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Abstract— The wireless communication capability of sensors and 
actuators made them suitable for several automation solutions 
which involve sensing physical properties and acting upon them. 
These days, gateway or cloud based sensor/actuator interaction 
models are widely used. In this model, every sensor/actuator 
interaction goes through the gateway or via the cloud. In order to 
realize the true Internet of Things philosophy where everything is 
interconnected, direct interactions between sensors and actuators, 
also called bindings, are important. In addition to this, alternative 
IoT application development models which facilitate application 
development and improve efficiency are required. In this paper, we 
introduce a CoAP based sensor/actuator binding solution where a 
3rd party is responsible for setting up the binding, but is not 
involved in any of the further interactions. As binding creation and 
execution is fully based on RESTful CoAP interactions, very 
flexible bindings between any two devices can be created. Further, 
the binding concept is extended into the RESTlet concept for 
introducing (pre-)processing into the sensor/actuator interactions. 
RESTlets are small application building blocks with internal 
processing logic and RESTful interfaces for input, control and 
output. In this paper we present how IoT applications can be 
created by binding different RESTlets to each other and to sensors 
and actuators. We implemented these solutions in CoAP++ and 
Contiki and evaluated the implementation by taking different 
measures such as delay, memory footprint, and packet size. 

Keywords: IoT application development; Sensor/Actuator 
bindings; CoAP; Observe Option 

I.  INTRODUCTION 
The communication capability that was recently added to 

sensor and actuator nodes has made them the future corner 
stones of the Internet. There are a huge number of 
applications that make use of sensors and actuators [1][2][3]. 
However, the networks that interconnect these nodes are 
usually characterized as Low power and Lossy Networks 
(LLNs) due to the unreliability of the network. This 
distinctive feature is basically the result of the constrained 
nature of the nodes (in terms of processing speed, memory, 
and power) and their limited radio communication capacity. 
For a long time, this limited the direct accessibility of these 
nodes from the Internet. As a way out, many vendors used 
gateways as intermediaries for all communication between 
the nodes and the external world. In addition, the 
communication protocols used in the LLNs were proprietary, 
restricting interoperability of different solutions even further.  

Aware of these limitations, IETF established different 
working groups to address the limiting factors of constrained 
devices so that the nodes could run standard network 
protocols and become accessible directly from any network. 
6LoWPAN [4] introduced an adaptation layer just below the 

IP layer so that IPv6 packets can be successfully transmitted 
through a wireless sensor and actuator network. IETF also 
focuses on the application layer to provide lightweight 
application protocols suitable for constrained devices. The 
Constrained Application Environment (CoRE) working 
group was tasked with coming up with such protocols and 
guidelines. The Constrained Application Protocol (CoAP) 
[5] is one of the achievements of this working group. The 
protocol is a lightweight counterpart of the HTTP protocol. 
The CoAP protocol allows communication with constrained 
devices in a RESTful way. The working group is also 
working on further extensions of the protocol. One such 
extension is the observe option that easily allows monitoring 
of resource states on sensors. These and other related 
protocols allow users from the Internet to interact directly 
with the constrained devices.  

In this paper, we present a CoAP-based simple and 
flexible way to realize direct interactions between sensors 
and actuators, called binding. In addition, we introduce the 
concept of RESTlets, which are IoT application building 
blocks with inputs, control parameter, basic processing logic 
and outputs. Bindings are then used as the glue between the 
RESTlets, sensors and actuators to create basic IoT 
applications. . The main contribution of this work is twofold 
the first of which is a novel mechanism to enable direct 
sensor and actuator interaction from any network by 
eliminating the need for the intermediary watching over 
every interaction. The second contribution is a new RESTful 
application development model based on the binding and 
RESTlet concept. The concepts described in this paper all 
build upon the same protocol, CoAP, and RESTful 
mechanisms to achieve goals ranging from simple sensor-
actuator associations to IoT application development. 

The next section describes the sensor/actuator direct 
interaction challenges followed by the current IoT 
application development issues which motivated us to 
propose the solutions presented in this work. Section four 
briefly discusses the protocol that lies at the heart of the 
proposed systems, CoAP, and two of its extensions, Observe 
and Conditional Observe. Section five discusses the binding 
solution and section six describes RESTlets. Section seven 
and eight elaborate on the implementation and evaluation of 
the binding and the RESTlet concepts. Related work will be 
discussed in Section nine while Section ten concludes the 
paper by indicating future work. 

