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Abstract—Deep neural networks are the state of the art
technique for a wide variety of classification problems. Although
deeper networks are able to make more accurate classifications,
the value brought by an additional hidden layer diminishes
rapidly. Even shallow networks are able to achieve relatively good
results on various classification problems. Only for a small subset
of the samples do the deeper layers make a significant difference.
We describe an architecture in which only the samples that can
not be classified with a sufficient confidence by a shallow network
have to be processed by the deeper layers. Instead of training a
network with one output layer at the end of the network, we train
several output layers, one for each hidden layer. When an output
layer is sufficiently confident in this result, we stop propagating at
this layer and the deeper layers need not be evaluated. The choice
of a threshold confidence value allows us to trade-off accuracy
and speed.
Applied in the Internet-of-things (IoT) context, this approach
makes it possible to distribute the layers of a neural network
between low powered devices and powerful servers in the cloud.
We only need the remote layers when the local layers are unable
to make an accurate classification. Such an architecture adds the
intelligence of a deep neural network to resource constrained
devices such as sensor nodes and various IoT devices.
We evaluated our approach on the MNIST and CIFAR10
datasets. On the MNIST dataset, we retain the same accuracy
at half the computational cost. On the more difficult CIFAR10
dataset we were able to obtain a relative speed-up of 33% at an
marginal increase in error rate from 15.3% to 15.8%.

I. INTRODUCTION

While extremely powerful, deep neural networks are also
resource demanding. At training time this problem is often
addressed by the use of a Graphics Processing Unit (GPU),
which are better suited for the calculations required when
training a neural network because of their parallel nature.
GPUs now make it possible to train networks that were
previously considered to be too difficult to train. Efficient GPU
implementations are often put forward as one of the main
reasons why deep neural networks have become so successful
[1].

Training the deep network is undoubtedly the most com-
putationally expensive task. But once trained, these networks
have to be deployed in real-world environments. Current
research directions indeed investigate the use of deep neural
networks in smartphones, sensor networks, robots, drones and
various IoT applications [2]. In these environments, consider-
ations of weight and size impose intrinsic resource limitations

on processor power and battery capacity. Although the training
step is the computationally most challenging task, the evalu-
ation of a trained network is also demanding, especially on
these constrained devices typical for IoT applications.

In this paper we propose a methodology of speeding up
the evaluation of a trained deep neural network. Using our
methodology, it is possible to train a deep neural network and
to use the trained layers as stages in a cascade. Each stage
is able to make more complex decisions but also requires
additional computing time. This makes it possible to trade-off
accuracy for speed. Every stage in the cascade is able to output
a confidence measure. When a certain threshold confidence
value is reached, no deeper layers need to be evaluated.

This approach makes it possible to distribute layers across
different devices. We can devise an architecture where a deep
neural network is distributed between a low power device such
as a small robot or sensor node and a high performance server
in the cloud. The network may even be too large to deploy
completely on the robot alone. When we evaluate all layers
of the network in the cloud, we introduce a costly latency
factor. Using the cascade architecture, we can evaluate the first
layers locally and in most cases obtain a sufficiently confident
result using only these layers. Only when the deeper layers are
needed, do we have to communicate with the server. Moreover,
when the server is not available, the robot is still able to work,
although the classifications will be less precise, they are still
useful in most cases.

Communicating with a distant server takes time so this
should only be done when absolutely necessary. An interesting
idea is to bring the cloud closer using Cloudlets [3] which
are local representations of the cloud. In essence they provide
content and/or processing power accessible via (wireless)
LAN. We could extend the previous setup for distributing
layers by evaluating intermediate layers on a cloudlet, possibly
shared with other robots in the same vicinity. Every stage
in the cascade adds captures additional complexity but also
introduces an additional latency.

An alternative use case would be to use the output of the
local layers to make urgent decisions. The remote layers could
give more detailed information afterwards but the details are
probably not required for split-second decisions.

