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ABSTRACT

When performing image analysis, one of the most critical steps is the selection of appropriate techniques. A
huge amount of features can be extracted from several techniques and the selection is commonly performed
based on expert knowledge. In this paper we present the theory of experimental designs as a tool for an
objective selection of techniques in image analysis domain. We present a study case for evaluating appearance
retention in textile floor coverings using texture features. The use of experimental design theory permitted to
select an optimal set of techniques for describing the texture changes due to degradation.
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1. INTRODUCTION

One of the most critical steps in image analysis is the selection of the relevant features according to the goal
of interest. The variety of techniques available to extract characteristics from images as well as the different
processes involved before interpretation may result in a high amount of data to be analysed.

Evaluation of image algorithms performance is traditionally based on human expert by visually comparing
side by side the results.1, 2 In this type of comparisons, the performance of image operators are correlated
with the preferences of the observer, resulting in a subjective evaluation (Researcher bias).3 Besides, particular
applications require sophisticated algorithms that are commonly evaluated on few types of images, resulting in
less generic algorithms.4 Furthermore, dependences among techniques, processes and types of images among
other factors are commonly not evaluated, decreasing reliability of findings and inferences in the evaluation of
image algorithms performance.

Reliable findings and inferences can be obtained analysing quantitative and objective metrics through statis-
tical tests.4 Statistical tests permits to verify whether a scientific assumption is false. Commonly, experiments
are conducted to refute a general assumption called the null hypothesis. The contrary statement to the null
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hypothesis is called the alternative hypothesis. An statistical hypothesis test compares both hypothesis based
on experimental results.

Planning phases in advance to optimize findings while reduce the development time and overall costs in
processes can be conducted combining statistical tests based on experimental design theory.5, 6 Experimental
designs have been included in many industrial applications to increase the quality of goods for international
competition. The main advantage of this type of evaluation is the identification of dependences between
the different elements in a study for detecting optimal combinations. The evaluation is based on identifying
characteristics in the application that allow a reliable evaluation of the performance of all elements.

In image processing applications, statistical test have been conducted to improve the efficiency in evaluating
differences among algorithms performance.7–9 Studies include evaluations of the test abilities for rejecting null
hypothesis when false and identification of specific differences between pairs of algorithms.10, 11 Few studies
have been conducted using current computational tools for statistical analysis.12 Recently, studies include
experimental designs.1 Most of these investigations are focused on the applications rather than on explaining
the statistical procedures.

This paper presents the experimental design theory applied for evaluating appearance retention in textile
floor coverings using texture features. The main concepts are discussed in detail for using it in other image
applications.

Assessment of appearance retention in textile floor coverings specifies the duration of the products.13, 14

Appearance retention is certified following tests based on simulating traffic exposure by degrading (accelerating
the wear) the surfaces of textile floor coverings samples using mechanical devices.15 Changes in appearance of
the degraded samples are currently evaluated subjectively by human inspectors. Therefore, manufacturers are
seeking for more objective mechanisms.

With this goal in mind we digitize the 3D structure of textile floor covering surfaces into images, called range
images, in which the pixels contain information of depth instead of colours, permitting to evaluate structural
changes while being less affected by colour and lighting changes than intensity images.16

The experimental design in this study is conducted to evaluate the performance of a predefined set of texture
analysis techniques applied on range images of different types of textile floor covering. Due to the nature of the
evaluated textures, different types of textile floor coverings are better described at different scales. Therefore,
the study requires to identify the scales at which the techniques perform better for each of the evaluated
samples.

For reliable inferences, dependences among techniques, textile floor covering types and image scales are
evaluated. The best combination is chosen by statistically analysing characteristics from the relation between
the texture features and the transitional degrees of texture.

The paper is organized as follows, in Section 2 we describe the elements considered in this study. Then,
in Section 3.1 an exploratory analysis is conducted to identify appropriate characteristics for evaluating the
performance of the techniques. The characteristics are established from the relation between the texture fea-
tures and the transitional degrees of texture. Subsequently, response variables are design to quantify these
characteristics in Section 3.2. Then, experiments are conducted in Section 3.3 following experimental design
models. Afterwards, response variables are compared conducting statistical tests in Section 3.5. Then, in-
ferences and results are clearly stated and communicated by interpreting the probability results in Section 4.
Finally, conclusions are drawn in Section 5.



