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Abstract—We study differential signaling via a pair of
striplines in a substrate that is comprised of an epoxy/fiberglass
woven composite structure. The transmission characteristics,
which are deteriorated due to the presence of the fiber weave,
are analyzed via an efficient modeling technique for nonuniform
transmission lines. This technique is based on the solution of the
pertinent differential equations using a perturbation approach.
For a challenging application example, it is shown that the
unavoidable phase errors can be controlled by subdividing
electrically long lines into smaller pieces, as such increasing
accuracy whilst maintaining efficiency.
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I. INTRODUCTION

Nonuniform transmission lines (NUTLs) are found in var-
ious applications, such as filters, impedance transformers, etc.
The modeling of these interconnects has, however, always
been a challenging problem. Due to the varying per-unit-
length (p.u.l.) parameters along the NUTL, the differential
equations describing them cannot be solved analytically, except
for some very special cases. In [1], the authors of the present
contribution presented a two-step perturbation approach to
model single and differential pairs of NUTLs. The focus was
on the theoretical description of the technique and on demon-
strating its applicability and limitations. In this contribution,
however, we extend the perturbation technique [1] in order
to apply it to a very important, but challenging, application
example. Leveraging the novel perturbation technique, we
analyze differential signaling using a pair of striplines embed-
ded in a substrate that is comprised of an epoxy/fiberglass
woven composite structure [2], [3]. In such a commonly used
substrate, it is very likely that one trace of the differential
pair is located mainly in the epoxy resin with low dielectric
constant, while the other trace is located close to the glass
fiber with a high dielectric constant. As the two traces “see” a
different permittivity, a differential skew between the lines is
observed. This skew results in insertion loss suck-outs of the
transmitted (differential) signal. Additionally, the imbalance
leads to conversion from the differential mode to the common
mode [4]. All this may prohibit the use of these substrates at
very high frequencies, or differently put, it poses a limit on
the maximum (electrical) length of the lines.

II. PERTURBATION SOLUTION FOR A DIFFERENTIAL LINE
PAIR

We analyse nonuniform differential lines within the frame-
work of the quasi-TM approach and in the frequency domain
(with the ejωt dependency suppressed). Consider voltage and

current column vectors V = [V1 V2]
T and I = [I1 I2]

T ,
holding the two voltages and two currents along the lines. To
simplify the notations we work with 2× 2 complex p.u.l. in-
ductance L and capacitance C matrices, i.e. the p.u.l. resistance
R and conductance G are understood to be part of L and C

(L = L + R

jω
and C = C + G

jω
). Our starting point is the

well-known Telegrapher’s equations:

dV(z)

dz
= −jωL(z)I(z), (1)

dI(z)

dz
= −jωC(z)V(z), (2)

with z being the signal propagation direction. To perform a per-
turbation technique, the following expansions are introduced:

V(z) = Ṽ(z) + ∆V1(z) + ∆V2(z) + ...,

I(z) = Ĩ(z) + ∆I1(z) + ∆I2(z) + ...,

C(z) = C̃ +∆C(z),

L(z) = L̃+∆L(z). (3)

The leading terms of the series expansions (3), i.e. the voltage
Ṽ(z) and current Ĩ(z), are labeled as the unperturbed values.
The remaining terms are perturbations of order one, two, etc.
C(z) and L(z) in (3) are simply written as the sum of a
constant part and a place-dependent part. Here, C̃ and L̃ are
the unperturbed values. ∆C(z) and ∆L(z) are the variations
of the capacitance and inductance along the line which remain
after subtracting the constant martrices C̃ and L̃ from C(z) and
L(z) respectively. Remark that C̃ and L̃ are not necessarily the
mean values of C and L over the line. We only suppose that
∆C(z) and ∆L(z) are small enough with respect to C̃ and L̃.
The unperturbed matrices can be written as:

C̃ =

(

Ca −Cb

−Cb Ca

)

L̃ =

(

La Lb

Lb La

)

. (4)