An even more interesting case is the use of neuromorphic
hardware, computer chips that closely mimic the architecture
of the brain [4]. These chips require little power to run so they
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TABLE I: Results obtained on the MNIST dataset using feed-
forward networks with increasing depths

Network architecture Test error rate Reference
1-layer NN (no hidden layer) 12.00% LeCun et al. [5]
2-layer NN (1 hidden layer) 4.70% LeCun et al. [5]
3-layer NN (2 hidden layers) 3.05% LeCun et al. [5]
4-layer NN (3 hidden layers) 1.00% Salakhutdinov and Hinton [6]
6-layer NN (5 hidden layers) 0.35% Ciresan et al. [1]

are ideal to add intelligence to robots or sensor devices. Since
they are built with the specific purpose of running a neural
network, they are much faster than neural networks simulated
in software on general purpose hardware. However, these chips
typically contain only a relatively small amount of neurons
compared to software defined neural networks. An interesting
use case would be to equip a robot with such a chip on which
the first layer of the network would be evaluated. When the first
layer is unable to make a decision with sufficient confidence, a
second layer is necessary which could be implemented on the
microprocessor of the robot. The deeper layers of the network
are then evaluated on a cloudlet or a high performance server
in the cloud.

Distributing the layers between devices has an inherent
cost: the time needed to serialize and to transfer the data. We
focus on constrained devices that are unable to run the entire
network. Therefore communication with a cloud back-end is
inevitable in this case. Our topology tries to run a part of the
network locally. Only the samples that can not be classified
with a sufficient confidence have to be processed by the remote
system.

In the remainder of this paper we will describe the cascade
architecture in more details in section II, as well as the
training procedure in section III. Section IV shows the results
obtained on two well-known benchmark datasets: MNIST
and CIFAR10. Finally in Section V we propose an intuitive
technique to select appropriate threshold values, which allows
us to trade-off accuracy and speed.

II. ARCHITECTURE

A typical regular feed-forward neural network consists of
an input layer, an output layer and one or more hidden layers
in between. The hidden layers transform the output from the
previous layer to a more suitable representation for the next
layers. Each hidden layer extracts features from its input data
while the last layer is a classifier that generates the output (i.e.
it classifies the input as belonging to a certain class). Empirical
evidence shows that adding more hidden layers makes the
network more capable. Table I shows some results achieved
on the MNIST [7] dataset by a variety of neural networks
with increasing depths. The MNIST dataset consists of 28 by
28 pixel images which show a handwritten digit that need to
be classified as the corresponding digit.

The results displayed in table I support the hypothesis that
a deep network is able to achieve a higher accuracy than
a shallow network. Although single layer neural networks
are universal approximators (i.e. they can approximate any
continuous function from one finite dimensional space to
another with any desired degree of accuracy when a sufficient
amount of hidden neurons are available) [8], deep networks
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Fig. 1: General architecture of a cascade network

have proven to be much more useful in practice. This is mostly
because the deep networks are able to learn a hierarchy of
features which enables them to be more efficient in terms of
the number of neurons required.

The hypothesis of this paper is that, while deeper networks
are indeed able to achieve a higher accuracy, these extra hidden
layers are only required for a small subset of samples. The
majority of samples can be correctly classified using a shallow
network. Table I shows that a network with one hidden layer
is able to achieve a 4.7% error rate on the MNIST dataset.
This observation suggests that for 95.3% of the samples the
one layer network captures enough complexity to classify
the samples correctly. For these samples no additional layers
are necessary, they only make it more costly to evaluate the
network.

We propose an architecture where these redundant cal-
culations can be avoided. Instead of one output layer at the
end of the neural network, multiple output layers are trained,
one directly attached to the input layer and one after every
hidden layer. This makes it possible to stop propagating a
sample through the network after an arbitrary layer. To decide
at what depth to stop, we rely on the following property
of neural network classifiers: the output of a neural network
classifier is a good estimate of the posterior probabilities (i.e.
how confident is the network that this sample is a member
of this class)[9]. When the confidence exceeds a pre-defined
threshold, the output from this layer is used as the output of
the network. The remaining hidden layers do not have to be
evaluated.