II. CHALLENGES OF SENSOR/ACTUATOR BINDING 
In order to take full advantage of the communication 

capability of sensor and actuator nodes, it is important to 
make them accessible from the Internet. Different solutions 
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have been proposed to do so. Most of the solutions use 
third-party devices, usually a gateway or a cloud service, to 
control sensor/actuator interactions. This device or service 
handles the collection of sensor events and generation of 
actuator triggers. In other words, every sensor sends its data 
to the 3rd party and the 3rd party generates the appropriate 
triggers. Given the possibility of interconnecting everything 
in the current Internet of Things setup, we can see several 
limitation of this approach. First, users may need to initiate 
and control sensing and actuation from any device or any 
network. For instance, users may want to directly change the 
lighting settings of a home automation system from the 
Internet using their smartphone. Second, the intermediate 
node has to be always online to provide the required binding 
functionality. If the device or service fails, the 
sensor/actuator interaction will be disrupted making the 
device or the service a single point of failure for the whole 
network. In large networks, where several sensors and 
actuators are engaged in frequent interactions, sending all 
packets to the gateway or cloud service may introduce 
additional delays or network congestions. 

Direct interaction of sensors and actuators without the 
involvement of a third party is an alternative that overcomes 
most of the aforementioned issues. One such solution is pre-
programming the sensor/actuator bindings when deploying 
the network and reprogramming them whenever the 
bindings have to be changed. This solution eliminates the 
intermediary from the network but it is inflexible and may 
not be applicable for all use cases. Another solution is 
creating bindings by putting them in physical proximity and 
initiating a coupling procedure. This solution also works for 
initial setup but lacks the flexibility of changing the binding 
thereafter. Other solutions only allow bindings between 
devices that have well-defined interfaces [7], limiting the 
Internet of Things vision that every device can interact with 
any other device. 

In this paper, we propose a CoAP based flexible 
sensor/actuator binding solution that resolves the limitations 
discussed above. The proposed solution allows direct 
sensor/actuator interactions, thereby removing the 
dependence on gateways or cloud services to coordinate the 
interaction between these constrained nodes. In addition, 
interfaces for easy manipulation of bindings will make 
creation of and control over bindings easy and flexible. This 
concept makes sensor and actuator nodes smarter as they can 
directly interact with other components. In addition, as we 
will show later, the concept can be extended to facilitate the 
development of IoT applications. This development exhibits 
several challenges, as we will discuss in the following 
section. 

III. IOT APPLICATION DEVELOPMENT 
Different solutions that make use of networked sensors 

and actuators may require some form of (pre-)processing to 
be applied on sensor data before a decision can be made 
whether an actuator should be triggered or not. An example 
of such processing could be counting the number of events 

from different sensors before triggering an actuator. In many 
cases, this intelligence is implemented at the network 
gateway or in the cloud. Here, every sensor’s data is sent to 
the gateway or the cloud for further processing, after which a 
decision is sent back down in the LLN to the actuator. This 
approach poses similar problems as the binding of sensors 
and actuators. WS-* or HTTP based RESTful mechanisms 
are usually used to develop the IoT applications at the 
gateways or in the cloud. Processing often takes place 
outside the sensor network requiring an always-on 
intermediary no matter how trivial the required processing is. 
In addition, processing often requires programming of all 
RESTful interactions and processing logic, limiting reuse of 
processing logic across IoT applications. An interesting 
alternative to this approach is a model that provides reusable 
and small application building blocks that can be placed 
anywhere in the network (at the gateway, in the cloud or in 
the LLN) and use RESTful mechanisms to interconnect these 
components to perform the desired processing or build an 
application. Some initiatives have appeared already that aim 
to break down IoT applications into small units [21], but they 
do not achieve a complete separation between processing 
logic and the RESTful interactions.  

In this paper, we propose a simplified IoT application 
development model based on such application building 
blocks, which we call RESTlets and use bindings to 
interconnect the RESTlets, sensors and actuators, effectively 
adding intelligence to normal CoAP-based sensor/actuator 
interactions. 

