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We want to broaden

probability theory

in order to deal with imprecision and indecision.

Sets of desirable gambles are very successful imprecise models.

Working with them is simple and elegant.
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Sets of desirable gambles allow for conservative inference.

They can be ordered according to an
“is not more conservative than”

relation.

We want to use identical ideas for choice functions.



Motivating example

p(t) = 1
2

fair coin

ph pt

ph(x) =

{
1 if x = h
0 if x = t

pt (x) =

{
0 if x = h
1 if x = t

coin with identical sides of unknown type

Such an assessment cannot be modelled
using sets of desirable gambles!

h t

X = {h, t}

h t
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Sets of desirable gambles



Gambles

The random variable X takes values x in the possibility space X .
A gamble f : X → R is an uncertain reward whose value is f (X ).
We collect them in L (or L (X )).

X = {h, t}

t

h1

1

(f (h), f (t))

A set of desirable gambles D is a set of gambles that a subject strictly
prefers to zero.
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Coherence for a set of desirable gambles
An assessment can be given as follows:

h t
f1 1 1/2

f2 −1 3/2

f3 −1/2 1/3

h

t

1

1

f1

f2

f3

A set of desirable gambles D is called
coherent if
D1. if f > 0 then f ∈D ,
D2. if f ≤ 0 then f /∈D ,
D3. if f ,g ∈D then f +g ∈D ,
D4. if f ∈D and λ ∈ R>0 then λ f ∈D .
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Natural extension

We call D1 not more informative than D2 if D1 ⊆D2.
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Given a desirability assessment A , then define its natural extension as⋂
{D coherent : A ⊆D}.
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Given a collection D = {D1,D2, . . .} of coherent sets of desirable gambles,
then the infimum (under the relation ⊆)

infD =
⋂

D

is a coherent set of desirable gambles.

Given a desirability assessment A , then define its natural extension as⋂
{D coherent : A ⊆D}.
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Alternative representation
With a coherent set of desirable gambles D there corresponds a binary
relation (called preference relation) ≺D on the set of gambles:

f ≺D g⇔ g− f ∈D .

≺D is irreflexive, transitive, mix-independent and monotone.

h

t

1

1
f g

g− f

f ≺D g

Conversely, from a coherent pref-
erence relation ≺ on the gambles,
define

D≺ := {f : 0≺ f}.

We can use these representations
interchangeably:

D≺D = D .
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Example

ph pt

ph(x) =

{
1 if x = h
0 if x = t

pt (x) =

{
0 if x = h
1 if x = t

X = {h, t}

h t

Define f ≺h g if Eph(f )< Eph(g) (equivalently f (h)< g(h)),

and f ≺t g if Ept (f )< Ept (g) (equivalently f (t)< g(t)).

h

t

1

1D≺h ∩D≺t h t

No distinction between
a “coin with identical
sides” and a “vacuous
coin”!
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Choice functions



Choice functions

We call Q(L ) the collection of all non-empty finite subsets of L .

A choice function C is a map

C : Q(L )→Q(L )∪{ /0} : O 7→ C(O) such that C(O)⊆O.

As an equivalent representation, we define R(O) := O \C(O) as the
rejection function.
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Choice relations

Another equivalent representation is the choice relation < on Q(L ):

O1 <R O2⇔O1 ⊆ R(O1∪O2).

If R is coherent, the choice relation <R is a strict partial order.

Given a choice relation < we define the corresponding rejection function
as

R<(O) =
⋃
{O′ ⊆O : O′ < O},

and we can use these representations interchangeably:

R<R = R.
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Coherence for choice functions

A choice function C is called coherent if
1. /0 6= C(O),
2. if g < f then {g}< {f} (or equivalently, g /∈ C({f ,g})),
3. 3.1 if O1 ⊆ R(O2) and O2 ⊆O3 then O1 ⊆ R(O3),

3.2 if O1 ⊆ R(O2) and O3 ⊆O1 then O1 \O3 ⊆ R(O2 \O3),
4. 4.1 if O1 ⊆ R(O2) then O1 +{f}:= {g+ f : g ∈O1} ⊆ R(O2 +{f}),

4.2 if O1 ⊆ R(O2) then λO1:= {λ f : f ∈O1} ⊆ R(λO2),
5. if f1 ≤ f2 and for all g ∈O1 \{f1, f2}:

5.1 if f2 ∈O1 and g ∈ R(O1∪{f1}) then g ∈ R(O1),
5.2 if f1 ∈O1 and g ∈ R(O1) then g ∈ R({f2}∪O1 \{f1}),

for all O1, O2, O3 ∈Q(L ), f , f1, f2, g ∈L and λ ∈ R>0.



