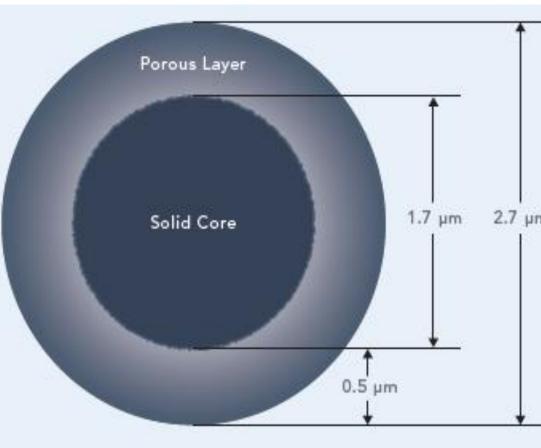


FACULTY OF PHARMACEUTICAL SCIENCES

Fused-core HPLC method development implemented in a short-term stability study of Triple IT solution

<u>Matthias D'Hondt¹, Elien Vangheluwe¹, Nadia Lemeire¹, Tiene Bauters², Brigitte Pelfrene², Johan Vandenbroucke²,</u>


Hugo Robays² and Bart De Spiegeleer^{1,*}

Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.

² Department of Pharmacy, Ghent University Hospital, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium.

* Corresponding author: bart.despiegeleer@ugent.be (O. Ref.: 2011-247b)

INTRODUCTION

For the majority of children with acute lymphoblastic leukemia (ALL), prophylactic treatment of the central nervous system consists in part of a triple intrathecal (Triple IT) therapy, *i.e.* a combination of cytarabine (CB), methotrexate (MTX) and methylprednisolone sodium succinate (MPSS). This combination product is prepared ex-tempore. However, no in-use shelf-

life under defined storage conditions has yet been established. During these stability studies, a large number of samples are generated, thus creating the need for a fast, accurate and selective analytical method. Newly developed fused-core HPLC stationary phases (HALO[®] columns) are suited for these high-throughput purposes. Due to their small particle size and unique particle technology, with 0.5 µm porous shell fused to a solid core particle, these columns allow fast and high performance separations. Subsequently, this new column technology was chosen for the development of a stabilityindicating HPLC method to be used during a short-term stability study of the Triple IT solution [1].

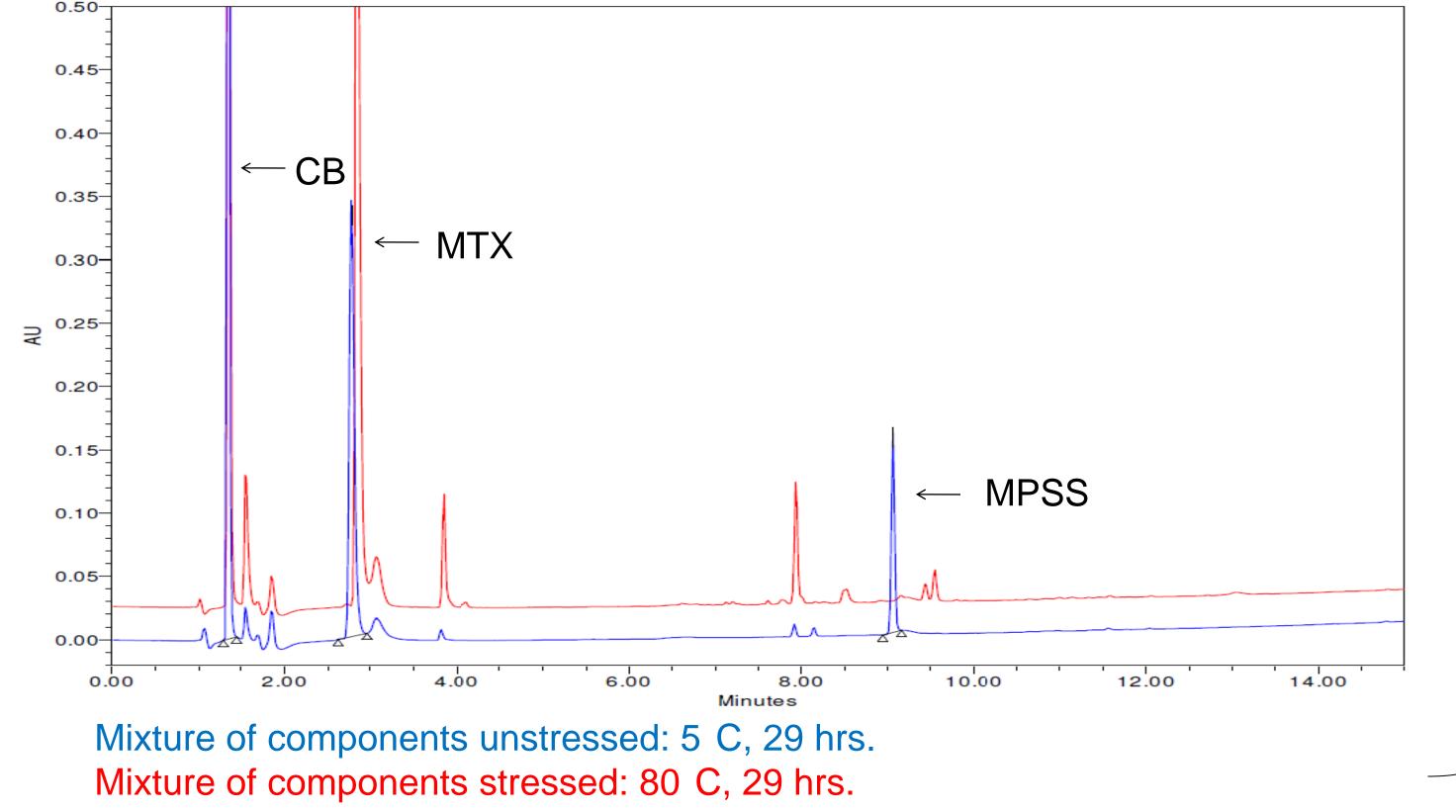
Objective \rightarrow (i) development of stability-indicating HPLC-method and (ii) method evaluation.

