Long Runs, Math. Assoc. of Am.,
85(2), 141–149 (2012)

26. Huang, W. et al.: ART: a next-generation sequencing read simulator. Bioinformat-
ics, 28(4), 593–594 (2012)

27. Ono, Y., Asai, K., Hamada, M.: PBSIM: PacBio reads simulator–toward accurate
genome assembly. Bioinformatics, 29(1), 119–121 (2013)

28. Chaisson M.J., Tesler G.: Mapping single molecule sequencing reads using Basic
Local Alignment with Successive Refinement (BLASR): Theory and Application,
BMC Bioinformatics, 13238 (2012)