2. DEFINING ELEMENTS OF THE EXPERIMENT

The first step in designing a statistical experiment is to limit the elements, called factors, to be evaluated. The
factors are divided into primary factors, which are the main focus of the investigation, and nuisance factors,
which are factors that may affect the measured results but are not of primary interest to the investigator. The
possible options within a factor are called levels. A particular combination of levels of different factors is called
a treatment.

In this approach, one is interested in selecting from a set of texture features, those that are optimal for
describing texture changes on textile floor coverings due to degradation. The texture features are computed
using texture techniques that are applied at different image scales. The factors of this experiment are established
in terms of technique, texture types and scale resolutions with the techniques being the main factor of interest.
In the followings the descriptions of the factors and corresponding levels as well as the image features to be
used in this study are given.

2.1 Techniques

We have recently shown that algorithms based on Local Binary Pattern (LBP) techniques are appropriate for
quantifying the texture appearance changes resulting from different exposure times of accelerated degradation.17

Analysis in different scales is achieved by considering equidistant points on a concentric circle around each pixel
in an image while varying the radius of the circle and the number of the points. LBP techniques characterize
local textures in images with code numbers assigned to each pixel.18 A code number represents the surrounding
local texture described with a binary representation, which is constructed from boolean comparisons of intensity
values between the pixel and a set of points around it. The binary representation are obtained by comparing
each of the points in the circular neighbourhood with the central pixel as follows:

sn =

{
1, (In > Ic)
0, otherwise

, ∀n = 1, . . . , N (1)

The basic LBP code number is computed as follows:

LBP(r,N) =

N∑
n=1

sn (2)

with r being the radius of the circle and N the number of points on the neighbourhood.

Pixels in which the intensity changes in the neighbourhoods lead to invariant versions of binary representa-
tions are associated with the same code numbers. Particularly, we have proposed an LBP technique extension
based on mirror, complement and rotational symmetries, called the LBPSym technique, which have shown
to be superior than previous similar techniques in terms of texture accuracy and texture discriminance when
used on the Brodatz database.19 The Brodatz texture database is the most common data set to test texture
classification and texture recognition algorithms in the computer vision community, becoming the standard to
evaluate the performance of new algorithms based on texture analysis.20

In this study we evaluate the performance of the LBPSym technique against some variations resulting from
including features of other proposed LBP extensions, which are listed below.

1. The LBP with threshold technique.21 This technique includes a threshold value (ε) to make the LBP
technique more robust against negligible changes in pixel values. The boolean comparisons are performed
as follows:



sn =

{
1, (In − Ic) > ε
0, otherwise

(3)

2. The LBP with modified census transform technique.22 This technique computes the boolean comparisons
using the average of the intensity values on the neighbourhood instead of the intensity value of the center
pixel as follows:

sn =

{
1, (In − μ) > ε
0, otherwise

(4)

with

μ =
1

9
×
(

8∑
n=1

In + Ic

)
(5)

Table 1: LBPSym variations
A. Census transform (CT) type CT Modified CT

B. Threshold 0 0.05 0.1 0 0.05 0.1

2.2 Texture types

We selected a set of degraded textile floor covering samples exhibiting four different types of construction. This
allows to evaluate the performance of the algorithms for generic purposes. The algorithms are applied on range
images obtained from samples of textile floor coverings that have been degraded following the EN1471:1996
European standard.13 The range images are obtained using our own scanner specifically designed for textile
floor coverings.16

Each pixel in a range image represents the depth of the surface in an area of 0.24 mm by 0.24 mm. The
surface of the samples are subjected to different levels of accelerated wear by using a Vetterman tester.15 We use
textile floor covering samples that exhibit nine transitional changes in texture appearance by being subjected
to different degrees of surface degradation. The degrees on surface degradation are specified by numbers called
Appearance Retention (AR) grades, varying from 1 to 5 with steps of half point. An AR grade of 1 represents a
severe change whereas an AR grade 5 represents an original sample not subjected to degradation. A complete
set (1-5 AR grades) of samples from the same textile floor covering type is called an AR reference.

2.3 Scale Resolutions

Degradation of different references is not optimally represented using the same imaging parameters since the
area of the pile yarns tufts in textile floor covering samples depends on the AR reference type. Therefore, it is
necessary to identify the best spatial resolution scale that optimally stresses the surface changes for each AR
reference. We perform this analysis by keeping the LBP parameters fixed while resizing the images. Images are
evaluated at spatial resolution scales within the range from 0.6 to 1 with intervals of 0.1. Scale factor smaller
than 0.6 are not considered because the details of the texture surface are vanished at those scales.17



2.4 Image features

The set of image features to be evaluated results from applying the several treatments on the images. In this
study we compute image features based on texture to quantify the degree of texture change in a textile floor
covering sample.