HPLC parameters:

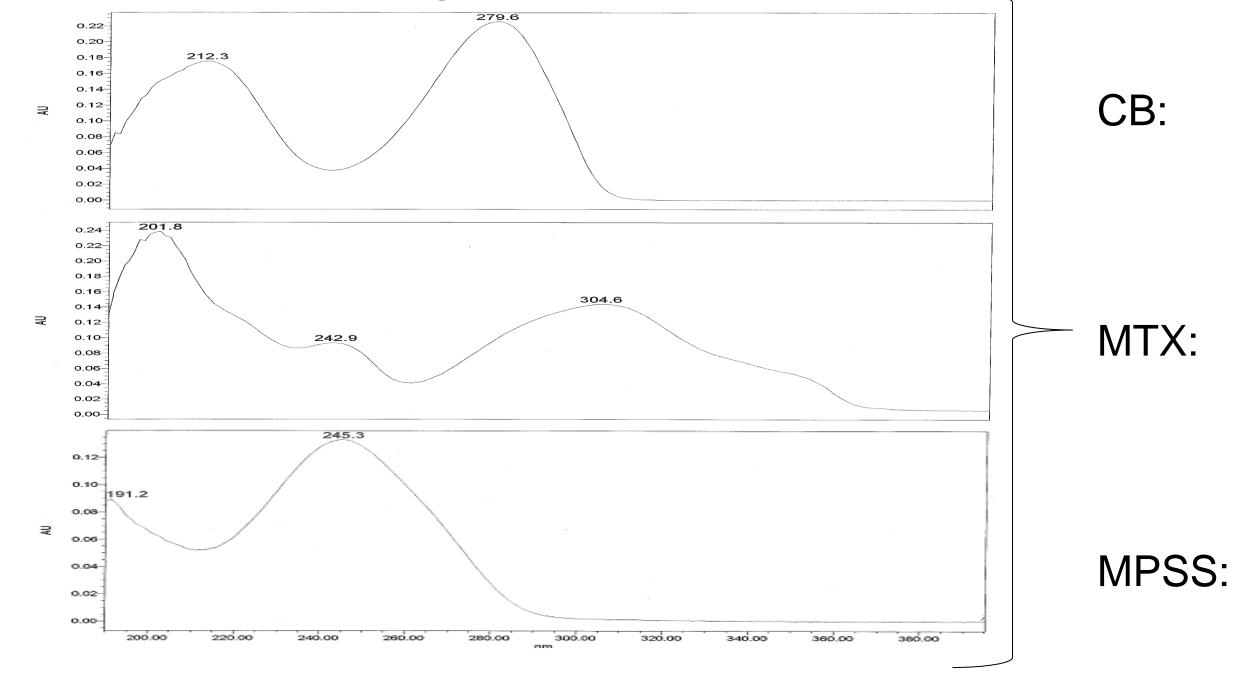
- Column: HALO C18 (4.6×150 mm, 2.7 µm) + guard
- Mobile phase A: 0.1% glacial acetic acid in H_2O
- Mobile phase B: 0.1% glacial acetic acid in ACN
- Column / sample compartment temp.: 30 C / 15 C
- Injection volume: 10 µl
- Detection: PDA 190-400 nm, detection @ 240 nm

Gradient program:									
#	Time (min.)	Flow rate (ml/min)	%A	%B	Remarks				
1	Different time intervals (5 to 30 min.) 3 min.	1	90	10	Analyzia				
2			10	90	Analysis				
3			90	10	Column rinsing + equilibration				
4	12 min.		90	10					

Solutions:


- Individual components unstressed Individual components stressed: (40 C and 80 C, up to 29 hrs.) • Mixture of components unstressed • Mixture of components stressed:
 - (40 C and 80 C, up to 29 hrs.)

RESULTS and DISCUSSION


EXPERIMENTAL

1. Gradient time interval: 15 min.

• Single HPLC method capable of separating the three

2. Detection wavelengths

structurally different Triple IT components.

• **Fast** separation (total run time = 30 min):

Reduction of solvent, time and hardware consumption

Sufficient resolution between individual components and

related degradation products.

Peak purity analyses suggests pure peaks:

(Triple IT components and related degradants)

3. Method evaluation

Parameter	СВ	MTX	MPSS
Linearity (R ² ; 80-100-120% l.c.)	1.0000	0.9992	1.0000

Repeatability (%RSD; 100% l.c.; n = 3)	0.464	1.352	0.155	
LoQ (% I.c.)	0.03	0.07	0.05	

CONCLUSIONS

280 nm

280 nm

240 nm

The development of a stability-indicating high-throughput HPLC method for three Triple IT components (CB, MTX and MPSS) was done using a fusedcore (HALO®) stationary phase.

- 15 min. gradient Method verification
- \rightarrow separation of individual components and related degradation products. \rightarrow HPLC method fit for use in a short-term Triple IT storage stability protocol.

REFERENCES

[1] M. D'Hondt, E. Vangheluwe, S. Van Dorpe, et al. Stability of *ex-tempore* prepared Triple intrathecal solution consisting of cytarabine, methotrexate and methylprednisolone sodium succinate. American Journal of Health-System Pharmacy, submitted for publication.