IV. COAP, OBSERVE AND CONDITIONAL OBSERVE 
The Constrained Application Protocol (CoAP) [4] is an 
IETF proposed standard suitable for machine-to-machine or 
IoT interactions. The protocol works in a similar way as 
HTTP and implements a minimal subset of REST. 
Consequently, a mapping between both protocols is 
possible. CoAP uses the same methods as HTTP when 
sending requests from clients to servers, namely GET, PUT, 
POST, DELETE. Since TCP is too resource intensive for 
constrained devices, CoAP uses UDP with confirmable 
messages at the transport layer. In a normal client/server 
interaction, the CoAP client sends a request to a specific 
resource on a server by using one of the four methods and 
the server responds with the current representation of the 
resource of interest (for GET requests) or the appropriate 
response for the other mechanisms. Fig. 1 shows a typical 
client/server interaction where the client sends a GET 
request to receive the current temperature value on the 
server, represented by the resource /s/t. In the example, the 
server responds with the latest value, in this case 22.  

For resource monitoring applications, clients need to have 
an up-to-date representation of data from servers. Sending 
periodic requests to servers (polling) is not an optimal 
solution for constrained devices. Observe [8] is an 
interesting extension of the CoAP protocol where clients 
inform their interest of getting an up-to-date resource 
representation from servers. After that, servers send 



notifications whenever resource states change. To establish 
this observation relationship, the same GET method is used 
with the Observe option included in the first request (Fig 2). 
Upon reception of this request, the server notifies the 
current state of the resource to the client and registers the 
client for further notification of events. This is an interesting 
optimization of the protocol that avoids continuous listening 
for changes. However, there is still a room for further 
optimization of this approach. In many applications, every 
state change might not be significant enough to take action. 
In such cases, clients will drop the packets after comparing 
the payload against a specific threshold. Dropping packets 
that are generated by a constrained device and that have 
travelled through a constrained network is not so optimal. 
Therefore, further optimization can be obtained through 
Conditional Observation [9] where clients also send 
notification criteria when they register for observation. This 
means that servers will only notify clients if the resource 
state meets the criteria stated upon registration. Detailed 
implementation and evaluation of Conditional observation is 
given in [10]. In Figure 3, the client mentions that it is 
interested to be notified only when the temperature change 
results in a value less than 22. 

V. DIRECT SENSOR AND ACTUATOR BINDINGS 
Direct interaction of sensor and actuator nodes is 

advantageous for easy deployment, independent operation 
and management of wireless sensor/actuator networks. In 
this section we use the interaction of electric light bulb 
(actuator) and a switch (sensor) in a home automation system 
as a simple use case. In such systems, when the switch is 
pressed, the node triggers the actuator to turn on or off the 
light. To realize this, a traditional gateway-based system that 
uses RESTful services may be implemented using CoAP 
with observe option. The initiator, usually the gateway, 
registers at the sensor (in this case the switch) to be notified 
whenever the state of a resource representing button presses 
changes by sending a (conditional) observe request. 
Whenever such an event occurs, the sensor notifies the 
gateway by including the current values as payload. The 
gateway then triggers the actuator to switch the light on or 
off. In this case, every interaction between the sensor and the 
actuator is mediated by the gateway. 

In our solution, any device connected to the Internet, for 
example a smartphone, may initiate the binding. The 
process starts when the initiator sends a GET request to the 

sensor along with the observe option to establish the 
binding. However, additional options have to be included in 
the request to inform the sensor that this is a binding request 
(not a regular observation request between the sensor and 
the initiator).  Four new options are introduced to carry all 
the binding related information in the request. 
BIND_URI_HOST option carries the IPv6 address of the 
actuator to be notified and BIND_URI_PORT option, if 
present, indicates the UDP port of the actuator. If not 
present, the default CoAP server port number is assumed. 
The third option, BIND_URI_PATH contains the path to 
the resource of interest on the actuator. Whenever an event 
occurs, the sensor sends a PUT request to the resource on 
the actuator identified by the three new options mentioned 
above. The payload of the PUT request may also be 
specified by including the BIND_PAYLOAD option, a 
fourth newly introduced option. If this option is not 
provided, the current sensor reading will be used. 

To summarize, the initiator sends a CoAP GET request to 
the sensor by specifying the binding information (the four 
new options) along with the observe option. Upon receipt, 
the sensor registers the actuator as observer and sends a PUT 
request to coap://[BIND_URI_HOST]:[BIND_URI_PORT]/BIND_URI_PATH 
whenever state changes occur. The payload of the request 
could be BIND_PAYLOAD or the current sensor value. The 
actuator may take different actions based on the payload. It is 
also possible to provide observation criteria as per the 
conditional observe draft. Once the binding relationship has 
been established, the initiator is no longer involved in further 
communications between the sensor and the actuator. 