The difference between the degraded and its corresponding original texture is quantified by comparing the
frequency of appearance of the LBP code numbers between images of both textures. We use a symmetrized
adaptation of the Kullback-Leibler divergence, commonly used to measure the difference between two probabil-
ity distributions.23 The frequencies of occurrence of the code numbers are first accumulated into one histogram
per image, with each bin in an histograms representing a code number. Then both histograms are normalized
and their difference is computed as follows:

κ =

2∑
h=1

N∑
j=1

H(h, j) logH(h, j)−
N∑
j=1

Hp(j) logHp(j) (6)

where h = 1 or h = 2 represents the histograms, j is the code number index, Hp(j) =

2∑
h=1

H(h, j) and N is

the total number of code numbers.

We compute 18 κ-values for each one of the combinations: technique T on an image at a scale S of sample
with an AR grade G from an AR reference R.

3. TECHNIQUES PERFORMANCE EVALUATION

In the followings, we discuss in detail the required steps for finding optimal treatments by using statistical
experimental designs. The steps are discussed while performing the case experiment of evaluating variations
of the LBPSym technique for quantifying texture changes of textile floor coverings.

3.1 Exploratory Analysis

To objectively evaluate the performance of the features extracted with image techniques on different imaging
environments (given in this study by images resulting from combining different AR reference types at dif-
ferent scales) an exploratory analysis is conducted in advance to identify characteristics that allow a reliable
comparison of the techniques in terms of the goal of the investigation.

The exploratory analysis involves descriptive and graphical statistical methods, which provide useful visual
information to select appropriate assumptions as well as to identify data relationships. Specifically for this
study, metrics that objectively measure the description of the κ-values related to the AR grades are required.

For a visual exploration, box plots and error bars of κ-values including complete subsets of AR grades are
used. The subsets are randomly selected.

Figure 1 illustrates two box plots (on the left side) and two error bars (on the right side) that show the
relationship between the κ-values related to AR grades for four of these randomly subgroups. The graphics
indicate that the texture changes due to degradation on the textile floor coverings are transitionally described
by the κ-values. This suggests that the optimal κ value features are those that monotonically describe the AR
grades while the distinction between consecutive AR grades is maximized.

The box plots evidence the presence of outliers which may seriously affect the AR description. Outliers are
detected by measuring the Mahalanobis Distance6 on the residuals, which are data resulting when subtracting
from each κ-value, the sample mean of the corresponding AR group. A κ value is considered an outlier if the
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Figure 1: Samples of κ-values vs. AR grades.

Mahalanobis distance of its residual exceeds three standard deviations. In that case it is replaced with the
associated sample mean to keep the number of the κ-values fixed.

The relationship between AR grades and κ-values is non linear and a linear description is preferred to give
the same probability to each AR grade. A linear combination of the κ-values obtained from the different scale
resolutions provide a better linear description of the AR grades as shown as follows:

Γ = α0 +

5∑
i=1

αiκi (7)

where i is the index of the scale resolution and the α-values are the parameters of the linear model.

In the followings we define response variables that measure these characteristics from the relationship
between AR grades and Γ-values.

3.2 Defining response variables

The most difficult step in designing a experiment is to define objective performance measures quantifying
characteristics that compliance with the investigation goals. These measures, called response variables, are
computed using the image features. A measurement in the experiment using a response variable is called an
observation.

In this study, response variables for quantifying characteristics in the AR grades representation with Γ-
values are required. The findings in the exploratory analysis suggest that an appropriate representation of the
transitional degrees of texture due to degradation may exhibit the following characteristics:

1. The mean value of the Γ-values per AR grade may be linear rank ordered.



2. It must be a clear distinction between Γ-values of consecutive AR grades.

Figure 2 illustrates both examples, one with a non optimal (on the left side) and one with an optimal
description (on the right side).

Γ-values

  AR
Grades

Γ-values

Figure 2: Optimal description of AR grades with Γ-values.

We propose to quantify the following three characteristics from the relationship between AR grades and
Γ-values.

