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Abstract. In this talk the use of exponentially fitting techniques to solve, by means of explicit RK methods, stiff problems
is analyzed. The construction of explicit methods with a stability region adequate for problems in which the spectrum has a
gap is studied. The order stiff of the proposed methods is also considered, obtaining conditions that guarantee a prefixed stiff
order. Numerical experiments showing the performance of the methods are presented.
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INTRODUCTION

Let us consider a constant coefficient, stiff linear system

y′ = My (1)

with a spectrum spec(M) = {λ1, . . . ,λm}, Reλi ≤ 0. Let us suppose that we integrate this problem with a RK with
stability function R(z). If the matrix M can be diagonalized, M = PΛP−1, Λ = diag(λ1, . . . ,λm), the numerical solution
yn+1 = R(hM)yn satisfies

yn+1 = P diag(R(hλ1), . . . ,R(hλm)) P−1 yn.

According to this, to have stability the method must satisfy R(hλi)| ≤ 1 for all the eigenvalues, and for general stiff
spectrums A-stability is required and consequently, the RK method must be implicit.

For particular classes of stiff problems, however, there can be explicit methods that can be suitable if they have
a stability region adequate to the spectrum of the problem. For example, semidiscretization of parabolic PDEs are
known to have negative real spectrum and in this case Chebyshev RK methods [6] can be adequate. These methods are
explicit, have order one, and with s stages they have a stability interval [−β (s),0] with β (s) ≤ 2s2. A practical value
of this coefficient is β (s)' 0.653s2. Then, you can solve the stiff problem with an explicit RK method but at the price
of having low order and probably a large number of (explicit) stages. Thus, for example, if λ1 =−10000 and you want
to integrate this problem with a step size of h = 0.1, you would need at least s = 40 stages per step.

David Ketcheson [5] has shown that it is possible to develop explicit RK methods whose stability region fits to a
prefixed spectrum. In particular, he considered the case when the eigenvalues are located around a value λ1�−1 real
and the other eigenvalues are located near λ = 0, with moderate modulus. In other words, problems with gap in their
eigenvalue spectrum [2]. The methods obtained in this way have a fixed stability region, and therefore the stepsize h
must have a fixed value (or close to it) such that hλi remains in the stability region. If the stepsize must change, due to
the behaviour of other components (non stiff for example) of the problem, the method can become unstable.

In this talk, it is shown that the use of exponentially fitting techniques can be useful for certain classes of stiff
problems for which the eigenvalue spectrum is located around a few points of the complex plane, such as problems
with a gap in their eigenvalue spectrum.

EXPLICIT RK METHODS WITH STABILITY REGION WITH A GAP

Let us consider a stiff linear system (1) with λ1�−1 real and |λ j| moderate for j = 2, . . . ,m. Since the stiff character
of the solution is due to the component exp(λ1t), one can think about an exponentially fitted method for which this



component is integrated exactly. We can consider then a ν-EF method [3, 4] of order p with ν = hλ1 whose stability
function will have the form

R(z;ν) = a0(ν)+a1(ν)z+ · · ·+as(ν)zs (2)
where the coefficients a j(ν) are functions of the fitting parameter and tend to the coefficients of the underlying non-
fitted RK method when ν tends to zero. Obviously, R(ν ,ν) = exp(ν) for all step size h.

If we apply this method to the linear system (1),we will get

yn+1 = P diag(R(hλ1;ν), . . . ,R(hλm;ν)) P−1 yn

and the method will be stable whenever the stepsize h is taken small enough to have |R(hλ j;ν)| ≤ 1 for j = 2, . . . ,m.
What happens with the accuracy? The error in the numerical solution is determined by the differences R(hλ j;ν)−

exp(hλ j). By construction this error is zero for λ1, but for the other eigenvalues we can not guarantee that the error
is small for reasonably small step sizes. Note that R(z;ν) tends to the stability function of the underlying RK method
when ν → 0, and since the method has order p, the fitted method has also order p, but this is only valid for small
values of ν , and since |λ1| is very large, h mus be taken very small. In conclusion, with this method the problem can
be solved in a stable way for reasonable small step sizes, but to get small errors, we need again to take h in such a way
that |ν |= |hλ1|< 1 which requires very small values of h.

