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ABSTRACT
In this paper we investigate a single-server discrete-time
queueing system with single-slot service times. The station-
ary ergodic arrival process this queueing system is subject to,
satisfies a regeneration property when there are no arrivals
during a slot. Expressions for the mean and the variance
of the queue content in steady state are obtained for this
broad class which includes among others autoregressive ar-
rival processes and M/G/∞-input or train arrival processes.
To illustrate our results, we then consider a number of nu-
merical examples.
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1. INTRODUCTION
The statistical characteristics of arrivals at a queue greatly

contribute to the overall performance of queueing systems.
Moments of both queue content and waiting times are sig-
nificantly affected by the presence of time correlation in the
arrival process. As such correlation is omnipresent in mea-
sured traffic on communication networks, there is a contin-
uing interest in analytically tractable queuing models which
can accurately model the correlation in the arrival process.

Most arrival models can be described in a Markovian frame-
work. If the state-space of the arrival process is finite, this is
e.g. the case for the discrete batch Markovian arrival model
(DB-MAP) [1], efficient numerical algorithms can be devised
to assess performance of the corresponding queueing sys-
tems. Such matrix analytical techniques [3] have been used
to assess a multitude of queueing systems, trading in the
availability of closed-form expressions of the performance
measures of interest for modelling versatility.

As an alternative to the finite state-space models, Marko-
vian arrival models with an infinite but structured state-
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space have been proposed. Prime examples of the latter
class include autoregressive arrival models [7, 8, 9] as well
as M/G/∞-input — often referred to as train arrival or ses-
sion models, see [2, 5, 11].

For an order N discrete autoregressive arrival model, the
numbers of arrivals in slot n equals the number of arrivals
in slot n−k with probability pk (k = 1, . . . , N) or equals an
independent random variable with probability 1 −

∑
k pk.

Discrete-time autoregressive processes have been used to
capture the main characteristics of VBR video traffic [4].
M/G/∞ input models employ the queue content process

of a discrete-time M/G/∞ queue as arrival process. The
M/G/∞-input is two-level in the sense that the number of
customer arrivals generated by this process equals the num-
ber of customers in a separate M/G/∞ queue. In practice,
this two-level structure is an abstraction of an upper and a
lower layer in a network protocol stack. In the upper layer a
connection or session is established that continues for a cer-
tain duration, equivalent to the service time of a customer in
the separate M/G/∞-queue. Each slot this session stays in
the M/G/∞-queue, it generates a packet to be transmitted
by the lower layer in the protocol stack. Another fact about
M/G/∞-input that attracts a lot of attention is its versatil-
ity in capturing correlation in the arrival process with only
two parameters: the arrival rate of the M/G/∞-queue and
the session length distribution. For more information and
analysis on this type of arrival process we refer to [6].

In contrast to the algorithmic approach omnipresent in
assessing arrival processes with finite state space, for par-
ticular types of autoregressive arrival models and train ar-
rival models, closed-form expressions for the moments of the
buffer occupancy and delay are available.

This paper identifies a class of arrival models for which
such a closed-form expression is available. In particular,
we consider the following Lindley-type recursion which de-
scribes the evolution of the queue content at slot boundaries
of a single-server discrete-time queuing system with single-
slot service times,

Uk+1 = (Uk − 1)+ +Ak . (1)

Here, {Ak, k ∈ Z} is a stationary ergodic sequence of non-
negative integer random variables which adheres to the fol-
lowing assumptions.

[A.1] The arrival process regenerates when there are no ar-



rivals. That is,

Pr[Ak+1 = ik+1, . . . , Ak+` = ik+`|Ak = 0,Fk
−∞]

= Pr[Ak+1 = ik+1, . . . , Ak+` = ik+`|Ak = 0] , (2)

for ` ∈ N∗ = {1, 2, . . .} and ij ∈ N for all j ∈ Z
and where Fk

−∞ is the natural filtration of the arrival
process {Ak}. Here and in the remainder, let FM

m =
σ(Am, Am+1, . . . , AM ) be the σ-algebra generated by
the random variables Ak, k = m, . . . ,M .

[A.2] Let f denote the regeneration time, i.e. the smallest
positive integer for which the number of arrivals is 0,
given that A0 = 0. We assume the existence of the
third moment of the number of customers entering the
system during a regeneration period,

E

[( f−1∑
n=1

An

)4]
<∞ .