1. The monotonicity of the Γ-values related to AR grades.

2. The variability of the relation between Γ-values of each AR grades and the Γ-values of all AR grades in
an AR reference.

3. The discriminance between Γ-values of consecutive AR grades.

These characteristics are quantified using the response variables described below.

1. The monotonicity (M) is computed by using the Spearman rank correlation, termed ρ.6 For this, the
mean values of the Γ data related AR grades are first ordered from small to large. Then, the Spearman
rank correlation is computed using Equation (8).

ρ = 1− K

(G)((G)2 − 1)

G∑
g=1

dg
2 (8)

Where, G = 8 is the number of AR grades; g = 1, . . . , G is the index of the AR grade ; dg is the differences
between the assigned rank and the expected rank for Γ mean value of the AR grade g; and K = 6 is a
constant defined by Spearman.

2. The variability (V) measures how well a linear relation between the Γ-values and the AR grades is
explained. It is quantified by using the coefficient of determination, termed R2,6 which is computed as
follows:



R2 =

S

G∑
g=1

(Γ̄g − Γ̄)
2

G∑
g=1

S∑
s=1

(Γgs − Γ̄)
2

(9)

with S = 18, G = 8 and Γ̄ the mean value of all Γ-values of an AR reference.

3. The discriminance (D) is calculated based on the Tukey test,6 which is used to identify whether there
are significant statistically differences in the Γ-values between consecutive AR grades. With S = 18 being
the number of Γ-values per AR grades, the statistical significance is computed as follows:

ς =
q(α,G,SG−G)√
(SG−G)S

√√√√ G∑
g=1

S∑
s=1

(
Γgs − Γ̄g

)2
(10)

q(α,G,SG−G) is obtained from the studentized range distribution at 100(1− α) of confidence. Γ̄g is the Γ
mean value of the AR grade g.

The discriminance is computed as the number of times that Equation (11) is satisfied.

(Γ̄(g+1) − Γ̄g)− ς > 0 (11)

The discriminance is represented with the Greek letter τ . The τ value is divided by 7, the maximum
possible value, to normalize the response variable from 0 to 1.

In the next Section we explain how to construct a generalized linear model to represent the response variables
in function of the treatments.

3.3 Selection of experimental design model

In experimental designs is assumed that the mean values of a response variable due to the treatments can be
correctly fitted by a generalized linear model. If this assumption is validated, a reliable statistical analysis can
be further conducted to evaluate differences among the treatments.

Table 2: Factor and levels in this experiment.
LBPSym Technique

ai Census transform (A) bj Threshold (B)
a1 CT b1 0
a2 MCT b2 0.05

b3 0.1

cl AR Reference (C)
c1 Cut
c2 Loop
c3 Cut Loop
c4 Shaggy
c5 Loop
c6 Shaggy

We have chosen in this approach a factorial experiment, in which the response variables are modelled in
function of parameters quantifying the effects of all possible treatments. Other types of experimental designs



that require less computation costs by modelling using only subsets of treatments (like fractional factorial
designs) are based on the same principles explained below.

The main parameters in this study are defined in Table 2. As an example, a model in function of the a set
of parameters {a2, b3, c5} refers to the treatment in which the LBPSym technique is applied using the modified
Census transform and a threshold ε = 0.1 on the Loop AR reference type.

The basic model without taking into account dependences for the response variable Monotonicity is con-
structed using Equation 12. Models for variables Discriminance and Variability are equally constructed.

ρijklm = ρ̄+ ai + bj + ck + εijklm (12)

where ρ̄ is the mean value computed from all ρ data, m is the index when applying the same treatment
several times, which are called replications, and the ε-values are the errors of the model, called residuals, with
respect to the expected value.

Equation 13 shows the model including the effect of dependences, called interactions, between levels of
different factors. Interactions are indicated with (X)x, where X is a combination of factors and x specifies the
levels. I.e (ab)23 means interaction between factors CT Type and Threshold for levels {MCT, 0.1}.

ρijkl = ρ̄+ ai + bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk + εijkl (13)

The experimental error due to nuisance factors can be reduced by dividing their levels into homogeneous
groups, called blocks. This type of model do not necessarily require the use of replications. As an example a
reduced model, in which blocks are created in terms of AR references, is expressed as follows:

ρijk = ρ̄+ ai + bj + ck + (ab)ij + εijk (14)

A model is expressed in matrix form as follows:

	ρ = M	θ + 	ε (15)

Where 	ρ is a vector containing all ρ observations, 	θ is the set of parameters, M a matrix called the matrix
design and 	ε is the set of residuals.

