
Simple RESTful Sensor Application Development Model Using CoAP
Girum Ketema Teklemariam, Jeroen Hoebeke, Floris Van den Abeele, Ingrid Moerman, Piet Demeester

Department of Information Technology
Gent University – iMinds

Gent, Belgium
{firstname.lastname} @intec.ugent.be

Abstract— The wireless communication capability of sensors and
actuators made them suitable for several automation solutions
which involve sensing physical properties and acting upon them.
These days, gateway or cloud based sensor/actuator interaction
models are widely used. In this model, every sensor/actuator
interaction goes through the gateway or via the cloud. In order to
realize the true Internet of Things philosophy where everything is
interconnected, direct interactions between sensors and actuators,
also called bindings, are important. In addition to this, alternative
IoT application development models which facilitate application
development and improve efficiency are required. In this paper, we
introduce a CoAP based sensor/actuator binding solution where a
3rd party is responsible for setting up the binding, but is not
involved in any of the further interactions. As binding creation and
execution is fully based on RESTful CoAP interactions, very
flexible bindings between any two devices can be created. Further,
the binding concept is extended into the RESTlet concept for
introducing (pre-)processing into the sensor/actuator interactions.
RESTlets are small application building blocks with internal
processing logic and RESTful interfaces for input, control and
output. In this paper we present how IoT applications can be
created by binding different RESTlets to each other and to sensors
and actuators. We implemented these solutions in CoAP++ and
Contiki and evaluated the implementation by taking different
measures such as delay, memory footprint, and packet size.

Keywords: IoT application development; Sensor/Actuator
bindings; CoAP; Observe Option

I. INTRODUCTION
The communication capability that was recently added to

sensor and actuator nodes has made them the future corner
stones of the Internet. There are a huge number of
applications that make use of sensors and actuators [1][2][3].
However, the networks that interconnect these nodes are
usually characterized as Low power and Lossy Networks
(LLNs) due to the unreliability of the network. This
distinctive feature is basically the result of the constrained
nature of the nodes (in terms of processing speed, memory,
and power) and their limited radio communication capacity.
For a long time, this limited the direct accessibility of these
nodes from the Internet. As a way out, many vendors used
gateways as intermediaries for all communication between
the nodes and the external world. In addition, the
communication protocols used in the LLNs were proprietary,
restricting interoperability of different solutions even further.

Aware of these limitations, IETF established different
working groups to address the limiting factors of constrained
devices so that the nodes could run standard network
protocols and become accessible directly from any network.
6LoWPAN [4] introduced an adaptation layer just below the

IP layer so that IPv6 packets can be successfully transmitted
through a wireless sensor and actuator network. IETF also
focuses on the application layer to provide lightweight
application protocols suitable for constrained devices. The
Constrained Application Environment (CoRE) working
group was tasked with coming up with such protocols and
guidelines. The Constrained Application Protocol (CoAP)
[5] is one of the achievements of this working group. The
protocol is a lightweight counterpart of the HTTP protocol.
The CoAP protocol allows communication with constrained
devices in a RESTful way. The working group is also
working on further extensions of the protocol. One such
extension is the observe option that easily allows monitoring
of resource states on sensors. These and other related
protocols allow users from the Internet to interact directly
with the constrained devices.

In this paper, we present a CoAP-based simple and
flexible way to realize direct interactions between sensors
and actuators, called binding. In addition, we introduce the
concept of RESTlets, which are IoT application building
blocks with inputs, control parameter, basic processing logic
and outputs. Bindings are then used as the glue between the
RESTlets, sensors and actuators to create basic IoT
applications. . The main contribution of this work is twofold
the first of which is a novel mechanism to enable direct
sensor and actuator interaction from any network by
eliminating the need for the intermediary watching over
every interaction. The second contribution is a new RESTful
application development model based on the binding and
RESTlet concept. The concepts described in this paper all
build upon the same protocol, CoAP, and RESTful
mechanisms to achieve goals ranging from simple sensor-
actuator associations to IoT application development.

The next section describes the sensor/actuator direct
interaction challenges followed by the current IoT
application development issues which motivated us to
propose the solutions presented in this work. Section four
briefly discusses the protocol that lies at the heart of the
proposed systems, CoAP, and two of its extensions, Observe
and Conditional Observe. Section five discusses the binding
solution and section six describes RESTlets. Section seven
and eight elaborate on the implementation and evaluation of
the binding and the RESTlet concepts. Related work will be
discussed in Section nine while Section ten concludes the
paper by indicating future work.