In the section 3, it is shown that the regeneration property is
key to the steady-state analysis of the recursion (1). Indeed,
Uk+1 = 0 implies Ak = 0 such that (Uk+1, Ak) regenerates
when Uk+1 = 0. Albeit somewhat artificial, many arrival
processes adhere to the regeneration property, some exam-
ples are given in the next section. To illustrate our approach,
performance of a queuing system with an elaborate arrival
process is explored by some numerical examples in section
4. Finally conclusions are drawn in section 5.

2. EXAMPLES
Many stochastic processes are zero-regenerative, here are

a number of examples.

Example 1. A discrete autoregressive stochastic process
of order 1 is a sequence {Ak} for which the following holds.

Ak+1 = Bk+1Ak + (1−Bk+1)Nk ,

in which {Bk} is a sequence of i.i.d. Bernoulli distributed
random variables and {Nk} is a sequence of i.i.d. integer-
valued random variables. These processes are zero-regenerative
([7]) by construction. For such processes, the state of the
arrival process equals the number of arrivals. Hence, when
there are no arrivals, the arrival process is in a fixed state
which implies zero-regeneration.

Example 2. M/G/∞ input is zero regenerative, as dis-
cussed above ([6]).

Example 3. Discrete batch Markovian arrival processes
are zero-regenerative if there exists a fixed state such that
the arrival process returns to this state whenever there are
no arrivals. Note that in order to be zero-regenerative these
DBMAPs need not have a finite state space. A prime ex-
ample of a finite DBMAP is the aggregation of a number of
interrupted Bernoulli processes. [11].

Example 4. Consider the following generalised on-off pro-
cess. During time, the arrival process alternates between an
off-state and an on-state. When the arrival process is in the
off-state, there are no arrivals. When the arrival process is
in the on-state, there is at least one arrival in every slot.
The off-times are assumed to constitute a sequence of in-
dependent and identically geometrically distributed random

variables. No further assumptions are imposed on the num-
ber of arrivals and the duration of the on-times. The lack of
memory of the geometric distribution then guarantees zero-
regeneration.

Example 5. The aggregation of two zero-regenerative pro-
cesses is zero-regenerative. Whenever the aggregated pro-
cess is zero, both constituting processes are zero as well.
Hence, the resulting process regenerates.

3. QUEUEING ANALYSIS
By a standard Loynes argument [10], there exists a sta-

tionary ergodic process U∗k satisfying (1) for E[A0] < 1.
Moreover, for any initial U0, we have |U∗k − Uk| → 0 for
k →∞ almost surely. The purpose of this section is to find
the first two moments of this stationary process, E[U∗0 ] and
E[(U∗0 )2].

As the stationary solution U∗n satisfies (1), we have,

U∗1 − U∗0 + 1{U∗
0 >0} = A0 ,

such that,

E[U∗1 − U∗0 + 1{U∗
0 >0}] = E[U∗1 − U∗0 ] + E[1{U∗

0 >0}]

= Pr[U∗0 > 0] = E[A0] . (3)

The second step is a result of the stationary property of
U∗k . By squaring and taking expectancies of both sides of (1)
and applying the above equality, we can find an expression
for E[U∗0 ]. Here we used the fact that U∗01{U∗

0 >0} = U∗0 .

2 E[(1−A0)U∗0 ] = E[A2
0] + E[A0]− 2 E[A01{U∗

0 >0}] (4)

There are two unknown expectancies in this equation E[(1−
A0)U∗0 ] and E[A01{U∗

0 >0}], which we shall derive below in
a more general framework – this will be useful for obtain-
ing E[(U∗0 )2] later. Let therefore Bk be some function of
(Ak, Ak+1, . . . , Ak+N ), with N < ∞. Applying Lindley’s
equation on E[BkU

∗
0 ] for k ≥ 0 and using the stationary

property of the arrival process and U∗k yields

E[BkU
∗
0 ] = E[Bk+1(U∗0 − 1{U∗

0 >0} +A0)]

= E[Bk+1U
∗
0 ] + E[Bk+1A0]− E[Bk+11{U∗

0 >0}] . (5)

Then because of the regeneration property we can write

E[Bk1{U∗
0 >0}] = E[B0]− E[Bk|U∗0 = 0] Pr[U∗0 = 0]