For easy management of binding relationships, the sensor 
may expose its active binding relationships through the 
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/binding resource so that users may modify existing 
relationships from the Internet via a RESTful interface. 

VI. RESTLETS 
In this section, we present the concept of RESTlets, small 

IoT application building blocks. RESTlets are modeled with 
a set of inputs, control parameters, processing logic and an 
output (Fig. 4). The inputs may be sensor readings or outputs 
of other RESTlets, which will be further processed to 
produce the desired output. The real power of the RESTlet 
concept lies in the processing logic. Depending on 
application requirements, the processing logic could be as 
simple as a negation operation, where the output is the 
logical inverse of the input, or as complex as an SMS 
module. The control parameters are configurable values such 
as phone numbers for SMS applications or a value threshold 
for a RESTlet which implements a simple less than (<) 
operator. Inputs, controls, and outputs can have any data type 
or representation (e.g. JSON, SenML). In fact, RESTlets that 
convert between different representation formats or data 
types may also be defined. The number of inputs and control 
parameters varies, depending on the type or the RESTlet. 
The RESTlets may be instantiated as many times as possible 
once they have been defined and implemented. This results 
in a number of new resources that represent input, output and 
control. 

After the basic application building blocks, or RESTlets, 
have been defined, the desired IoT application can be 
programmed by dynamically instantiating the required 
RESTlets using the CoAP POST method and by binding the 
different components such as sensors, actuators, and the 
instantiated RESTlets. Fig. 5 and Fig. 6 show how an 
application that triggers an actuator when it gets values from 
two sensors can be implemented using RESTlets. The 
application requires an AND RESTlet which outputs 1 when 
both inputs are 1. This logic is programmed once and can be 
reused as many times as desired. Whenever required, the 
RESTlet is created by sending a POST request to the node 
that hosts the RESTlet by specifying its name. In Fig. 5, the 
two inputs of the RESTlet are connected to the two sensors 
and the output is connected to the actuator. These 
interconnections are actually binding relationships created 
by sending GET requests with the binding options to the 
different components of the application as shown in Fig 6. 

The interaction between sensor and actuator nodes after 
a simple binding relationship is usually change/trigger 
interaction. This means, when a sensor value changes a 
trigger is sent to the actuator. By using RESTlets, 
intelligence can be added to these simple interactions, which 

is important to achieve simplified sensor application 
development using solely CoAP and RESTful mechanisms. 

VII. IMPLEMENTATION 

A. Implementation of Bindings 
We used Erbium in Contiki 2.6 to implement bindings 

on constrained devices [11]. The non-constrained devices 
were programmed in CoAP++, our own C++ 
implementation of CoAP and several extensions. The four 
new options, namely BIND_URI_HOST, BIND_URI_PORT, 
BIND_URI_PATH, and BIND_PAYLOAD were added to the list 
of options supported by Erbium and CoAP++. Both sensor 
and actuator nodes were Zolertia (Z1) nodes simulated in 
Cooja running Erbium. The initiator runs the CoAP++ code.  

B. Implementation of RESTlets 
To prove the feasibility of the RESTlet concept, we 

implemented the RESTlets on the gateway using CoAP++. 
The RESTlets were modeled as C++ classes with their 
inputs, outputs and control parameters represented as CoAP 
resources. The number of inputs and controls differs based 
on the type of RESTlet. As described in the previous 
sections, the core component of the RESTlets is the 
intelligence built into them in the form of member functions 
of the classes. Depending on the RESTlet type, the functions 
define what to do when an input arrives, when the output is 
updated or when a timer expires. For all RESTlet types, there 
is an internal wiring between the RESTlet’s input and output 
variables in such a way that changes to one of the inputs may 
trigger an update to output values. 