II. CHALLENGES OF SENSOR/ACTUATOR BINDING
In order to take full advantage of the communication

capability of sensor and actuator nodes, it is important to
make them accessible from the Internet. Different solutions

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55825105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

have been proposed to do so. Most of the solutions use
third-party devices, usually a gateway or a cloud service, to
control sensor/actuator interactions. This device or service
handles the collection of sensor events and generation of
actuator triggers. In other words, every sensor sends its data
to the 3rd party and the 3rd party generates the appropriate
triggers. Given the possibility of interconnecting everything
in the current Internet of Things setup, we can see several
limitation of this approach. First, users may need to initiate
and control sensing and actuation from any device or any
network. For instance, users may want to directly change the
lighting settings of a home automation system from the
Internet using their smartphone. Second, the intermediate
node has to be always online to provide the required binding
functionality. If the device or service fails, the
sensor/actuator interaction will be disrupted making the
device or the service a single point of failure for the whole
network. In large networks, where several sensors and
actuators are engaged in frequent interactions, sending all
packets to the gateway or cloud service may introduce
additional delays or network congestions.

Direct interaction of sensors and actuators without the
involvement of a third party is an alternative that overcomes
most of the aforementioned issues. One such solution is pre-
programming the sensor/actuator bindings when deploying
the network and reprogramming them whenever the
bindings have to be changed. This solution eliminates the
intermediary from the network but it is inflexible and may
not be applicable for all use cases. Another solution is
creating bindings by putting them in physical proximity and
initiating a coupling procedure. This solution also works for
initial setup but lacks the flexibility of changing the binding
thereafter. Other solutions only allow bindings between
devices that have well-defined interfaces [7], limiting the
Internet of Things vision that every device can interact with
any other device.

In this paper, we propose a CoAP based flexible
sensor/actuator binding solution that resolves the limitations
discussed above. The proposed solution allows direct
sensor/actuator interactions, thereby removing the
dependence on gateways or cloud services to coordinate the
interaction between these constrained nodes. In addition,
interfaces for easy manipulation of bindings will make
creation of and control over bindings easy and flexible. This
concept makes sensor and actuator nodes smarter as they can
directly interact with other components. In addition, as we
will show later, the concept can be extended to facilitate the
development of IoT applications. This development exhibits
several challenges, as we will discuss in the following
section.

III. IOT APPLICATION DEVELOPMENT
Different solutions that make use of networked sensors

and actuators may require some form of (pre-)processing to
be applied on sensor data before a decision can be made
whether an actuator should be triggered or not. An example
of such processing could be counting the number of events

from different sensors before triggering an actuator. In many
cases, this intelligence is implemented at the network
gateway or in the cloud. Here, every sensor’s data is sent to
the gateway or the cloud for further processing, after which a
decision is sent back down in the LLN to the actuator. This
approach poses similar problems as the binding of sensors
and actuators. WS-* or HTTP based RESTful mechanisms
are usually used to develop the IoT applications at the
gateways or in the cloud. Processing often takes place
outside the sensor network requiring an always-on
intermediary no matter how trivial the required processing is.
In addition, processing often requires programming of all
RESTful interactions and processing logic, limiting reuse of
processing logic across IoT applications. An interesting
alternative to this approach is a model that provides reusable
and small application building blocks that can be placed
anywhere in the network (at the gateway, in the cloud or in
the LLN) and use RESTful mechanisms to interconnect these
components to perform the desired processing or build an
application. Some initiatives have appeared already that aim
to break down IoT applications into small units [21], but they
do not achieve a complete separation between processing
logic and the RESTful interactions.

In this paper, we propose a simplified IoT application
development model based on such application building
blocks, which we call RESTlets and use bindings to
interconnect the RESTlets, sensors and actuators, effectively
adding intelligence to normal CoAP-based sensor/actuator
interactions.

IV. COAP, OBSERVE AND CONDITIONAL OBSERVE
The Constrained Application Protocol (CoAP) [4] is an
IETF proposed standard suitable for machine-to-machine or
IoT interactions. The protocol works in a similar way as
HTTP and implements a minimal subset of REST.
Consequently, a mapping between both protocols is
possible. CoAP uses the same methods as HTTP when
sending requests from clients to servers, namely GET, PUT,
POST, DELETE. Since TCP is too resource intensive for
constrained devices, CoAP uses UDP with confirmable
messages at the transport layer. In a normal client/server
interaction, the CoAP client sends a request to a specific
resource on a server by using one of the four methods and
the server responds with the current representation of the
resource of interest (for GET requests) or the appropriate
response for the other mechanisms. Fig. 1 shows a typical
client/server interaction where the client sends a GET
request to receive the current temperature value on the
server, represented by the resource /s/t. In the example, the
server responds with the latest value, in this case 22.