Algorithm 1 describes the process. The network consists of
n hidden layers and n+1 output layers. The first output layer
is trained directly on the input data. The other output layers
are trained to classify the output after a hidden layer.



Algorithm 1 Propagating a sample through the network

1: procedure FPROP(x)
2: i← 0
3: y ← output layeri(x)
4: while confidence(y) < threshold and i < n do
5: x← hidden layeri(x)
6: i← i+ 1
7: y ← output layeri(x)

8: return y

III. TRAINING

Training the architecture described in the previous sections
consists of two separate stages: training the base network and
training the additional output layers. The base network consists
of the input layer, the hidden layers and the final output layer.
The base network is trained in the same way a neural network
is traditionally trained, without any special requirements. The
hidden layers can be fully connected layers but can also be
more complex layers such as convolutional [10] layers.

After the main network is trained, additional output layers
(softmax classifiers) can be trained directly on the input data
and after each hidden layer. All weights from the base network
are fixed and are not allowed to change. This allows the output
layers to be trained efficiently. We propagate the training
set data once through the network and record the neuron
activations. The output layer is then trained to classify the
saved activations. Note that at training time no confidence
measurements are used, every output layer is trained on the
complete training set.

This straight-forward approach to training the cascade al-
lows us to use existing tools to train the network. Additionally,
this makes it easy to use pre-trained models as the base
network. Only the extra output layers have to be trained which
can be done relatively fast.

IV. RESULTS

We experimented with two well known image classification
datasets: the MNIST [7] dataset of handwritten digits and the
CIFAR-10 [11] dataset containing 32 by 32 pixel color images
in ten classes. All experiments described in this paper were
performed using the pylearn2 framework [12]. Training was
done on an Nvidia GTX780 GPU. The evaluation was done
on an Intel Core i5-3340M CPU (2.70GHz).

A. MNIST

The MNIST dataset [7] mentioned before is arguably one
of the most common benchmark datasets for classification and
image recognition. It consists of a 60,000 sample training set
and a 10,000 sample test set. We trained the network shown in
Figure 2 to classify the MNIST digits. The network consists of
4 fully connected hidden layers with respectively 800, 1500,
1750 and 2000 neurons. The activations are Rectified Linear
Units (ReLU) [13]. We used elastic transformations [14] of
the original MNIST training set to generate additional training
samples. Dropout [15] allowed us to achieve a test error rate
of 0.64% on the base network.
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Fig. 2: 4 layer MNIST network

Once the base network is trained, we can train the ad-
ditional output layers. Training these extra layers is fast
compared to training the base network. While the training of
the base network takes several hours, training the additional
output layers takes only several minutes.

Table II shows the test error and the average time needed to
process a test sample for each output layer. While training was
done on a GPU, evaluations were performed on CPU as we
are mainly interested in applications with resource limitations
such as using the network on an IoT-device. All test samples
were presented one at a time to the network to simulate an
environment where the network has to continually process new
information in real-time.

Table II clearly shows that the extra hidden layers have a
positive effect on the accuracy, but come at a cost. The time
needed to propagate a sample through the four layer network
is over twice the time needed for the two layer network. These
extra two layers however only make a difference for 0.15% of
the samples.

We now use the base network and the extra output layers
from the previous sections to build a cascade network. The
decisive factor in the cascade is the choice of the threshold
value. This value allows a trade-off between accuracy and
speed. A low threshold will allow the network to return a
less confident result, most likely obtained by an early layer.
A high threshold requires a layer to be very confident before
returning its result. Table III and Figure 3 show the average
accuracy on the MNIST test set and the corresponding runtime
with a threshold ranging from 0.9 to 0.999999. We find that
a threshold of 0.999 allows for an test error rate of 0.64%,
which is the same as the error rate of the base network. Yet
the time needed to evaluate the samples is only half that of
the base network. The reduction in processing time outweighs
the overhead of the extra evaluation of output layers in each
step.