VIII. EVALUATION 

A. Evaluation of Bindings 
The basic scenario used for evaluating the binding 

concept is the interaction between a resource on a light 
switch (as sensor), identified by /gpio/btn, and a light bulb 
(as actuator), identified by /lt/on. Pressing the switch is 
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Figure 5: Block Diagram showing an AND RESTlet  

Programming Instructions
POST [HOST]/restlet PAYLOAD: “RN=AND”

[RESPONSE: Location-Path = /restlet/2334]
GET [SENSOR1]/s/m  BINDURI: [HOST]/restlet/2334/input/0 
GET [SENSOR2]/s/m  BINDURI: [HOST]/restlet/AND_1/input/1
GET [HOST]/restlet/AND_1/output  BINDURI: [ACTUATOR]/a/lt

 
 

Figure 6: Programming instructions to realize the application 



simulated by reading values from a random sequence of 100 
0’s and 1’s. If there is a transition from 0 to 1 or vice versa 
in subsequent readings, this indicates a button press which 
will trigger a notification to be sent to the observers. We 
also used different network topologies to see the impact on 
performance (Fig. 7). In all cases, we used RPL [12] as 
routing protocol in the constrained network. All tests were 
run 10 times for each topology. We compared memory 
footprint, transmission delay, and packet size of the binding 
solution against the CoAP gateway-based solution.  

1) Memory Footprint 
The original Erbium code has been modified to support 

bindings. The modifications include defining, serializing 
and parsing the new options; and extending the observation 
table to store the binding information; and a mechanism to 
check, update and delete bindings through the /binding 
resource. All these changes require additional memory 
space mainly in the code (text) segment and the BSS area. 
For instance, the Code segment for the gateway-based 
solution was 48,434bytes and increased to 51,160bytes to 
support the binding solution. Similarly, the Data and BSS 
sections also showed a slight increase from 362bytes and 
5,760bytes to 380 and 5894 bytes, respectively (considering 
only 1 observer). 
However, this approach has also its own limitation. The 
memory requirement, specifically the BSS region, of both 
solutions increases when the number of observers increases. 
For instance, in our experiment every additional observer 
requires an additional 232 bytes and 266 bytes, respectively, 
for the gateway-based and the binding solutions. As 
memory is scarce in constrained devices, this will limit the 
number of observers allowed to register at the same time 
and thus the number of simultaneous bindings that can be 
supported. Here the gateway solution has an advantage since 
it may achieve scalability by aggregating multiple observe 
requests at the gateway avoiding one to one relationships 
between multiple actuators and a sensor. 

2) Communication Delay 
We calculated the time difference between the occurrence 

of an event at the sensor and the reception of the PUT 
packet at the actuator to compute the communication delay. 
We repeated the test for all three topologies. In our 
experiment, the gateway-based solution resulted in higher 
delay in all three topologies. In case of the gateway-based 
solution, every notification goes all the way to the gateway 

and actuator triggers are sent all the way down to the 
actuator even if the sensor and actuator are very close in the 
routing path. This explains the higher communication delay 
of the gateway-based solution. 

3) Packet size 
Packet sizes larger than the MTU of LLNs may result in 
fragmentation of packets which leads to sub-optimal 
solutions. For IEEE 802.15.4 based LLNs, the maximum 
packet size is 127 bytes [19]. The direct binding solution 
uses larger packets to establish the relationships, as it has to 
include the binding information in the request. However, if 
we use a reasonable resource path, as indicated by the IPSO 
Application Framework [13], and reasonable sized payload, 
this size does not exceed this limit. Moreover, this request is 
sent only once when we want to establish the relationship. 
Packet sizes of subsequent interactions between sensors and 
actuators are the same for both solutions. From this, we can 
conclude that the binding solution does not have a 
significant impact on the packet size to the extent that 
affects communication in the network. 

B. Evaluation of Restlets 
1) Programming Complexity 

We used a lifestyle monitoring application as an 
example to perform the evaluation. The application has to 
toggle an alarm light in the house when the resident is not 
active for 24 hours. The resident is considered to be active 
when 2 motion sensors (e.g. one in the living room and the 
other in the hallway) together generate more than 10 signals 
or when the refrigerator door is opened and closed at least 2 
times during a 24-hour period. The respective sensor 
resources are identified by [SH]/s/m (motion sensor in the 
hallway), [SL]/s/m (motion sensor in the living room) and 
[SF]/s/r (the magnetic contact sensor on the fridge door). The 
application was built twice, once without the RESTlet 
concept and once with the RESTlet concept. 

For the non-RESTlet application development, we 
employed a RESTful approach using CoAP with the observe 
option where the gateway establishes an observation 
relationship with each sensor by sending a CoAP GET 
request with (conditional) observe option. Whenever the 
gateway receives notifications from the sensors, it executes a 
sequence of code to realize the desired result. Fig. 8 shows 
high-level code that should be executed to realize the 
application under consideration. 