For resource monitoring applications, clients need to have
an up-to-date representation of data from servers. Sending
periodic requests to servers (polling) is not an optimal
solution for constrained devices. Observe [8] is an
interesting extension of the CoAP protocol where clients
inform their interest of getting an up-to-date resource
representation from servers. After that, servers send

notifications whenever resource states change. To establish
this observation relationship, the same GET method is used
with the Observe option included in the first request (Fig 2).
Upon reception of this request, the server notifies the
current state of the resource to the client and registers the
client for further notification of events. This is an interesting
optimization of the protocol that avoids continuous listening
for changes. However, there is still a room for further
optimization of this approach. In many applications, every
state change might not be significant enough to take action.
In such cases, clients will drop the packets after comparing
the payload against a specific threshold. Dropping packets
that are generated by a constrained device and that have
travelled through a constrained network is not so optimal.
Therefore, further optimization can be obtained through
Conditional Observation [9] where clients also send
notification criteria when they register for observation. This
means that servers will only notify clients if the resource
state meets the criteria stated upon registration. Detailed
implementation and evaluation of Conditional observation is
given in [10]. In Figure 3, the client mentions that it is
interested to be notified only when the temperature change
results in a value less than 22.

V. DIRECT SENSOR AND ACTUATOR BINDINGS
Direct interaction of sensor and actuator nodes is

advantageous for easy deployment, independent operation
and management of wireless sensor/actuator networks. In
this section we use the interaction of electric light bulb
(actuator) and a switch (sensor) in a home automation system
as a simple use case. In such systems, when the switch is
pressed, the node triggers the actuator to turn on or off the
light. To realize this, a traditional gateway-based system that
uses RESTful services may be implemented using CoAP
with observe option. The initiator, usually the gateway,
registers at the sensor (in this case the switch) to be notified
whenever the state of a resource representing button presses
changes by sending a (conditional) observe request.
Whenever such an event occurs, the sensor notifies the
gateway by including the current values as payload. The
gateway then triggers the actuator to switch the light on or
off. In this case, every interaction between the sensor and the
actuator is mediated by the gateway.

In our solution, any device connected to the Internet, for
example a smartphone, may initiate the binding. The
process starts when the initiator sends a GET request to the

sensor along with the observe option to establish the
binding. However, additional options have to be included in
the request to inform the sensor that this is a binding request
(not a regular observation request between the sensor and
the initiator). Four new options are introduced to carry all
the binding related information in the request.
BIND_URI_HOST option carries the IPv6 address of the
actuator to be notified and BIND_URI_PORT option, if
present, indicates the UDP port of the actuator. If not
present, the default CoAP server port number is assumed.
The third option, BIND_URI_PATH contains the path to
the resource of interest on the actuator. Whenever an event
occurs, the sensor sends a PUT request to the resource on
the actuator identified by the three new options mentioned
above. The payload of the PUT request may also be
specified by including the BIND_PAYLOAD option, a
fourth newly introduced option. If this option is not
provided, the current sensor reading will be used.

To summarize, the initiator sends a CoAP GET request to
the sensor by specifying the binding information (the four
new options) along with the observe option. Upon receipt,
the sensor registers the actuator as observer and sends a PUT
request to coap://[BIND_URI_HOST]:[BIND_URI_PORT]/BIND_URI_PATH
whenever state changes occur. The payload of the request
could be BIND_PAYLOAD or the current sensor value. The
actuator may take different actions based on the payload. It is
also possible to provide observation criteria as per the
conditional observe draft. Once the binding relationship has
been established, the initiator is no longer involved in further
communications between the sensor and the actuator.

For easy management of binding relationships, the sensor
may expose its active binding relationships through the

GET	 {/s/t}

S

Client

Response	 22

Server

C

T=22

 Figure 1: CoAP Operation

GET	 {/s/t	 	 Obs}

T=22

Client Sensor

Response	 22

SC

T=22

T=22.5Notify	 22.5

T=21

T=22.5
Notify	 21

 Figure 2: Observe Option

GET	 {/s/t	 	 Obs,	 Cond:	 T<22}

T=22

Client Sensor

Response	 22

SC

T=22
T=22.5

T=21

T=22
Notify	 21

 Figure 3: Conditional Observation

/binding resource so that users may modify existing
relationships from the Internet via a RESTful interface.

VI. RESTLETS
In this section, we present the concept of RESTlets, small

IoT application building blocks. RESTlets are modeled with
a set of inputs, control parameters, processing logic and an
output (Fig. 4). The inputs may be sensor readings or outputs
of other RESTlets, which will be further processed to
produce the desired output. The real power of the RESTlet
concept lies in the processing logic. Depending on
application requirements, the processing logic could be as
simple as a negation operation, where the output is the
logical inverse of the input, or as complex as an SMS
module. The control parameters are configurable values such
as phone numbers for SMS applications or a value threshold
for a RESTlet which implements a simple less than (<)
operator. Inputs, controls, and outputs can have any data type
or representation (e.g. JSON, SenML). In fact, RESTlets that
convert between different representation formats or data
types may also be defined. The number of inputs and control
parameters varies, depending on the type or the RESTlet.
The RESTlets may be instantiated as many times as possible
once they have been defined and implemented. This results
in a number of new resources that represent input, output and
control.