One can think about the possibility of having a ν-EF method such that a0(ν) = 1,a1(ν) = 1 for example, so that the
method behaves as a first order method for any value of the fitting parameter ν . Unfortunately, this is not possible for
EF-RK methods, but we can use the same techniques to obtain explicit RK methods that are able to integrate properly
the class of stiff problems we are considering. The idea is to build methods that are exact for the problem y′ = λ1y, but
not necessarily for any problem whose solution is eλ1t .

Let us start with a first order method. We are searching for a RK method whose stability function R(z;ν) has the
form (2) and has order one for any value of ν . It must satisfy

R(ν ;ν) = exp(ν), a0(ν) = 1, a1(ν) = 1.

Then, the coefficients of the method must be determined from the conditions

b(ν)T e = 1, b(ν)T c(ν) = a2(ν), . . . , b(ν)T A(ν)s−2c(ν) = as(ν) :

Let us for example search for a method with order 1 and two stages, s = 2. The stability function

R(z;ν) = 1+ z+a2(ν)z2

must satisfy R(ν ;ν) = exp(ν) for all ν which implies that

a2(ν) =
−1−ν + eν

ν2

The coefficients of the method must then satisfy

b1 +b2 = 1, b2c2 = a2(ν)

which gives

b1 =
1− eν +ν + c2ν2

c2ν2 , b2 =
−1−ν + eν

c2ν2

We have a one-parameter family of methods with Butcher tableau

0
c2 c2

1−eν+ν+c2ν2

c2ν2
−1−ν+eν

c2ν2

(3)

In Figure 1 we plot the values (x,ν), x real, where |R(x;ν)|= 1. We see that until ν '−7 the interval where there
is stability is connected, but for large values of ν there is stability for values of x in [−2,0] or around ν .

The stability region (that does not depend on the parameter c2, but it does depend on ν) of the above method is
plotted, for ν =−100, in Figure 2. The right picture shows the region near the origin, and the left one shows the region
around z = ν .

Other methods with higher order have been obtained following this approach. To this end, we have studied the stiff
order, obtaining the additional conditions that the coefficients of the methods must satisfy.
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FIGURE 1. Stability interval of the method versus the parameter ν
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FIGURE 2. Stability region of the method for ν =−100 around z = ν (left) and around z = 0 (right)

NUMERICAL EXPERIMENTS

To test the performance of the proposed technique we have integrated some initial value problems with the new
obtained methods. We consider here the results obtained with the following linear system whose matrix M has
eigenvalues λ1 = λ2 =−1000,λ3 =−1

y′ = M(y−ϕ(t))+ϕ ′(t), t ∈ [0,2]

M =

 −2099 −1299 −999
1099/3 −567 333
5195/3 1865 665


ϕ(t) = (sin(wt),cos(wt),sin(wt))T

y(0) = (0,1,0)T

We present here the results obtained with a fitted second order method that employs four stages (EF). We also present
the results with the well known method of order three of Bogacki and Shampine (BS), used in the code ODE23 in
Matlab.

We have used fixed step size h for h = 0.1,0.02,0.01, . . . ,0.001,0.0002. In Table 1 we collect the norm of the global
error provided at each integration with both methods. As it can be seen, the new method gives a numerical order of



TABLE 1. Performance of the new method (or-
der two) and BS (order three) with the stiff linear
system

Step size Steps Error EF Error BS

10−1 20 4×10−3 Unstable
2×10−2 100 1.5×10−4 Unstable

10−2 200 3.5×10−5 Unstable
2×10−3 1000 1.1×10−6 Unstable

10−3 2000 2.2×10−7 Unstable
2×10−4 20000 2.5×10−9 1.2×10−8

about 2 and present a stable behaviour for all the values of the step size. The standard explicit BS method is stable
only for h≤ 2×10−4, as was expected because its stability interval is [−2,0] and λ1 =−104.
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