The RESTlet approach makes use of 5 RESTlets to 
achieve the same result, as indicated in the block diagram 
shown in Fig. 9. The output of the two motion sensors is 
used as input to the COUNTER RESTlet which increment its 
output value whenever it receives a new input. The 
ISLARGER RESTlet takes the output of the first COUNTER 
RESTlet and produces 1 if the input is larger than 9 and 0 
otherwise. Similarly, the output of the reed sensor on the 
fridge is fed into the counter, which, in turn is connected, to 
another ISLARGER RESTlet. The OR RESTlet accepts two 
inputs and performs a logical OR. The output of the OR 
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RESTlet is used to trigger the Actuator A. In the whole 
system, there are 2 different types of control parameters, 
time based and value based (in the figure, TT and VT 
respectively). It is interesting to note that the output of the 
counters is a non-negative integer while the output of the 
remaining RESTlets is Boolean. 

To create the desired application, we send 5 POST 
request to the /restlet resource of the HOST chosen to store 
the RESTlets. This will dynamically create the RESTlets 
and their input, output and control resources. In this 
example, we used the RESTlet type followed by a number 
to be used as unique id for the RESTlet resources. For 
instance, the first counter is COUNTER_1 and the second is 
COUNTER_2. If the resources are successfully created, the 
Location-Path option of the response contains the base 
location of the created input and output resources. The 
resources are represented as restlet-id/resource-
type/resource-number. For example, COUNTER_1/input/0 
refers to the first input of the COUNTER_1 RESTlet. 

The next step of the programming is binding the output 
of one component to the input of another component by 

sending GET requests to the different hosts. It is interesting 
to note that the outputs of the two sensors are all bound to 
the single input of the counter because of the requirement of 
the application. If the outputs of each sensor had to be treated 
separately, each sensor output would have been bound to 
different counters. In this case, we would have more 
instantiations of COUNTER RESTlets in our application 
without requiring additional programming. 

This approach has several advantages. One of the 
advantages is the simplification of application development. 
Most of the application logic is already implemented in the 
RESTlets. As the processing logic of the RESTlets can be 
very basic logical (AND, OR, NOT, XOR …) or arithmetic 
operations (COUNTER, ADD, SUBTRACT, MULTIPLY, 
DIVIDE …), building applications will be as simple as 
sending RESTful messages to create bindings between the 
different components (Sensors, RESTlets, and Actuators). 
In addition, some general purpose complex modules can 
also be modeled to be used by most applications. Examples 
of such modules include an SMS module that sends text to a 
preconfigured number and a WriteToDatabase Module 
which sends outputs to a database on a specific host. 

The other advantage of the RESTlets approach is the 
flexibility of placement. Based on the application 
requirements and the complexity (or simplicity) of the 
RESTlets, they may be placed in the cloud, the sensor 
network gateway or in the LLN. It is also possible to place 
different RESTlets of the same application at different 
places or on different devices. This flexibility in placement 
of the RESTlets is important to optimize different aspects of 
the resources in the sensor network. Putting all RESTlets in 
the sensor network reduces the traffic flow to the gateway, 
and hence, reduces traffic congestion at the uplink nodes 
and improves delay. However, this might introduce 
additional processing and memory overhead on constrained 
devices. A better alternative may be putting simple 
RESTlets in the constrained network and complex RESTlets 
at the gateway or in the cloud. This way we may balance 
traffic congestion and resource utilization of the resources. 
Alternatively, we may also use more capable nodes (with 
more memory and processing speed) in the sensor network 
to host the RESTlets. However, optimal RESTlet placement 
is outside the scope of this paper. 

This solution uses a CoAP based RESTful application 
development model by breaking down applications into 
small and manageable units and interconnecting those units 

if ( EVENT == "MOTION_HALL_OBSERVE“ || 
EVENT == "MOTION_LIVING_OBSERVE")

{
numberOfTimesMovementDetected++;
if (numberOfTimesMovementDetected >= 10)
{

// start again for new interval
numberOfTimesMovementDetected = 0;
numberOfTimesFridgeOpened = 0;

}
restartTimer(86400s);

}
else if (Event == "REED_FRIDGE_OBSERVE")
{

if (lastStatus == “CLOSED")
{

numberOfTimesFridgeOpened++;
if (numberOfTimesFridgeOpened >= 2)
{

// start again for new interval
numberOfTimesMovementDetected = 0;
numberOfTimesFridgeOpened = 0;