After the basic application building blocks, or RESTlets,
have been defined, the desired IoT application can be
programmed by dynamically instantiating the required
RESTlets using the CoAP POST method and by binding the
different components such as sensors, actuators, and the
instantiated RESTlets. Fig. 5 and Fig. 6 show how an
application that triggers an actuator when it gets values from
two sensors can be implemented using RESTlets. The
application requires an AND RESTlet which outputs 1 when
both inputs are 1. This logic is programmed once and can be
reused as many times as desired. Whenever required, the
RESTlet is created by sending a POST request to the node
that hosts the RESTlet by specifying its name. In Fig. 5, the
two inputs of the RESTlet are connected to the two sensors
and the output is connected to the actuator. These
interconnections are actually binding relationships created
by sending GET requests with the binding options to the
different components of the application as shown in Fig 6.

The interaction between sensor and actuator nodes after
a simple binding relationship is usually change/trigger
interaction. This means, when a sensor value changes a
trigger is sent to the actuator. By using RESTlets,
intelligence can be added to these simple interactions, which

is important to achieve simplified sensor application
development using solely CoAP and RESTful mechanisms.

VII. IMPLEMENTATION

A. Implementation of Bindings
We used Erbium in Contiki 2.6 to implement bindings

on constrained devices [11]. The non-constrained devices
were programmed in CoAP++, our own C++
implementation of CoAP and several extensions. The four
new options, namely BIND_URI_HOST, BIND_URI_PORT,
BIND_URI_PATH, and BIND_PAYLOAD were added to the list
of options supported by Erbium and CoAP++. Both sensor
and actuator nodes were Zolertia (Z1) nodes simulated in
Cooja running Erbium. The initiator runs the CoAP++ code.

B. Implementation of RESTlets
To prove the feasibility of the RESTlet concept, we

implemented the RESTlets on the gateway using CoAP++.
The RESTlets were modeled as C++ classes with their
inputs, outputs and control parameters represented as CoAP
resources. The number of inputs and controls differs based
on the type of RESTlet. As described in the previous
sections, the core component of the RESTlets is the
intelligence built into them in the form of member functions
of the classes. Depending on the RESTlet type, the functions
define what to do when an input arrives, when the output is
updated or when a timer expires. For all RESTlet types, there
is an internal wiring between the RESTlet’s input and output
variables in such a way that changes to one of the inputs may
trigger an update to output values.

VIII. EVALUATION

A. Evaluation of Bindings
The basic scenario used for evaluating the binding

concept is the interaction between a resource on a light
switch (as sensor), identified by /gpio/btn, and a light bulb
(as actuator), identified by /lt/on. Pressing the switch is

Figure 4: RESTlet Block Diagram

AND

Information
Host: [SENSOR1/2]
Resource: s/m

S2

A

Information
Host: [HOST]
Resource: restlet

Information
Host: [ACTUATOR]
Resource: a/lt

S1

Figure 5: Block Diagram showing an AND RESTlet

Programming Instructions
POST [HOST]/restlet PAYLOAD: “RN=AND”

[RESPONSE: Location-Path = /restlet/2334]
GET [SENSOR1]/s/m BINDURI: [HOST]/restlet/2334/input/0
GET [SENSOR2]/s/m BINDURI: [HOST]/restlet/AND_1/input/1
GET [HOST]/restlet/AND_1/output BINDURI: [ACTUATOR]/a/lt

Figure 6: Programming instructions to realize the application

simulated by reading values from a random sequence of 100
0’s and 1’s. If there is a transition from 0 to 1 or vice versa
in subsequent readings, this indicates a button press which
will trigger a notification to be sent to the observers. We
also used different network topologies to see the impact on
performance (Fig. 7). In all cases, we used RPL [12] as
routing protocol in the constrained network. All tests were
run 10 times for each topology. We compared memory
footprint, transmission delay, and packet size of the binding
solution against the CoAP gateway-based solution.

1) Memory Footprint
The original Erbium code has been modified to support

bindings. The modifications include defining, serializing
and parsing the new options; and extending the observation
table to store the binding information; and a mechanism to
check, update and delete bindings through the /binding
resource. All these changes require additional memory
space mainly in the code (text) segment and the BSS area.
For instance, the Code segment for the gateway-based
solution was 48,434bytes and increased to 51,160bytes to
support the binding solution. Similarly, the Data and BSS
sections also showed a slight increase from 362bytes and
5,760bytes to 380 and 5894 bytes, respectively (considering
only 1 observer).
However, this approach has also its own limitation. The
memory requirement, specifically the BSS region, of both
solutions increases when the number of observers increases.
For instance, in our experiment every additional observer
requires an additional 232 bytes and 266 bytes, respectively,
for the gateway-based and the binding solutions. As
memory is scarce in constrained devices, this will limit the
number of observers allowed to register at the same time
and thus the number of simultaneous bindings that can be
supported. Here the gateway solution has an advantage since
it may achieve scalability by aggregating multiple observe
requests at the gateway avoiding one to one relationships
between multiple actuators and a sensor.