TABLE II: Accuracy and runtime at varying depths.

Number of hidden layers Test error rate
Average time needed to pro-
cess one test sample (ms)

0 7.61% 0.5
1 1.42% 0.9
2 0.79% 1.5
3 0.69% 2.6
4 0.64% 4.0
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Fig. 3: Error rate (left) and runtime (right) of the cascade using varying thresholds

TABLE III: Accuracy and runtime of the cascade using varying
thresholds.

Threshold Test error rate
Average time needed to pro-
cess one test sample (ms)

0.9 1.36% 0.8
0.99 0.74% 1.3
0.999 0.64% 2.0
0.9999 0.64% 2.9
0.999 99 0.64% 4.1
0.999 999 0.64% 4.9
1 0.64% 5.2

TABLE IV: Percentage of the test samples classified by each
layer (threshold = 0.999)

Layer Classes
0 1 2 3 4

0 35.92% 0.09% 21.90% 11.19% 9.78%
1 26.43% 25.55% 24.52% 43.76% 37.68%
2 23.47% 60.35% 27.91% 28.42% 33.60%
3 9.90% 8.11% 17.93% 10.50% 9.37%
4 4.29% 5.90% 7.75% 6.14% 9.57%

5 6 7 8 9
0 1.35% 19.94% 11.19% 4.11% 0.20%
1 52.24% 33.19% 39.01% 16.22% 4.46%
2 23.65% 29.44% 21.50% 51.44% 59.86%
3 12.33% 11.27% 15.47% 19.30% 23.89%
4 10.43% 6.16% 12.84% 8.93% 11.60%

Layer Total percentage of samples classified
0 11.48%
1 30.02%
2 36.39%
3 13.78%
4 8.33%

It is interesting to investigate what kinds of samples are
classified by each layer. Table IV shows for each class the
percentage of the samples of that class being classified by each
output layer. Some classes prove to be easier to classify than
others, such as the number zero: 35.92% of the samples that
represent a zero is classified by the first layer. Surprisingly, the
number one proves to be hard to classify, most likely because
there are different styles of handwritten ones and because a
vertical pen stroke is also a feature of other numbers such as
seven and four.

TABLE V: Typical images classified by different layers.

output
layer

Typical samples classified by this layer

0

1

2

3

4

We assumed that deeper layers are capable of classifying
harder samples. Table V shows some typical examples of the
images classified by each output layer. This table visually sup-
ports our assumption, with the easier samples being classified
by the first layers, while the harder samples are left for the
deeper layers.

B. CIFAR10

The results achieved on the MNIST dataset are promising
but the question remains whether these results generalize
to more complex datasets and network architectures. In this
section we evaluated our approach on the CIFAR10 [11]
dataset. The CIFAR10 dataset consists of 60,000 32 by 32
color images in ten classes.

We trained the architecture shown in figure 5 to obtain an
accuracy of 85% on the CIFAR10 dataset. The base network
consists of three convolutional layers and one fully connected
layer. The non-linearities are Rectified Linear Units (ReLU).
The convolutional layers all use max-pooling.

Table VI shows the error rate of the extra output layers.
We find similar results as before. Deeper networks are able
to make more accurate classifications but every layer incurs
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Fig. 4: Error rate (left) and runtime (right) of the cascade using varying threshold values
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Fig. 5: 4 layer CIFAR10 network

TABLE VI: Accuracy and runtime of the network at varying
depths.

Output
layer Test error rate

Average time needed to
process one test sample (ms)

0 63.27% 0.2
1 33.83% 3.0
2 28.56% 6.3
3 22.87% 8.2
4 15.33% 23.0

an additional computational cost. We again used these extra
trained output layers to build a cascade network. Table VII
and figure 4 show the error rate and the required runtime of
the cascade network using varying threshold values.