Consequently, the unperturbed solution consists of an even and
an odd mode contribution, i.e.:

Ṽ1(z) = [Ṽe(z) + Ṽo(z)]/2,

Ṽ2(z) = [Ṽe(z)− Ṽo(z)]/2,

Ĩ1(z) = [Ĩe(z) + Ĩo(z)]/2,

Ĩ2(z) = [Ĩe(z)− Ĩo(z)]/2. (5)
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Using (5), the unperturbed differential equations for the even
and odd mode are easily found to be

dṼe(z)

dz
= −jω(La + Lb)Ĩe(z),

dĨe(z)

dz
= −jω(Ca − Cb)Ṽe(z),

dṼo(z)

dz
= −jω(La − Lb)Ĩo(z),

dĨo(z)

dz
= −jω(Ca + Cb)Ṽo(z). (6)

Hence, the modal voltages become:

Ṽe = (A1e
−jkez +B1e

+jkez),

Ṽo = (A2e
−jkoz +B2e

+jkoz). (7)

Even and odd mode wave numbers ke and ko are given by:

ke
ω

=
√

(La + Lb)(Ca − Cb),
ko
ω

=
√

(La − Lb)(Ca + Cb).

(8)

The corresponding modal currents are

Ĩe = (Aee
−jkez −Bee

+jkez)/Ze,

Ĩo = (Aoe
−jkoz −Boe

+jkoz)/Zo, (9)

with the even and odd mode impedances given by

Ze =

√

La + Lb

Ca − Cb

, Zo =

√

La − Lb

Ca + Cb

. (10)

The unknown coefficients Ae, Ao, Be and Bo are determined
by enforcing the boundary conditions at z = 0 and z = l
in terms of even and odd mode voltages and currents (see [1]
for detailed expressions for these boundary conditions). Before
turning to the first-order perturbation, let us take a closer look
at ∆C and ∆L. ∆C can be written as

∆C =

(

∆Ca1 −∆Cb

−∆Cb ∆Ca2

)

. (11)

As C̃+∆C must have all the properties of a proper capacitance
matrix in each point along the line pair, it can be asserted that
the above matrix is symmetric but the entries of the matrix can
either be positive or negative. It is useful to rewrite (11) as:

∆C =

(

∆Ca1+∆Ca2

2
−∆Cb

−∆Cb
∆Ca1+∆Ca2

2

)

+

(

∆Ca1−∆Ca2

2
0

0 −∆Ca1−∆Ca2

2

)

(12)

and

∆L =

(

∆La1+∆La2

2
∆Lb

∆Lb
∆La1+∆La2

2

)

+

(

∆La1−∆La2

2
0

0 −∆La1−∆La2

2

)

. (13)

With (12) and (13), the differential equations for the even and
odd mode first-order perturbation, become
d∆V1e

dz
= −jω(La + Lb)∆I1e − jω(la + lb)Ĩe − jωlĨo,

d∆I1e
dz

= −jω(Ca − Cb)∆V1e − jω(ca − cb)Ṽe − jωcṼo,

d∆V1o

dz
= −jω(La − Lb)∆I1o − jω(la − lb)Ĩo − jωlĨe,

d∆I1o
dz

= −jω(Ca + Cb)∆V1o − jω(ca + cb)Ṽo − jωcṼe,

(14)

with

ca =
∆Ca1 +∆Ca2

2
, cb = ∆Cb, c =

∆Ca1 −∆Ca2

2

la =
∆La1 +∆La2

2
, lb = ∆Lb, l =

∆La1 −∆La2

2
(15)

In (14) we have a separate set of equations for the two modes:
the even mode comes with the (Ca − Cb, La + Lb) p.u.l. set;
the odd mode with the (Ca + Cb, La − Lb) p.u.l. set. These
equations still looks like Telegrapher’s equations, but now,
with additional distributed source terms. The source terms are
responsible for mode coupling. By rewriting ∆C and ∆L as
in (12) and (13), it becomes clear which part of the variation
of the capacitance and inductance along the line is responsible
for perturbation with and without mode coupling. The solution
of (14) can be derived with standard mathematical techniques,
as described in [1] for the single line case, but now for even-
and odd-mode voltages and currents.
Following the same procedure as just outlined above, a second
perturbation step may now be introduced, yielding equations
similar to (14). As shown in [1], this second perturbation leads
to a substantial gain in accuracy.