}
restartTimer(86400s);

}
}

}

GET [SH]/s/m, obs
GET [SL]/s/m, obs
GET [SF]/s/r, obs

Step	  2:	  Create	  Observe	  relationship	  with	  sensors

Step	  3:	  Create	  the	  Programming	  Logic

numberOfTimesMovementDetected = 0
numberOfTimesFridgeOpened = 0
StartTimer(86400s)

Step	  1:	  Initialization	  

 

Figure 8: non-RESTlet RESTful Application Code 

 

Figure 9: Block Diagram Showing Binding of RESTlets 



using REST mechanisms. Using the same protocol, CoAP 
and the same mechanisms (GET, PUT and POST) to realize 
simple sensor/actuator bindings and IoT application 
development is also an added advantage. 

2) Memory Requirement 
In our RESTlet model, the actual memory requirement of 

an application depends on the number and type of RESTlets 
used to realize the application. For instance, the RESTlets 
we created for experimentation are the basic application 
building blocks such as logical AND, logical OR, and 
counters, which have a minimum of 340 bytes and a 
maximum of 384 bytes. The memory requirement of an 
application increases as more RESTlets are being used. For 
example, the lifestyle monitoring application discussed 
above used 1724 bytes. The whole amount of memory 
might be taken from one device or it might be distributed 
among different devices in the network. 

There is a trade-off between putting all RESTlets on the 
same machine and distributing them among multiple nodes. 
If all RESTlets are defined on one device, the memory 
requirement will be higher, particularly for devices hosting 
multiple applications that involve several RESTlets. On the 
other hand, the traffic flow will be almost non-existent as 
most of the binding execution stays within the same device. 
Distributing the RESTlets among multiple devices reduces 
the per-device memory requirement but increases the traffic 
in the network. One of our future works is experimenting 
with different applications to suggest optimal placements of 
the RESTlets. 

3) Processing Time 
In the RESTlet approach, the total processing time of an 

application to perform a given task is the sum of the 
processing time of every RESTlet code and the transmission 
of CoAP packets between RESTlets. The transmission time 
is also computed as the sum of the packet processing time 
and the radio communication time. If all RESTlets are on 
the same device the radio communication time is non-

existent. Therefore, the total processing time is the sum of 
processing time of the RESTlets code and the packet 
processing time. With the appropriate cross-layer 
optimization, the packet processing time could be reduced to 
0. This could make the processing overhead of the RESTlet 
approach smaller. Cross-layer optimization is also part of 
our future work. 

IX. RELATED WORK 
There are different works that address the association of 

sensor and actuator nodes. Zigbee End Device binding [7] is 
one of the notable works that addresses device bindings. [7] 
states that devices with a similar profile can be dynamically 
bound by the ZigBee coordinator if they meet specific 
requirements such as matching cluster IDs. This solution 
puts a rather stringent requirement on the nodes making its 
flexibility quite limited. The CoRE Interfaces draft [14], 
also mentions the concept of bindings in the context of 
CoAP. In this context, a binding is called the abstract 
relationship between two resources. The mechanism 
proposed in the draft allows end devices to establish a 
binding relationship through discovery mechanisms or 
through human intervention and then synchronize the 
content of their resources. Three binding methods, namely 
polling, observe and push, are defined to achieve this 
synchronization. The observe method creates an observation 
relationship between the end points and every notification 
copies the content of the resource to the observer. This 
solution has its advantages as it provides a generic solution 
that can be used in interface descriptions. However, the 
solution focuses on synchronizing the contents of two 
resources on different end devices. It is not possible to 
execute a specific action on the other device. Additional 
programming logic is still required to send the appropriate 
trigger to the same or different actuator. 
There are also a number of works on IoT application 
development models. Some developers prefer WS-* such as 
SOAP requests and responses transmitted over the network 
using HTTP for IoT applications while others suggest 
RESTful approaches [15]. Based on a research conducted on 
developers, [16] concludes REST to be easier to program 
smart objects. One of the RESTful approaches is the 
Actinium runtime container which exposes Java Scripts, 
configurations and their management through a RESTful 
programming interface using CoAP [21]. The proposed 
architecture breaks large programs into smaller apps for 
reusability as our system does. However, there are a number 
of differences from our work. First, the apps (scripts) 
contain the CoAP requests, whereas RESTlets are just 
processing units and the link between RESTlets, sensors and 
actuators is made via the binding process. Second, this 
approach requires the devices to understand and execute the 
scripting language which is hard to apply in constrained 
devices. Finally, the core of the architecture, the runtime 
container, must be run in a non-constrained environment 
while our solution can fully be decentralized. The other 