2) Communication Delay
We calculated the time difference between the occurrence

of an event at the sensor and the reception of the PUT
packet at the actuator to compute the communication delay.
We repeated the test for all three topologies. In our
experiment, the gateway-based solution resulted in higher
delay in all three topologies. In case of the gateway-based
solution, every notification goes all the way to the gateway

and actuator triggers are sent all the way down to the
actuator even if the sensor and actuator are very close in the
routing path. This explains the higher communication delay
of the gateway-based solution.

3) Packet size
Packet sizes larger than the MTU of LLNs may result in
fragmentation of packets which leads to sub-optimal
solutions. For IEEE 802.15.4 based LLNs, the maximum
packet size is 127 bytes [19]. The direct binding solution
uses larger packets to establish the relationships, as it has to
include the binding information in the request. However, if
we use a reasonable resource path, as indicated by the IPSO
Application Framework [13], and reasonable sized payload,
this size does not exceed this limit. Moreover, this request is
sent only once when we want to establish the relationship.
Packet sizes of subsequent interactions between sensors and
actuators are the same for both solutions. From this, we can
conclude that the binding solution does not have a
significant impact on the packet size to the extent that
affects communication in the network.

B. Evaluation of Restlets
1) Programming Complexity

We used a lifestyle monitoring application as an
example to perform the evaluation. The application has to
toggle an alarm light in the house when the resident is not
active for 24 hours. The resident is considered to be active
when 2 motion sensors (e.g. one in the living room and the
other in the hallway) together generate more than 10 signals
or when the refrigerator door is opened and closed at least 2
times during a 24-hour period. The respective sensor
resources are identified by [SH]/s/m (motion sensor in the
hallway), [SL]/s/m (motion sensor in the living room) and
[SF]/s/r (the magnetic contact sensor on the fridge door). The
application was built twice, once without the RESTlet
concept and once with the RESTlet concept.

For the non-RESTlet application development, we
employed a RESTful approach using CoAP with the observe
option where the gateway establishes an observation
relationship with each sensor by sending a CoAP GET
request with (conditional) observe option. Whenever the
gateway receives notifications from the sensors, it executes a
sequence of code to realize the desired result. Fig. 8 shows
high-level code that should be executed to realize the
application under consideration.

The RESTlet approach makes use of 5 RESTlets to
achieve the same result, as indicated in the block diagram
shown in Fig. 9. The output of the two motion sensors is
used as input to the COUNTER RESTlet which increment its
output value whenever it receives a new input. The
ISLARGER RESTlet takes the output of the first COUNTER
RESTlet and produces 1 if the input is larger than 9 and 0
otherwise. Similarly, the output of the reed sensor on the
fridge is fed into the counter, which, in turn is connected, to
another ISLARGER RESTlet. The OR RESTlet accepts two
inputs and performs a logical OR. The output of the OR

Actuator	 Node

WSN

Border	 Router Sensor	 NodeInitiator

Internet

Node	 Types:

(a) (b) (c)

Figure 7: Topologies - (a) Two hops away (b) Sensor in the Middle

(c) Actuator in the Middle

RESTlet is used to trigger the Actuator A. In the whole
system, there are 2 different types of control parameters,
time based and value based (in the figure, TT and VT
respectively). It is interesting to note that the output of the
counters is a non-negative integer while the output of the
remaining RESTlets is Boolean.

To create the desired application, we send 5 POST
request to the /restlet resource of the HOST chosen to store
the RESTlets. This will dynamically create the RESTlets
and their input, output and control resources. In this
example, we used the RESTlet type followed by a number
to be used as unique id for the RESTlet resources. For
instance, the first counter is COUNTER_1 and the second is
COUNTER_2. If the resources are successfully created, the
Location-Path option of the response contains the base
location of the created input and output resources. The
resources are represented as restlet-id/resource-
type/resource-number. For example, COUNTER_1/input/0
refers to the first input of the COUNTER_1 RESTlet.

The next step of the programming is binding the output
of one component to the input of another component by

sending GET requests to the different hosts. It is interesting
to note that the outputs of the two sensors are all bound to
the single input of the counter because of the requirement of
the application. If the outputs of each sensor had to be treated
separately, each sensor output would have been bound to
different counters. In this case, we would have more
instantiations of COUNTER RESTlets in our application
without requiring additional programming.

