
Graphical Update Caching
for Mobile Thin Clients

Bert Vankeirsbilck

Supervisor(s): Bart Dhoedt, Filip De Turck

I. INTRODUCTION

Because of form factor constraints, required
portability and battery lifetime, mobile devices
have limited resources. Despite the rapid devel-
opment of smaller and more efficient hardware,
software requirements on CPU, memory and
disk space cause significant hardware needs
and battery drains. The general idea behind this
article is to extend the mature thin client tech-
nology for use on mobile devices, offloading
heavy computations to a distant server and
leaving the applications unaltered. User input
is sent over a network towards a server that ex-
ecutes the application, the generated screen up-
dates are returned to the user’s device. The
functionality of the mobile device is reduced
to presenting graphical output, capturing user
events such as key strokes and pointer move-
ments, and transmitting data over the network.

The overall goal of this doctoral study is to
enable demanding applications on mobile thin
clients. This will be reached by optimizing
thin client computing concepts on the protocol
level, as well as on the infrastructural level and
the application level. The need for multi-layer
optimizations is thoroughly explained in [1].

In this paper we propose graphical update
caching as a method to reduce long term re-
dundancies in thin client sessions. When an-
alyzing the sequence of graphical updates gen-
erated by a typical user session on a desktop
computer, we found that a lot of frames re-

—————————————————–
B. Vankeirsbilck is with the Depart-

ment of Information Technology of Ghent
University (UGent), Belgium. E-mail:
Bert.Vankeirsbilck@intec.UGent.be.

semble others that have already been transmit-
ted earlier in that session. Since we operate in
a thin client environment where all graphical
updates have to be sent over a wireless, lim-
ited bandwidth network, benefit can be found
in this phenomenon by storing well-chosen key
frames both at client and server side, and trans-
mitting only the differences with respect to that
frame. Since less data is to be received from
the network at the client, the battery autonomy
of the device decreases slower. This will con-
tribute to the user satisfaction and will lessen
the load on the environment.

We assess the bandwidth optimization poten-
tial of a static cache. This is a cache for graph-
ical updates, that is filled before the thin client
computing session starts. When the user logs
in, the cache is loaded both at client and server
side, and does not get altered during this ses-
sion.

II. STATICALLY CHOOSING CACHE FRAMES

We have taken a thin client usage session of-
fline by storing the sequence of graphical up-
dates and computed the byte-per-byte differ-
ences between subsequent full screen frames
(in uncompressed format). We have taken the
number of different bytes as a measure for the
resemblance between frames. Through a ma-
trix of mutual distances, we were able to iden-
tify the optimal combination of a predefined
number of cache frames. Optimal cache frames
are those that, combined, result in the smallest
distance to the complete sequence. After vi-
sual inspection we found that the optimal cache
frames represented the applications that were

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55825284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


executing, i.e. the desktop background, the of-
fice program, the Google startup page and the
homepage of the local newspaper.

III. EXPERIMENTAL RESULTS

Figure 1. The caching architecture

The architecture for integrating a static cache
in a thin client computing system is shown in
Figure 1. At the server side, the executing ap-
plications of the user write their graphical out-
put to the server’s framebuffer. This frame-
buffer is analyzed in order to choose an op-
timal encoding method. If no suited cache
frames are found for this graphical update, it
will be directly encoded using a native encod-
ing scheme from the used thin client proto-
col and sent to the client. If there is a well
matching cache frame, this cache frame is sub-
tracted from the graphical update and the dif-
ference is encoded using the classic encoding
scheme and sent over to the client. In addi-
tion, a cache header containing necessary pa-
rameters such as the used cache frame has to
be sent over to the client. At the client side,
the received data is decoded, and depending on
the presence of a cache header, the indicated
cache frame is added to the decoded frame and
delivered to the client framebuffer which even-
tually is presented on the screen of the client
device. Figure 2 shows that optimally encod-
ing with respect to one cache frame, the desk-
top background, already yields 20.56% band-
width reduction. Adding an extra cache frame,
the browser with the homepage of the local
newspaper, brings the total bandwidth gain to
29.94%. Eventually, with five cache frames we
achieved a bandwidth requirements decrease of
34.40% over classic encoding all updates.

1000

1500

2000

2500

3000

3500

ra
te
d 
ne

tw
or
k 
tr
af
fic
 (k
B)

Reduced network traffic, multiple cache frames

classic tight encoding
1 cache frame
2 cache frames
3 cache frames
4 cache frames
5 cache frames

0

500

0 50 100 150 200 250 300 350 400

G
en

e

Frame number

Figure 2. Influence of cache size on generated net-
work traffic

The cache will be efficient in the case that a
big update is requested. These big updates are
expected when the user starts an application or
when switching between applications, typically
causing a full screen refresh. A video file, caus-
ing very fast successive screen refreshes will
not be handled well by a cache though, since
they will not often map to the cache frames that
are to be predicted before the session starts.
A solution for this, as suggested in [2], is to
stream these video files.

IV. CONCLUSION

In thin client computing systems, benefit can
be found in caching certain graphical updates.
Other updates that resemble one of these cache
frames can be efficiently coded by computing
the difference to the cache frame, to be encoded
and transported over the network to the thin
client.

ACKNOWLEDGMENTS

B. Vankeirsbilck is funded by the Institute
for the Promotion of Innovation through Sci-
ence and Technology in Flanders (IWT).

REFERENCES

[1] B. Vankeirsbilck, et al, Bringing Thin Clients
to the Mobile World, 2008 NEM-SUMMIT, To-
wards Future Media Internet, Saint-Malo, France,
2008.

[2] P. Simoens, B. Vankeirsbilck, et al, Design
and implementation of a hybrid remote display
protocol to optimize multimedia experience on
thin client devices, Proceedings of Australasian
Telecommunications and Network Applications
Conference, Adelaide, Australia, 2008.