For the particular design given by Equation 14, the vector 	θ is defined by Equation 16, where 	A is a vector

containing the parameters of the levels of a factor A (Same for the other factors), and 	(X) is a vector containing
the interaction parameters due to a factors combination X .

	θ = [ρ̄| 	A| 	B|	C| 	(AB)] (16)

M is constructed by filling with ones in each row, the columns corresponding to the parameters that explain
the associated observation. Other columns are filled with zeros.

The parameter of a factor level is calculated as the difference between the mean value of its associated
observations and the overall mean as in Equation 17. Where ρ̄(Xx) is the mean value of the observations in
which the level x of the factor X , for any of the experimental factors, is applied.

Xx = ρ̄(Xx)− ρ̄ (17)



The interaction between the levels of two different factors is estimated as in Equation 18. Where ρ̄((Xx, Yy))
is the mean value of the observations in which levels x and y of the factors X and Y are applied.

(XY )xy = ρ̄(Xx, Yy)−Xx − Yy − ρ̄ (18)

Thus, the expected observation values ρ̂ can be estimated as follows:

ρ̂ = M	θ (19)

The set of differences between the expected ρ̂-values using the model and the experimental ρ-values are
then computed using Equation 20.

	ε = 	ρ− ρ̂ (20)

3.4 Model validation

A model is said to be valid if the observations are normally distributed around their expected values. This can
be easily evaluated by visually comparing the shape of the residuals distribution with a normal distribution
using a Q-Q plot, in which the quantiles of both distributions are plotted against each other. If residuals are
normally distributed the plotted points should lie on a straight line.
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Figure 3: Cox-Box Method for residuals normalization.a) shows the residuals of the model in Equation 13. b)
shows the sum of squares of the residuals vs. the variable λ. c) shows the Q-Q plot of the residuals when SSE
is minimal.

Figure 3 a) shows the residuals of the model in Equation 13. The graphic shows that the residuals do
not lie on a straight line. The residuals can be transformed into normally distributed data by applying a
transformation on the observation data.

An appropriate transformation can be found by using the Box-Cox method.6 The method reduces the sum
of squares of residuals, termed SSE, by applying the transformation given by Equation 21.

ρλ =

{
ρλ−1
λKλ−1 λ �= 0
K log ρ λ = 0

(21)

with K = (

t∏
i=1

ρi)

1/t

, the geometric mean of the observations and t the total number of observations.

Figure 3 b) shows the sum of squares of the residuals Vs. the variable λ. Figure 3 c) shows the Q-Q plot of



the residuals when SSE is minimal. Once the residuals are normally distributed, the statistical analysis can be
conducted.

3.5 Statistical analysis

The statistical comparison allow the identification of undesired dependences between levels of different factors.
The comparison of the factors are conducted by analysis of variance ANOVA tests. ANOVA is a powerful test
that in its simple form permits to check whether there is at least one significant difference between different
factors. ANOVA results are probabilities, termed p-values, where a p-value less than a given α means that
there is at least one difference between the comparison with 100(1− α)% of confidence.

In case of differences (p-value less than a given α), ANOVA does not specify the differences and a test for
multiple comparison, like the Scheffé test, must be performed. In the Scheffé test, significant differences are
detected also when p-values are less than a given α. For valid p-values, the factors must be independent. The
interactions are identified also by ANOVA where a p-value less than a given α reveals interactions between the
associated elements. assuring the validity of the p-values.

The p-values of the ANOVA test are obtained using the sum of squares of the parameters of the model
and the corresponding degrees of freedom. Table 4 shows the computation of the p-values for the model in
Equation 14. In the table, X is any of the sources of variation listed in row 1.

Table 3: Basic samples of sum of squares and degrees of freedom.
Source of Sum Degrees of Mean F0 p-values

Variation (X) of Squares (SSX ) Freedom (DfX ) Square

A jk

I=2∑
i=1

(ai)
2

I − 1 = 1

B ik

J=3∑
j=1

(bj)
2 J − 1 = 2 MSX = MSX/MSE From an

C ij

K=6∑
k=1

(ck)
2 K − 1 = 5 SSX/DfX F Distribution

(AB) k

2∑
i=1

3∑
j=1

((ab)ij)
2 (I − 1)(J − 1) = 2

Residuals (E)

2∑
i=1

3∑
j=1

6∑
k=1

(εijk)
2 (IJ − 1)(K − 1) = 25 MSE

Total (T)

2∑
i=1

3∑
j=1

6∑
k=1

(ρijk − ρ̄ijk)
2 IJK − 1 = 35

In the following Section we show how to interpret the p-values for the current study case.