This approach has several advantages. One of the
advantages is the simplification of application development.
Most of the application logic is already implemented in the
RESTlets. As the processing logic of the RESTlets can be
very basic logical (AND, OR, NOT, XOR …) or arithmetic
operations (COUNTER, ADD, SUBTRACT, MULTIPLY,
DIVIDE …), building applications will be as simple as
sending RESTful messages to create bindings between the
different components (Sensors, RESTlets, and Actuators).
In addition, some general purpose complex modules can
also be modeled to be used by most applications. Examples
of such modules include an SMS module that sends text to a
preconfigured number and a WriteToDatabase Module
which sends outputs to a database on a specific host.

The other advantage of the RESTlets approach is the
flexibility of placement. Based on the application
requirements and the complexity (or simplicity) of the
RESTlets, they may be placed in the cloud, the sensor
network gateway or in the LLN. It is also possible to place
different RESTlets of the same application at different
places or on different devices. This flexibility in placement
of the RESTlets is important to optimize different aspects of
the resources in the sensor network. Putting all RESTlets in
the sensor network reduces the traffic flow to the gateway,
and hence, reduces traffic congestion at the uplink nodes
and improves delay. However, this might introduce
additional processing and memory overhead on constrained
devices. A better alternative may be putting simple
RESTlets in the constrained network and complex RESTlets
at the gateway or in the cloud. This way we may balance
traffic congestion and resource utilization of the resources.
Alternatively, we may also use more capable nodes (with
more memory and processing speed) in the sensor network
to host the RESTlets. However, optimal RESTlet placement
is outside the scope of this paper.

This solution uses a CoAP based RESTful application
development model by breaking down applications into
small and manageable units and interconnecting those units

if (EVENT == "MOTION_HALL_OBSERVE“ ||
EVENT == "MOTION_LIVING_OBSERVE")

{
numberOfTimesMovementDetected++;
if (numberOfTimesMovementDetected >= 10)
{

// start again for new interval
numberOfTimesMovementDetected = 0;
numberOfTimesFridgeOpened = 0;

}
restartTimer(86400s);

}
else if (Event == "REED_FRIDGE_OBSERVE")
{

if (lastStatus == “CLOSED")
{

numberOfTimesFridgeOpened++;
if (numberOfTimesFridgeOpened >= 2)
{

// start again for new interval
numberOfTimesMovementDetected = 0;
numberOfTimesFridgeOpened = 0;

}
restartTimer(86400s);

}
}

}

GET [SH]/s/m, obs
GET [SL]/s/m, obs
GET [SF]/s/r, obs

Step	 2:	 Create	 Observe	 relationship	 with	 sensors

Step	 3:	 Create	 the	 Programming	 Logic

numberOfTimesMovementDetected = 0
numberOfTimesFridgeOpened = 0
StartTimer(86400s)

Step	 1:	 Initialization	

Figure 8: non-RESTlet RESTful Application Code

Figure 9: Block Diagram Showing Binding of RESTlets

using REST mechanisms. Using the same protocol, CoAP
and the same mechanisms (GET, PUT and POST) to realize
simple sensor/actuator bindings and IoT application
development is also an added advantage.

2) Memory Requirement
In our RESTlet model, the actual memory requirement of

an application depends on the number and type of RESTlets
used to realize the application. For instance, the RESTlets
we created for experimentation are the basic application
building blocks such as logical AND, logical OR, and
counters, which have a minimum of 340 bytes and a
maximum of 384 bytes. The memory requirement of an
application increases as more RESTlets are being used. For
example, the lifestyle monitoring application discussed
above used 1724 bytes. The whole amount of memory
might be taken from one device or it might be distributed
among different devices in the network.

There is a trade-off between putting all RESTlets on the
same machine and distributing them among multiple nodes.
If all RESTlets are defined on one device, the memory
requirement will be higher, particularly for devices hosting
multiple applications that involve several RESTlets. On the
other hand, the traffic flow will be almost non-existent as
most of the binding execution stays within the same device.
Distributing the RESTlets among multiple devices reduces
the per-device memory requirement but increases the traffic
in the network. One of our future works is experimenting
with different applications to suggest optimal placements of
the RESTlets.

3) Processing Time
In the RESTlet approach, the total processing time of an

application to perform a given task is the sum of the
processing time of every RESTlet code and the transmission
of CoAP packets between RESTlets. The transmission time
is also computed as the sum of the packet processing time
and the radio communication time. If all RESTlets are on
the same device the radio communication time is non-

existent. Therefore, the total processing time is the sum of
processing time of the RESTlets code and the packet
processing time. With the appropriate cross-layer
optimization, the packet processing time could be reduced to
0. This could make the processing overhead of the RESTlet
approach smaller. Cross-layer optimization is also part of
our future work.