= E[B0]− E[Bk+1|A0 = 0](1− E[A0]) . (6)

Hence by plugging (6) into (5), we have,

E[BkU
∗
0 ] = E[Bk+1U

∗
0 ] + (E[Bk+1A0]− E[Bk+1] E[A0])

+ (E[Bk+2|A0 = 0]− E[B0])(1− E[A0])

= E[Bk+1U
∗
0 ] + βk+2(1− E[A0]) + γk+1 , (7)

with,

βk = E[Bk|A0 = 0]− E[B0] ,

γk = E[BkA0]− E[Bk] E[A0] .

By repeated application of (7), we further find,

E[B0U
∗
0 ] = E[BnU

∗
0 ] + (1− E[A0])

n+1∑
`=2

β` +
n∑

`=1

γ` .



Taking the limit of both sides for n→∞ we find,

E[B0U
∗
0 ] = E[B0] E[U∗0 ] + (1− E[A0])

∞∑
`=2

β` +

∞∑
`=1

γ` , (8)

where we used the fact that the arrival process (or any
function of it) becomes independent of the buffer content
at time 0 as n goes to infinity – i.e. limn→∞ E[U∗0Bn] =
E[U∗0 ] E[B0] – and this as a result of the regeneration prop-
erty (A.1) and A.2. It can easily be seen for instance that
for Bk = 1 the above formula holds. Replacing Bk by A0 in
(6) and by 1−A0 in (4), and applying the recursion in (7),
yields after some tedious derivations the following result for
E[U∗0 ].

E[U∗0 ] = E[A0] +

∞∑
m=1

(E[Am|A0 = 0]− E[A0])

+
E[(A0)2]− E[A0]

2(1− E[A0])
+

∞∑
m=1

E[A0Am]− E[A0]2

1− E[A0]
. (9)

For the second moment E[(U∗0 )2] we need to cube both
sides of (1), yielding

(U∗1 )3 = (U∗0 )3 − 1{U∗
0 >0} + (A0)3 + 3(1 + (A0)2)U∗0

− 3(1−A0)(U∗0 )2 + 3A0(1−A0)1{U∗
0 >0} . (10)

Taking expectancies on both sides and using the station-
ary property of U∗k then gives

3 E[(1−A0)(U∗0 )2] = E[(A0)3]− E[A0]

+ 3 E[(1 + (A0)2)U∗0 ] + 3 E[A0(1−A0)1{U∗
0 >0}] . (11)

Because of (6), this last expectation is straightforward to
calculate.

E[A0(1−A0)1{U∗
0 >0}] = E[A0]− E[(A0)2]

− E[A1(1−A1)|A0 = 0](1− E[A0]). (12)

The second to last expectation in (11) can be obtained
using (9) and (8). Taking Bn = (An)2 in (8) yields the
following equality.

E[(A0)2U∗0 ] = (1−E[A0])

∞∑
`=2

(E[(Al)
2|A0 = 0]−E[(A0)2])

+

∞∑
`=1

(E[(Al)
2A0]− E[(A0)2] E[A0]) + E[(A0)2] E[U∗0 ] .

(13)

The only unknown expectation in (11) now, not equal to
E[(U∗0 )2], is E[(1 − A0)(U∗0 )2] which still has to be written
as a function of E[(U∗0 )2], if we wish to obtain a formula for
this second moment. As was the case in determining E[(1−
A0)U∗0 ] earlier, here again we shall adopt a more general
framework, using Bk – i.e. we try to determine E[BkU

∗
0 ],

k ≥ 0 and substitute Bk = (1− Ak) and k = 0. To do this,
we need te square Lindley’s equation (1).

E[Bk(U∗0 )2] = E[Bk+1(U∗0 )2] + E[Bk+1(1− 2A0)1{U∗
0 >0}]

+ E[Bk+1(A0)2]− 2 E[Bk+1(1−A0)U∗0 ] . (14)

The middle two terms of the left-hand side, after simpli-
fication using equation (6), become

E[Bk+1(1−A0)2]− E[Bk+2(1− 2A1)|A0 = 0](1− E[A0])

The last term in (14) can again be found using (8).