“not more informative” relation

Given two coherent choice functions C1 and C2, we call C1 “not more
informative than” C2 if

C1(O)⊇ C2(O) for all O ∈Q(L ).

Given a collection C = {C1,C2, . . .} of coherent choice functions, its
infimum (under the “not more informative than” relation)

infC(O) =
⋃

C∈C

C(O) for all O ∈Q(L )

is a coherent choice function as well.



“not more informative” relation

Given two coherent choice functions C1 and C2, we call C1 “not more
informative than” C2 if

C1(O)⊇ C2(O) for all O ∈Q(L ).

Given a collection C = {C1,C2, . . .} of coherent choice functions, its
infimum (under the “not more informative than” relation)

infC(O) =
⋃

C∈C

C(O) for all O ∈Q(L )

is a coherent choice function as well.



Example



Coin flip

X = {h, t}

The two sides of the coin are identical of unknown type.

h t

ph ptS = {ph,pt}

Define CS(O) as those f ∈O for which there is a p ∈ S such that

f maximises expected utility under p and f is undominated in O.

Define CS(O) as those f ∈O for which

either f (h)≥ g(h) for every g ∈O or f (t)≥ g(t) for every g ∈O

and f is undominated in O.

h t

S′

Define CS′ (O) as those f ∈O for which there is a p ∈ S′ such that

f maximises expected utility under p and f is undominated in O.
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CS and CS′ are different
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Connection between desirability
and choice functions



Connection between D and C

From C to D .

Let C be a coherent choice function.
Look at the behaviour of the choice relation <C on singletons.
We define the set of desirable gambles DC as

DC = {f −g : {g}<C {f}}
= {f −g : {f}= C({f ,g}) and f 6= g}.

If C is coherent, then DC is coherent as well.



Connection between D and C
From D to C.

Let D be a coherent set of desirable gambles.
Define the compatible choice functions CD as those choice functions that
have the same binary relation as D :

CD = {C : (∀f ,g ∈L ){f}<C {g}⇔ g− f ∈D}.

We are looking for the infimum of CD :

CD(O) := infCD(O) = {f ∈O : (∀g ∈O)g− f /∈D}

for all O ∈Q(L ).

Equivalently, in terms of choice and preference relations:

O1 <CD
O2⇔ (∀f ∈O1)(∃g ∈O2)f ≺D g

for all O1, O2 ∈Q(L ).
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Some nice properties

When working with desirability, we can work with choice functions without
losing information:

Dinf{CD1 ,CD2}
= inf{D1,D2} or DCD1∪CD2

= D1∩D2.

When working with choice functions, we cannot work with desirability in
general without losing information:

Cinf{DC1
,DC2

}(O)⊇ (inf{C1,C2})(O) for all O in Q(L )

or
CDC1

∩DC2
(O)⊇ (C1∪C2)(O) for all O in Q(L )
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Cpt (O) are those f ∈O such that f (t)≥ g(t) for every g ∈O
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CDph∩Dpt
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CS(O) are those f ∈O for which there is an x ∈ {h, t} such that

f (x)≥ g(x) for every g ∈O and f is undominated in O.

CS(O) = inf{Cph ,Cpt }

Cph (O) are those f ∈O such that f (h)≥ g(h) for every g ∈O

Cpt (O) are those f ∈O such that f (t)≥ g(t) for every g ∈O
and undominated.

CDph∩Dpt
(O)⊇ (inf{Cph ,Cpt })(O) for all O in Q(L ).
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Conditioning



Conditioning with sets of desirable gambles
You have a coherent set of desirable gambles D ⊆L (X ) and you have
the only additional information that X belongs to some subset B of X .

We define the set of desirable gambles conditional on B by

DcB := {f ∈L (B) : f IB ∈D}.

Here, IB ∈L (X ) is the indicator of B:

IB(x) =

{
1 if x ∈ B
0 if x /∈ B

for all x ∈X .

Then
f ∈DcB⇔ f IB ∈D .

If B 6= /0, then DcB is a coherent set of desirable gambles on B.



Conditioning with sets of desirable gambles
You have a coherent set of desirable gambles D ⊆L (X ) and you have
the only additional information that X belongs to some subset B of X .

We define the set of desirable gambles conditional on B by

DcB := {f ∈L (B) : f IB ∈D}.

Here, IB ∈L (X ) is the indicator of B:

IB(x) =

{
1 if x ∈ B
0 if x /∈ B

for all x ∈X .

Then
f ∈DcB⇔ f IB ∈D .

If B 6= /0, then DcB is a coherent set of desirable gambles on B.



Conditioning with choice functions
For a choice function C, we want a conditioning rule that leads to the same
relation for DC :

DCcB = DCcB := {f ∈L (B) : f IB ∈DC}.

