
SALSA: QoS-aware load balancing for
autonomous service brokering

Bas Boone, Sofie Van Hoecke, Gregory Van Seghbroeck

Supervisor(s): Bart Dhoedt, Filip De Turck

I. INTRODUCTION

Nowadays, many new applications are con-
structed through integration of already avail-
able service components. The approach is
made possible through the Service Oriented
Architecture (SOA) and “Software as a Ser-
vice” paradigm, typically using web service
technologies to publish, discover and integrate
service components. This technology also al-
lows to replicate web services on new servers
to scale in response to the needed demands. In-
stead of hard coding service calls in the cus-
tomer’s source code, brokers provide dynamic
service selection to automatically select and
seamlessly link the services in order to meet
the business system requirement, optimize re-
sponse times or reduce the costs. By using web
service brokers, customers only have to interact
with the service broker, hiding the complexity
of selecting the appropriate service.

In a commercial application typically a Ser-
vice Level Agreement (SLAs) can be me-
diated between the customers and the ser-
vice providers defining the functional and non-
functional requirements such as the levels of
availability, performance and billing. Often, a
service provider also wants to service a class
of customers on a best effort basis. In the case
of performance, the SLA usually specifies con-
straints on the response time. If no special pre-
cautions are taken, unexpected request patterns
can drive a web server into overload, leading to

—————————————————–
B. Boone is with the Information Technology De-

partment, Ghent University (UGent), Gent, Belgium.
E-mail: bas.boone@intec.ugent.be .

poor performance since the server is unable to
keep up with the demands. Service providers
can solve this problem by over-dimensioning
their resources and provide dedicated servers
for premium customers to meet their SLAs. If
we want to avoid using dedicated servers, intel-
ligent autonomous service brokering is needed.

II. SALSA

Broker

QoS-aware

QoS-unaware

Figure 1. Objective of the Simulated Annealing Load
Spreading Algorithm

We have examined two requirements for ser-
vice brokers: on one hand, the broker should be
able to autonomously guarantee constraints on
the response time for premium clients by fulfill-
ing a n-percentile on the response time, i.e. the
value for which at most n% of the response
times are fulfilled in less than that value. On
the other hand, brokering should be transpar-
ent for the actual servers executing the service:
they should not need to be changed.

In order to fulfill these requirements, the
Simulated Annealing Load Spreading Algo-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55825277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


rithm (SALSA) presented here can load bal-
ance requests, and selectively drop some re-
quests from the default users to reduce the web
servers’ load in order to guarantee SLA to pre-
mium customers and provide best effort to de-
fault customers (see Figure 1).

The web servers are modeled as M/M/1 sys-
tems using standard queueing theory [2], and
the broker is modeled as a statistical switch: it
forwards requests randomly to a server with a
given probability, and it drops default requests
with a certain probability. The SALSA algo-
rithm determines the best possible values for
these probabilities, given the arrival rate of de-
fault and premium requests, and the process-
ing intensity of the different web services. In
order to do this, we define a score function
which considers average waiting times, over-
loaded servers, exceeded waiting time thresh-
olds for premium clients, and the number of
dropped default requests. This score function is
optimized for the switching probabilities using
Simulated Annealing [3], a generic optimiza-
tion heuristic.

III. EVALUATION

We implemented the SALSA algorithm and
performed simulations to test the results, us-
ing a theoretically derived optimality criterion.
These tests confirmed that SALSA is able to
find optimal solutions. The results were com-
pared with those of Weighted Round Robin
(WRR), nowadays the most commonly used
load balancing algorithm, and it was found that
SALSA was able to guarantee the threshold re-
quirement for higher arrival rates than WRR.

We also implemented a testbed evaluation.
Our test setup consisted of a load generator, two
web servers and a service broker implemented
using Apache Synapse. Using this setup, we
compared the performance of SALSA to WRR,
with different arrival rate patterns. Some re-
sults are shown in Table 1, where λd and λp

represent default resp. premium arrival rates. It
can be seen from this table that WRR slightly
outperforms SALSA in underloaded circum-
stances. This is normal, since SALSA requires

more processing, and has to slightly overesti-
mate arrival rates in order to make statistical
guarantees. However, in situations with higher
arrival rates, SALSA is able to guarantee a 95-
percentile waiting time, where WRR is not.

Crossing
λd λp Algorithm threshold (%)

40 20
SALSA 1,66
WRR 0,71

10 40
SALSA 2,28
WRR 0,59

50 50
SALSA 0,47
WRR 28,70

40-80 20-40
SALSA 2,16
WRR 17,15

Table 1. Comparing SALSA to WRR.

IV. CONCLUSIONS

By using the SALSA algorithm, requiring
slightly more processing than weighted round-
robin, brokers can guarantee a n-th percentile
response time to their premium users, while
providing best effort to the default customers.
As service-oriented architectures have largely
distributed topologies, SOA broker architec-
tures can benefit from our SALSA algorithm as
the service providers can be QoS unaware, re-
leased from mediating SLAs, and don’t have to
be a priori over-dimensioned.

REFERENCES

[1] B. A. Shirazi, A. R. Hurson, K. M. Kavi, Eds.,
Scheduling and load-Balancing in Parallel and
Distributed Systems, IEEE CS Press, 1995.

[2] D. Gross, C. Harris, Fundamentals of Queueing
Theory, 3rd ed, 1998.

[3] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Opti-
mization by Simulated Annealing, Science, Num-
ber 4598, 220, 4598:671-680, 1983.