IX. RELATED WORK
There are different works that address the association of

sensor and actuator nodes. Zigbee End Device binding [7] is
one of the notable works that addresses device bindings. [7]
states that devices with a similar profile can be dynamically
bound by the ZigBee coordinator if they meet specific
requirements such as matching cluster IDs. This solution
puts a rather stringent requirement on the nodes making its
flexibility quite limited. The CoRE Interfaces draft [14],
also mentions the concept of bindings in the context of
CoAP. In this context, a binding is called the abstract
relationship between two resources. The mechanism
proposed in the draft allows end devices to establish a
binding relationship through discovery mechanisms or
through human intervention and then synchronize the
content of their resources. Three binding methods, namely
polling, observe and push, are defined to achieve this
synchronization. The observe method creates an observation
relationship between the end points and every notification
copies the content of the resource to the observer. This
solution has its advantages as it provides a generic solution
that can be used in interface descriptions. However, the
solution focuses on synchronizing the contents of two
resources on different end devices. It is not possible to
execute a specific action on the other device. Additional
programming logic is still required to send the appropriate
trigger to the same or different actuator.
There are also a number of works on IoT application
development models. Some developers prefer WS-* such as
SOAP requests and responses transmitted over the network
using HTTP for IoT applications while others suggest
RESTful approaches [15]. Based on a research conducted on
developers, [16] concludes REST to be easier to program
smart objects. One of the RESTful approaches is the
Actinium runtime container which exposes Java Scripts,
configurations and their management through a RESTful
programming interface using CoAP [21]. The proposed
architecture breaks large programs into smaller apps for
reusability as our system does. However, there are a number
of differences from our work. First, the apps (scripts)
contain the CoAP requests, whereas RESTlets are just
processing units and the link between RESTlets, sensors and
actuators is made via the binding process. Second, this
approach requires the devices to understand and execute the
scripting language which is hard to apply in constrained
devices. Finally, the core of the architecture, the runtime
container, must be run in a non-constrained environment
while our solution can fully be decentralized. The other

GET [S1]/s/m BIND_URI = [HOST]//restlet/COUNTERS_1/input/0
GET [S2]/s/m BIND_URI = [HOST] /restlet/COUNTERS_1/input/0
GET [S3]/s/d BIND_URI = [HOST] /restlet/COUNTERS_2/input/0
GET [HOST]/restlet/COUNTERS_1/output BIND_URI = [Host]/restlet/ISLARGER_1/input/0
GET [HOST]/restlet/COUNTERS_2/output BIND_URI = [Host] /restlet/ISLARGER_2/input/0
GET [HOST]/restlet/ISLARGER_1/output BIND_URI = [Host] /restlet/OR_1/input/0
GET [HOST]/restlet/ISLARGER_2/output BIND_URI = [Host] /restlet/OR_1/input/1
GET [HOST]/restlet/OR_1/output BIND_URI = [A] /a/toggle

POST [Host]/restlet Payload: “RN=COUNTERS;TT=86400;”
[Response: Location-path = /restlet/COUNTERS_1]

POST [Host]/restlet Payload: “RN=COUNTERS;TT=86400;”
[Response: Location-Path = /restlet/COUNTERS_2]

POST [Host]/restlet Payload: “RN=ISLARGER;VT=9;”
[Response: Location-Path = /restlet/ISLARGER_1]

POST [Host]/restlet Payload = “RN=ISLARGER;VT=2;”
[Response: Location-Path = /restlet/ISLARGER_2]

POST [Host]/restlet Payload = “RN=OR;”
[Response: Location-path = /restlet/OR_1]

Step 1: Create the necessary RESTlets.

Step 2: Create the bindings to interconnect components.

Figure 10: Application Code for RESTlets

RESTful approach for IoT application development is Thing
Broker [17], a platform that provides a Twitter-based
RESTful interface for IoT application development. This
approach uses “things” (e.g. sensors, data, computers, etc.)
and “events” for application development. The whole world
is considered to be composed of things, and events are
associated with things. When a new event is generated by a
thing, its data will be available to its followers. This
approach is considerably different from our approach as it
uses a high level abstraction of devices, data and events
while we focus on loose coupling of processing of data and
devices. LooCi [18] is another component and binding
model for IoT applications. It uses an event-based binding
model and standardized event types that allow easy
component interactions and re-use of components. This
approach uses RPC for communication.

X. CONCLUSION AND FUTURE WORK
In this paper we presented how the CoAP protocol is

extended to implement direct bindings of any two CoAP-
enabled devices using a third party device. The two devices
continue communicating with each other without
involvement of the third party. As binding creation is
entirely based on CoAP, it creates flexible communication
between any two communicating devices contributing to the
vision of a network of everything. We further extended the
binding concept to add intelligence to the interaction of
nodes by augmenting processing logic to the interactions.
These entities, called RESTlets, can be used as building
blocks for simple IoT applications. RESTlets take input
from sensors or other RESTlets, process them and generate
output which, in turn, will serve as input for other RESTlets
or as a trigger to actuators. By dynamically creating
RESTlets and binding inputs with outputs, the desired IoT
application can be created without explicit coding for each
application. The simplicity of the RESTlets allow them to
be distributed throughout the network to improve efficiency.