III. FIBER WEAVE APPLICATION EXAMPLE

A. Description of the example

To demonstrate our technique, consider the transmission
of a differential signal over two copper (σ = 5.8 · 107 S/m)
stripline tracks embedded in a substrate. This substrate is
nonhomogeneous due to the presence of fiber weave, as
detailed below. The stripline pair is depicted in Fig. 1. The
conductor thickness is 35 µm. The tracks are 180 µm wide
with a distance of 630 µm separating them. The distance
between top and bottom plate is 420 µm. These dimensions
are such that at 10 GHz, a single line has an impedance of
50 Ω when a homogeneous background medium with εr = 3.4
is considered. However, here we consider a type 1080 fiber
weave substrate, the top view of which is depicted in Fig. 2. To
clearly illustrate the effect of fiber weave, we have opted to put
the left line (line 1) on top of a glass bundle while the right line
(line 2) mainly “sees” epoxy prepreg. Consequently, the tracks
— which are running in the warp direction — are embedded
in a periodically changing background medium. To model
this background medium we consider two different cross-
sections, indicated as cross-sections a and b in Fig. 2. These
two cross-sections and all relevant dimensions are detailed in
Figs. 3 and 4 respectively. The dielectric constant and the loss
tangent of the glass and the epoxy prepreg are described by
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Fig. 1. Geometry of the differential stripline pair.
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Fig. 2. Top view of the positioning of the lines w.r.t. the fiber weave.

a Debye model. For the glass, Fig. 5 depicts the real part of
the relative dielectric constant, i.e. ε′r, and the loss tangent,
tan δ, as a function of frequency. At 1 GHz, ε′r = 6 and
tan δ = 0.015. For the epoxy a similar model is used with
the same loss tangent but with ε′r = 3 at 1 GHz. The RLGC-
parameters in each cross-section are modeled using an integral
equation for the equivalent polarization charges and for the
equivalent differential surface currents [5].
In the propagation direction z, the stripline pair is now modeled
as the concatenation of alternating sections a and b, i.e.
a− b−a− b− . . . Section a has a length of 171 µm; section b
has a length of 253 µm. In this contribution we investigate such
a line with a total length of 25.4 cm = 10′′, i.e. sections a
and b are alternately repeated 600 times.

B. Numerical results

Such a model, where the p.u.l. parameters vary in a
piecewise constant manner, allows using the chain matrix
approach [6] as a reference technique. In this approach, the
chain matrices of sections a and b are computed and the overall
result is obtained by alternately concatenating the sections, i.e.
by multiplication of the 2× 600 = 1200 chain matrices.

171 m

530 m

370 m

265 m

735 m

735 m

56.75 m

glass

  

735 m

36.75 m

prepreg

Fig. 3. Detail of cross-section a as defined in Fig. 2.
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Fig. 4. Detail of cross-section b as defined in Fig. 2.
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Fig. 5. Variation of the real part of the relative dielectric permittivity (left)
and the loss tangent (right) of the fiber weave glass as a function of frequency.

In contrast to the chain matrix approach, the perturba-
tion technique proposed in this contribution can also handle
continuously varying p.u.l. parameters. Due care has to be
taken, however, to ensure a high precision for electrically
(very) long lines. Indeed, as reported in [1], when the line
becomes electrically long, say about five to ten wavelengths,
phase errors start to accumulate. Unfortunately, the fiber weave
effect as described in the introduction, is best visible for
very long lines, such as the one we analyze here. (Indeed,
assuming an average ǫr of 3.4, a line length of 10′′ corresponds
to approximately 80 wavelengths at 50 GHz!) To improve
the accuracy of the method at very high frequencies, we
need to subdivide the long line into shorter sections, model
these sections separately with the perturbation technique and
concatenate the models. Nonetheless, the number of sections
may remain limited, making the perturbation technique still
much faster than the reference chain matrix technique, as
shown below.