E[Bk+1(1−A0)U∗0 ] = E[Bk+1(1−A0)] E[U∗0 ]

+(1−E[A0])

∞∑
`=2

(E[Bk+`+1(1−A`)|A0 = 0]−E[Bk+1(1−A0)])

+

∞∑
`=1

(E[Bk+`+1(1−A`)A0]− E[Bk+1(1−A0)] E[A0]) .

(15)

And so we can rewrite equation (14) in the following con-
densed form.

E[Bk(U∗0 )2] = E[Bk+1(U∗0 )2] + δk+1 , (16)

where δk+1 is a known function of the arrival process. Re-
peating the above recursion, we further find,

E[B0(U∗0 )2] = E[Bn(U∗0 )2] +

n∑
`=1

δ` . (17)

Analogous to the first moment, we take the limit of both
sides for n→∞.

E[B0(U∗0 )2] = E[B0] E[(U∗0 )2] +

∞∑
`=1

δ` , (18)

where again we used the regeneration property to ensure the
independence between Bn and U∗0 for n sufficiently large.
With all parts of (11) known except for E[(U∗0 )2] we can
now solve it for E[(U∗0 )2], yielding

E[(U∗0 )2] =
1 + E[(A0)2]

1− E[A0]
E[U∗0 ] + E[A1(A1 − 1)|A0 = 0]

+
1

3

E[A0(A0 − 1)(A0 − 2)]

1− E[A0]
+

∞∑
l=2

(E[(Al)
2|A0 = 0]−E[(A0)2])

+

∞∑
l=1

E[(Al)
2A0]− E[(A0)2] E[A0]

1− E[A0]
+

∞∑
l=1

{E[(A0 − 1)2(Al − 1)]

1− E[A0]

−E[(2A1−1)(Al+1−1)|A0 = 0]+2 E[U∗0 ]
E[(A0 − 1)(Al − 1)

1− E[A0]

+ 2

∞∑
n=2

(E[(An−1)(An+l−1)|A0 = 0]−E[(A0−1)(Al−1)])

+2

∞∑
n=1

E[A0(An − 1)(An+l − 1)]− E[(A0 − 1)(Al − 1)] E[A0]

1− E[A0]

}
.

(19)

4. NUMERICAL EXAMPLES
We now focus on a specific example which extends the

train arrival model presented in [11], to illustrate our result.

Train arrivals with autoregressive session arrivals.
Consider a train-arrival model where the number of new

trains in consecutive slots constitutes a discrete autoregres-
sive (DAR) process while the lengths of the trains consti-
tutes a sequence of independent and identically distributed
(i.i.d.) positive random variables. Such an arrival model



is characterised by (1) a sequence {Bk} of independent and
identically Bernoulli distributed random variables with E[B0] =
p signifying whether or not the number of new train arrivals
equals that of the previous slot, (2) an i.i.d. sequence {Nk}
of non-negative integer-valued random variables indicating
the number of new train arrivals in slot k if Bk = 0, and (3)
a doubly-indexed i.i.d. sequence {Gk,n} of positive integer-
valued random variables, indicating the length of the n’th
train arriving in slot k. Let Ak denote the number of arrivals
in slot k and let Sk denote the number of new train arrivals
in this slot. These random variables are then expressed in
terms of Bk, Nk and Gk,n as follows,

Ak =

∞∑
m=0

Sk−m∑
n=1

1{Gk−m,n>m} ,

Sk+1 = Bk+1Sk + (1−Bk+1)Nk+1 . (20)

Note that this stationary ergodic arrival process satisfies
A.1, the regeneration property. Depending on which choice
is made for the three series of i.i.d. random variables Bk,
Nk, and Gk,n A.2 will be satisfied. Assuming such ran-
dom variables, our result allows us to calculate E[U∗0 ] and
E[(U∗0 )2]. Setting gn = Pr[G > n], and taking expectation
in the preceding equations, we find

E[S0] = pE[S0] + (1− p) E[N0]⇒ E[S0] = E[N0] (21)

E[A0] =

∞∑
m=0

E
[ Sk−m∑

n=1

gm
]

= E[S0]

∞∑
m=0

mPr[G = m]

= E[N ] E[G] . (22)

Here and in the remainder, we drop the indices of the ran-
dom variables whenever possible. Moreover, by conditioning
on the slot where the number of new trains changes, we find,