4. RESULTS AND DISCUSSIONS

The analysis is performed by evaluating the p-values on the table from down to top to first identify interactions.
In case of interactions (p-value > α), the p-values of the factors are not valid. Therefore, the treatments must be
divided into subgroups that do not reveal interactions between levels of different factors. Then, an independent
statistical analysis on each subgroup to conducted to find optimal treatments.

In this study, we conducted independent statistical tests on the three response variables: monotonicity,
discriminance and variability. The response variables were initially split in the effects of the factor levels using



Table 4: ANOVA tests results
Source of p-values

Variation (X) ρ R2 τ
A 0.165 0.041 0.197
B 0.179 0.080 0.916
C < 0.005 < 0.005 < 0.005

(AB) 0.165 0.966 0.995
(AC) 0.908 0.528 0.149
(BC) 0.132 0.895 0.976
(ABC) 0.908 0.851 0.999

the model of Equation 13. The resulting p-values are listed in Table 4. These p-values are used to identify
interactions between the AR references and the techniques. In case of interactions the AR references are divided
into subgroups and the response variables are evaluated using reduced models without interactions.

In the followings we discuss in detail the interpretation of these p-values.

1. Statistical analysis of monotonicity (M) The statistical analysis of the response variable mono-
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Figure 4: Comparison of monotonicity in AR reference representations.

tonicity do not evidence interactions between factors as well as differences between techniques are not
identified, both inferences with with a 99% of confidence (p-values > 0.01 ).

The p-value of the Factor C evidence differences between its levels (types of AR References). A Sheffé test
shows that the AR reference 2 has bigger monotonicity than the others. However, the Sheffé test show
mean values in terms of monotonicity above 0.88, which suggest that all the variations of the LBPSym
technique describe almost transitional the texture changes due to degradation.

Errors in the transitional description are according to human mistakes. Figure 4 shows the resulting
mean values in the Sheffé. The standard deviations are indicated constant and indicated with the symbol
↔.

2. Statistical analysis of variability (V)

The statistical analysis of the response variable monotonicity do not evidence interactions between factors
with a 99% of confidence (p-values > 0.01 ). However, it shows difference between the levels of the
techniques A, with 95% of confidence (p-value = 0.041 < 0.05), and B, with 90% of confidence(p-value
= 0.080 < 0.1 ), as well as between the AR references with 99% of confidence(p-value < 0.01). The results
of the Sheefé test are shown in Figure 5 in the same way that the results of monotonicity in Figure 4.

The results show that the LBPSym computed with the Census Transform and without applying a thresh-
old performs better that the other alternatives in terms of fitting a linear model with the Γ values.
Furthermore, References one, two and three are better modelled than the others.
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3. Statistical analysis of discriminance (D)
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Figure 6: Comparison of Discriminance in AR reference representations.

The statistical analysis of the response variable discriminance do not evidence interactions between factors
as well as differences between techniques are not identified, both inferences with with a 99% of confidence
(p-values > 0.01 ). It shows only differences between the AR reference types, where AR references two
and three discriminate more consecutive AR grades.

5. CONCLUSIONS

In this paper we have presented a methodology for optimizing the feature extraction process when evaluating
texture algorithms for describing appearance retention in textile floor coverings. The methodology permitted
to identify optimal combinations of the LBPSym techniques using two types of Census Transform and three
types of thresholds, applied on different AR references. Results show that the basic Census transform combined
with no threshold performs better for describing the texture changes due to degradation. We have discussed
the main concepts of the methodology for using it in other image processing applications.
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[21] M. Heikkilä, M. Pietikäinen, and J. Heikkilä. A texture-based method for detecting moving objects.
Pattern Analysis and Machine Intelligence, 28(4):657–662, 2003.



[22] B. Froba and A. Ernst. Face detection with the modified census transform. In Automatic Face and Gesture
Recognition, pages 91–96, 2004.

[23] M. Petrou and P. G. Sevilla. Image Processing Dealing with Texture. Wiley, January 2006.