We define for each option set O ∈Q(L (B)) the sets

O ↑f := {g1 ∈L (X ) : g1IBc = f IBc and (∃g2 ∈O)g1IB = g2IB}∈Q(L (X ))

for each f ∈L (Bc) and B ⊆X , and for each option set O ∈Q(L (X ))

O ↓B:= {f ∈L (B) : (∃g ∈O)f IB = gIB}∈Q(L (B))

for each B ⊆X .
Given a choice function C, we propose the following conditioning rule to
obtain CcB:

CcB(O) = C(O ↑f ) ↓B .
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Conditioning with choice functions

Given a choice function C, we propose the following conditioning rule to
obtain CcB.

CcB(O) = C(O ↑f ) ↓B

Proposition CcB(O) = C(O ↑f ) ↓B does not depend on the choice of f :
given f1 and f2 in L (Bc), then

C(O ↑f1) ↓B= C(O ↑f2) ↓B .

Proposition Given a coherent choice function C on L (X ), then CcB
defined by CcB(O) = C(O ↑f ) ↓B is a coherent choice function on
Q(L (B)).

Proposition Given a coherent choice function C, then DCcB = DCcB.
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Conditioning with choice functions

Given a choice function C, we propose the following conditioning rule to
obtain CcB.

CcB(O) = C(O ↑f ) ↓B

Proposition CcB(O) = C(O ↑f ) ↓B does not depend on the choice of f :
given f1 and f2 in L (Bc), then

C(O ↑f1) ↓B= C(O ↑f2) ↓B .

Proposition Given a coherent choice function C on L (X ), then CcB
defined by CcB(O) = C(O ↑f ) ↓B is a coherent choice function on
Q(L (B)).

Proposition Given a coherent choice function C, then DCcB = DCcB.



Question

Is there an intuitive interpretation for our conditioning rule

CcB(O) = C(O ↑f ) ↓B ?



Modelling indifference



Indifference with sets of desirable gambles

To model indifference, we need a second set of gambles: the set of
indifferent gambles I .
Two gambles f and g are called indifferent (we write f ≈ g) if

D +I ⊆D ,

where
I := {α(f −g) : α ∈ R}

is the set of indifferent gambles.

Then f ≈ g⇔ f −g ≈ 0.



Indifference with choice functions

There are two ideas. A coherent choice function C expresses indifference
between f and g if:

Seamus Bradley

f ≈ g⇔ (∀O ⊇ {f ,g})(f ∈ C(O)⇔ g ∈ C(O))

Gert de Cooman

f ≈ g⇔ (∀O ∈Q(L ))C(O)f↔g = C(Of↔g)

where Of↔g is obtained from O by “changing f for g or g for f ”:

Of↔g :=


O if (f /∈O and g /∈O) or (f ,g ∈O)
{f}∪O \{g} if f /∈O and g ∈O
{g}∪O \{f} if f ∈O and g /∈O



Indifference with choice functions

Seamus Bradley

f ≈ g⇔ (∀O ⊇ {f ,g})(f ∈ C(O)⇔ g ∈ C(O))

⇔ (∀O ⊇ {f ,g})(f ∈ R(O)⇔ g ∈ R(O))

Given a coherent set of desirable gambles D that expresses indifference:
D +I ⊆D with I = {α(f −g) : α ∈ R}.
Does RD fulfil Seamus Bradley? Assume that f ∈ RD(O), then

(∃h2 ∈O)h2− f ∈D

(∃h2 ∈O)h2− f +α(f −g) ∈D

(∃h2 ∈O)h2−g ∈D

hence g ∈ RD(O), so RD fulfils Seamus Bradley.
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Connection between
Seamus Bradley and Gert de Cooman

Gert de Cooman implies Seamus Bradley:

(∀O ⊇ {f ,g})(f ∈ C(O)⇔ g ∈ C(O))⇒ (∀O ∈Q(L ))C(O)f↔g = C(Of↔g)



Indifference from C to DC

Conversely, assume a coherent choice function C that “reflects
indifference” between f and g. What properties need C in order for

DC +I ⊆DC

to hold?

Take arbitrary h ∈DC +I , then

(∃h1,h2 ∈L ,α ∈ R)h1 ∈ R({h1,h2}) and h = (h2−h1)+α(f −g)
h = (h2 +αf )− (h1 +αg)

⇒ (∃h1,h2 ∈L )h1 +αg ∈ R({h1+αg,h2 +αf}) Gert de Cooman
⇒ h ∈DC

whence Gert de Cooman is a sufficient property.
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whence Gert de Cooman is a sufficient property.



Question

Which of the two “rules” seems the most intuitive?

Does Seamus Bradley imply that DC +I ⊆DC?
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