GET [S1]/s/m BIND_URI = [HOST]//restlet/COUNTERS_1/input/0
GET [S2]/s/m BIND_URI = [HOST] /restlet/COUNTERS_1/input/0
GET [S3]/s/d BIND_URI = [HOST] /restlet/COUNTERS_2/input/0
GET [HOST]/restlet/COUNTERS_1/output BIND_URI = [Host]/restlet/ISLARGER_1/input/0
GET [HOST]/restlet/COUNTERS_2/output BIND_URI = [Host] /restlet/ISLARGER_2/input/0
GET [HOST]/restlet/ISLARGER_1/output BIND_URI = [Host] /restlet/OR_1/input/0
GET [HOST]/restlet/ISLARGER_2/output BIND_URI = [Host] /restlet/OR_1/input/1
GET [HOST]/restlet/OR_1/output BIND_URI = [A] /a/toggle

POST [Host]/restlet Payload: “RN=COUNTERS;TT=86400;”
[Response: Location-path = /restlet/COUNTERS_1]

POST [Host]/restlet Payload: “RN=COUNTERS;TT=86400;”
[Response: Location-Path = /restlet/COUNTERS_2]

POST [Host]/restlet Payload: “RN=ISLARGER;VT=9;”
[Response: Location-Path = /restlet/ISLARGER_1]

POST [Host]/restlet Payload = “RN=ISLARGER;VT=2;”
[Response: Location-Path = /restlet/ISLARGER_2]

POST [Host]/restlet Payload = “RN=OR;”
[Response: Location-path = /restlet/OR_1]

Step 1: Create the necessary RESTlets.

Step 2: Create the bindings to interconnect components.

 
 

Figure 10: Application Code for RESTlets 



RESTful approach for IoT application development is Thing 
Broker [17], a platform that provides a Twitter-based 
RESTful interface for IoT application development. This 
approach uses “things” (e.g. sensors, data, computers, etc.) 
and “events” for application development. The whole world 
is considered to be composed of things, and events are 
associated with things. When a new event is generated by a 
thing, its data will be available to its followers. This 
approach is considerably different from our approach as it 
uses a high level abstraction of devices, data and events 
while we focus on loose coupling of processing of data and 
devices. LooCi [18] is another component and binding 
model for IoT applications. It uses an event-based binding 
model and standardized event types that allow easy 
component interactions and re-use of components. This 
approach uses RPC for communication. 

X. CONCLUSION AND FUTURE WORK 
In this paper we presented how the CoAP protocol is 

extended to implement direct bindings of any two CoAP-
enabled devices using a third party device. The two devices 
continue communicating with each other without 
involvement of the third party. As binding creation is 
entirely based on CoAP, it creates flexible communication 
between any two communicating devices contributing to the 
vision of a network of everything. We further extended the 
binding concept to add intelligence to the interaction of 
nodes by augmenting processing logic to the interactions. 
These entities, called RESTlets, can be used as building 
blocks for simple IoT applications. RESTlets take input 
from sensors or other RESTlets, process them and generate 
output which, in turn, will serve as input for other RESTlets 
or as a trigger to actuators. By dynamically creating 
RESTlets and binding inputs with outputs, the desired IoT 
application can be created without explicit coding for each 
application. The simplicity of the RESTlets allow them to 
be distributed throughout the network to improve efficiency.  

There are a number of optimizations that are planned for 
the binding concept as well as the RESTlets. We plan to 
work on cross-layer optimization solutions such as 
modifying the routing protocol, MAC protocol or the RDC 
protocol to be aware of active bindings in order to further 
improve the performance of bindings. These improvements 
of bindings also improve RESTlet interactions. Suggesting 
optimal distribution of RESTlets in the network and 
implementing RESTlets on constrained devices will also be a 
topic of our future work. In addition, identifying suitable 
RESTlet content formats will also be part of our future work. 
A Binding Directory, a resource-directory like entity [20], 
which stores all active bindings, will also be developed to 
enable easy management of bindings and debugging of 
RESTlet based applications. 
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