V. THRESHOLD SELECTION

The threshold selection is of course critical. A low thresh-
old allows the network to return a less confident result obtained
by an early layer. When a high threshold is used, most of
the results will come from a deeper layer. The accuracy will
be higher but so will be the computational cost. We obtained
promising results on the MNIST dataset with a single shared
threshold for every layer. In more complicated cases it would
be better to use different threshold values for each layer. This
can be done using a validation dataset, separate from the
training and test set, to evaluate different choices.

TABLE VII: Accuracy and runtime of the cascade using
varying thresholds.

Threshold Test error rate
Average time needed to
process one test sample (ms)

0.9 17.57% 11.2
0.99 15.6 % 16.8
0.999 15.39% 19.9
0.9999 15.33% 21.6
1 15.33% 24.8

Every output layer returns a probability distribution over
the different classes. We use the threshold to decide whether
to accept or to reject the classification with the corresponding
probability or confidence level. We define a false negative
as a correct answer with a confidence level smaller than the
threshold. A false positive is a wrongly classified sample with
a confidence level higher than the threshold. A false positive
directly affects the accuracy of the network: the network was
confident it had a good classification but it was wrong. On
the other hand, a false negative directly affects the runtime
of the network. The sample was correctly classified but it was
rejected so extra calculations by the deeper layers were needed.

The optimal threshold value depends on the relative im-
portance of accuracy and speed. It is therefore interesting to
investigate the number of false positive and false negative
samples for a certain layer as a function of the threshold value.
This allows us to see the impact of a varying threshold on both
metrics. Figure 6 shows these metrics for the first four output
layers of the CIFAR network. The threshold value of the last
output layer is implicitly set to zero. When no other layer is
able to give a confident result, the output of the last layer is
accepted, regardless of its confidence level.

When the threshold value is zero, all outputs are accepted.
The amount of false positives equals the error rate of the
layer and there are no false negatives. When the threshold is
one, no answers are accepted. There are no false positives and
the amount of false negatives equals the amount of correctly
classified samples. We try to minimize the threshold and the
amount of false negatives while keeping the amount of false
positives (the error rate) acceptable. Using this technique we
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Fig. 6: False positives (fp) and false negatives (fn) of the output layers using varying thresholds. The chosen thresholds are
shown by the vertical line.

decided on the threshold values 0.96, 0.99, 0.99, 0.97 (and 0).
These allow an error rate of 15.8% while keeping the average
time needed to process a sample limited to 15 ms.

These results are summarized in figure 7 which shows the
Receiver operating characteristic (ROC) curves for the differ-
ent output layers. An ROC curve is a plot of the True Positive
Rate (TPR) versus the False Positive Rate (FPR) for a certain
classifier. A single point represents a single measurement. The
curve is obtained by varying the threshold parameters. We
clearly see that the deeper layers are more accurate (they
are closer to the upper left corner which represents a perfect
classifier with a TPR of one and and FPR of zero).

VI. CONCLUSION AND FUTURE WORK

In the future we will most likely see more practical and
industrial applications of deep neural networks. While these
networks are now mostly confined to high performance GPU
servers, in the future they will need to run on low-end
hardware.

We present an architecture for a cascade of neural network
layers that allows us to stop the propagation of a sample to
the deeper layers of the network when a sufficiently confident
result is obtained. This is achieved by training an output
layer after the input layer and after every intermediate layer.
We interpret the output as confidence measures. When the
confidence after a layer is larger than a given threshold, the
output of that layer is used as the output of the network.

We evaluated our approach on two well-known benchmark
datasets: MNIST and CIFAR10. On the MNIST dataset, the
cascade network was able to achieve the same error rate as the
base network (0.64%) while the required runtime was only half
that of the base network. CIFAR10 represents a more difficult
task. We were able to obtain a relative speed-up of 33% at an
increase in error rate from 15.3% to 15.8%.

We provided an intuitive method to find suitable threshold
values. In future work, we will try to optimize the thresholds
or even the architecture of the network automatically given
a certain required accuracy or runtime. We will also further
investigate the possibility of distributing layers of a neural
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network over different devices.
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