First, we focus on the accuracy of the perturbation
technique by presenting mixed-mode S-parameters w.r.t. 50 Ω
reference impedances [4]. In particular, we study the
magnitude of the differential transmission coefficient Sdd21

and the differential-to-common-mode conversion Scd21 in
the frequency range from DC to 50 GHz, as shown in
Figs. 6(a) and (b). To perform the perturbation analysis
up to 50 GHz, the line was subdivided into 20 sections.
As can be seen, the results of the perturbation approach
are very accurate in comparison to the reference technique.
To assess the influence of the fiber weave, the results for a
uniform interconnect with constant (unperturbed) p.u.l. C- and
L-matrices as specified in (4), are also shown. It is clear that,
next to mode conversion, the presence of fiber weave leads
to insertion loss suck-outs. Additionally, Fig. 7 is shown to
demonstrate the evolution of the accuracy of the perturbation
technique when we vary the number of concatenated sections.
When modeling the entire line of 10′′ as one section, the
perturbation technique captures the correct behavior accurately
up to 5 GHz (ca. 8 wavelengths). Modeling five sections of
2′′ each, allows to improve the results up to the first insertion
loss suck-out peak at ca. 13 GHz. A section of 1′′ can be
accurately modeled up to 35 GHz and to obtain accurate
results up to 50 GHz, 20 sections are needed, as was already
presented in Fig. 6(a).
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Fig. 6. (a) Differential mode transmission coefficient and (b) forward differential-to-common mode conversion of the pair of coupled lines embedded in the
fiber weave substrate. For the perturbation technique, the line was divided into 20 sections that were modeled separately and then concatenated. The chain
matrix approach relies on a concatenation of all 1200 sections. To illustrate the fiber weave effect, the differential mode transmission coefficient for a uniform
interconnect is also shown.
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Fig. 7. Differential mode transmission coefficient of the entire line obtained
with the perturbation technique when subdividing the line into a varying
number of sections.

TABLE I. EFFICIENCY OF THE PERTURBATION TECHNIQUE.
THE CPU TIME NEEDED WITH THE REFERENCE APPROACH IS 156.3 S.

Number of CPU Speed-up
sections time factor

1 10.6 s 14.7
5 15.8 s 9.9
10 22.8 s 6.9
20 35.6 s 4.4

Second, to demonstrate the efficiency of our novel tech-
nique, we consider the computation time of the code in Mat-
lab R2009a. All calculations were performed on a computer
with an Intel(R) Core(TM) Quad CPU Q9650 and 8 GB of
installed memory (RAM) for 201 frequency samples (linearly
spaced between DC and 50 GHz). Table I shows the compu-
tation time of the perturbation method for a varying number
of sections. The speed-up factor is calculated w.r.t. the CPU
time of 156.3 s needed by the reference technique. As can be
seen, even when subdividing the line into 20 sections, we still
obtain a speed-up factor of 4.4.

IV. CONCLUSION

A perturbation technique to model NUTLs, in particular
differential lines embedded in a substrate composed of woven
glass fibers, was presented. The fiber weave effect causes a
differential skew between the two traces, leading to insertion
loss suck-outs and mode conversion. By subdividing electri-
cally very long lines into a limited number of shorter sections
of about 5 to 10 wavelengths, these fiber weave effects are
precisely captured by the perturbation technique. Compared
to a standard chain matrix approach, excellent accuracy and
improved efficiency was obtained. Additionally, it is worth
mentioning that the reference chain matrix approach does not
allow the modeling of NUTLs with continuously varying p.u.l.
parameters. Such NUTLs will however be further investigated,
leveraging the novel perturbation technique.
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