There are a number of optimizations that are planned for
the binding concept as well as the RESTlets. We plan to
work on cross-layer optimization solutions such as
modifying the routing protocol, MAC protocol or the RDC
protocol to be aware of active bindings in order to further
improve the performance of bindings. These improvements
of bindings also improve RESTlet interactions. Suggesting
optimal distribution of RESTlets in the network and
implementing RESTlets on constrained devices will also be a
topic of our future work. In addition, identifying suitable
RESTlet content formats will also be part of our future work.
A Binding Directory, a resource-directory like entity [20],
which stores all active bindings, will also be developed to
enable easy management of bindings and debugging of
RESTlet based applications.

ACKNOWLEDGMENT
This work has been supported by the VLIR-UOS, through the Inter

University Cooperation program at Jimma University (IUCJU), Ethiopia.

REFERENCES
[1] A. Z. Alkar, U. Buhur, “An Internet Based Wireless Home

Automation System for Multifunctional Devices,” Consumer
Electronics, IEEE Transactions on (Volume:51 , Issue: 4), 2005

[2] Vehbi C. Gungor, Gerhard P. Hancke, “Industrial Wireless Sensor
Networks: Challenges, Design Principles, and Technical
Approaches,” IEEE Trans. on Ind. Elect., VOL. 56, NO. 10

[3] V. C. Gungor, B. Lu, G. P. Hancke, “Opportunities and Challenges of
Wireless Sensor Networks in Smart Grid,” IEEE Trans. on Ind.
Elect., VOL. 57, NO. 10, p. 3557, 2010

[4] N. Kushalnagar, G. Montenegro, C. Schumacher, “RFC4919: IPv6
over Low-Power Wireless Personal Area Networks
(6LoWPANs):Overview, Assumptions, Problem Statement, and
Goals,” IETF , August 2007.

[5] Z. Shelby, K. Hartke, and C. Bormann, "Constrained Application
Protocol (CoAP)", draft-ietf-core-coap-18 (work in progress), IETF,
June 2013.

[6] I. Ishaq, et al., “IETF Standardization in the Field of the Internet of
Things (IoT): A Survey,” Journal of Senor Actuator Networks, 2013.

[7] ZigBee Alliance, “ZigBee Specifications r13,” 2006.
[8] K. Hartke, “Observing Resources in CoAP (draft-ietf-core-observe-

18),” work in progress, IETF, 2014.
[9] L. Shi, J. Hoebeke, F. Van den Abeele, and A. Jara, “Conditional

observe in CoAP (draft-li-core-conditional-observe-04),” June 2013.
[10] G. K. Teklemariam, J. Hoebeke, I. Moerman, P. Demeester,

“Facilitating the creation of IoT applications through conditional
observations in CoAP,” EURASIP Journal on Wireless
Communications and Networking, 2013:177

[11] M. Kovatsch, S. D, “A Low-Power CoAP for Contiki,” Proceedings
of the 8th IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (MASS 2011), Valencia

[12] T. Winter, P. Thubert, and et al., "RPL: Routing Protocol for Low
Power and Lossy Networks, RFC6550," March 2012.

[13] Z. Shelby, C. Chauvenet, “The IPSO Application Framework (draft-
ipso-app-framework-04),” IPSO Alliance , August 2012.

[14] Z. Shelby, “CoRE Interfaces (draft-shelby-core-interfaces-05), (work
in progress)” March 2013

[15] C. Pautasso, O. Zimmermann, F. Leymann, “RESTful Web Services
vs. ‘Big’ Web Services: Making the Right Architectural Decision,”
WWW 2008, April 2008, Beijing.

[16] D. Guinard, I. Ion, and S. Mayer, “In Search of an Internet of Things
Service Architecture: REST or WS-*? A Developers' Perspective,”
Mob. & Ubiq. Sys: Computing, Networking, and Services Lecture
Notes, Volume 104, 2012, pp 326-337

[17] R. A. P. Almeida, R. Calderon, et. al, “Thing Broker: A Twitter for
Things,” UbiComp’13, September 8–12, 2013, Zurich, Switzerland

[18] D. Hughes, K. Thoelen, et. al, “LooCI: a Loosely-coupled
Component Infrastructure for Networked Embedded Systems,”
MoMM2009, December 14–16, 2009, Kuala Lumpur, Malaysia

[19] IEEE Computer Society, "IEEE Std. 802.15.4-2006", October 2006
[20] Z. Shelb, C. Bormann, S. Krco, “CoRE Resource Directory,” draft-

ietf-core-resource-directory-01, December 2013
[21] M. Kovatsch, M. Lanter, S. Duquennoy, “Actinium: A RESTful

Runtime Container for Scriptable Internet of Things Applications,”
Internet of Things (IoT) 3rd International Conference, 2012