E[An|A0 =0] =

n−1∑
`=0

Pr[B1 = 1, . . . , B` = 1, B`+1 = 0]

× E[An|A0 = 0, B1 = 1, . . . , B` = 1, B`+1 = 0]

=

n−1∑
`=0

p`(1− p) E[N ]

n−1−`∑
m=0

gm . (23)

Further, substitution of (20) in E[A0An] and accounting
for correlations yields,

E[A0An] = E[N ]2 E[G]2 + E[N ]

∞∑
m=0

(1− gm)gm+n

+ (E[N2]− E[N ]2)

∞∑
m=0

∞∑
r=0

p|n−r+m|gmgr . (24)

Substituting previous expressions into (9), and some rather
tedious simplifications later, we find,

E[U∗0 ] =
E[N ]2 E[G] E[G2]− E[N ] E[G]2

(1− E[N ] E[G])

+
E[N ] E[G](1− 2p)− E[N ]2 E[G]2(1− 2p)

(1− p)(1− E[N ] E[G])

+
(E[N2]− E[N ]2) E[G]2(1 + p)

2(1− p)(1− E[N ] E[G])
. (25)

When p = 0, the arrival model simplifies to one where the
number of new trains is a sequence of i.i.d. random variables.
The mean buffer content for this model can be found in [11],
which focusses on this train arrival model. This mean can
of course be obtained using the above formula:

E[U∗0 ] =
E[G] E[S]2E[G2] + E[G]2 E[S2] + 2 E[S] E[G]

2(1− E[S] E[G])

− 3 E[S]2 E[G]2 + E[S] E[G]2

2(1− E[S] E[G])
. (26)

On the other hand, assuming single slot train-lengths —
this means E[G] = E[G2] = 1 — we obtain the single-server
queuing system with discrete autoregressive arrivals stud-
ied in [9]. The expression of the mean queue content then
simplifies to,

E[U∗0 ] =
E[N ](1− 3p) + E[N2](1 + p)− 2(1− p) E[N ]2

2(1− E[N ])(1− p) .

To obtain the second moment of the system with autore-
gressive session arrivals, one has to additionally calculate
E[AkAn|A0 = 0] and E[A0AkAn], ∀k, n ≥ 0 (see equation
(19)). Applying the same methods of conditioning as above
we derive E[AkAn|A0 = 0] for k ≤ n without loss of gener-
ality.

E[AkAn|A0 = 0] =

k∑
l=1

pl−1(1− p)
{ n−l∑

m=0

k−l∑
r=0

gmgr

×
(

E[N ]2 + p|n−m−k+r|(E[N2]− E[N ]2)
)

+

n−l∑
m=n−k

gm
[
gm−n+k(E[N2]− E[N ]) + E[N ]

] }
. (27)

Accounting for correlation we additionally obtain the third
order cross product E[A0AkAn] where 0 ≤ k ≤ n.

E[A0AkAn] =

∞∑
m=0

∞∑
r=0

∞∑
s=0

gmgrgs
(

E[N3]pz−x

+ E[N2] E[N ](py−x(1− pz−y) + (1− py−x)pz−y)

+ E[N ]3(1− py−x)(1− pz−y)
)

+

∞∑
m,s=0

gm+kgs(1−gm)
[
(E[N2]−E[N ]2)p|m−s+n|+E[N ]2

]
+

∞∑
m,r=0

(
gmgr+n−k(1− gr) + grgm+n(1− gm)

)
×
[
(E[N2]− E[N ]2)p|m−r+k| + E[N ]2

]

+ E[N ]

∞∑
m=0

gm+n(1 − gm − 2gm+k(1 − gm)) (28)

where

x = min(−m, k − r, n− s)
z = max(−m, k − r, n− s)
y = −m+ (k − r) + (n− s)− (x+ z) .



Figure 1: With E[N ] E[G] = 0.5 constant, p = 0.9.

Since E[U∗0 ] was already obtained, an expression for the
second moment E[(U∗0 )2] can be derived from the above re-
sults, and hence also Var[U∗0 ] and σU∗

0
.

It is interesting to see what effect autoregressive arrivals
can have on a queue fed by this type of DAR/G/∞-input,
when different parameters are tweaked. For instance in fig-
ure 1, we set ρ = E[N ] E[G] = 0.5 fixed, and as E[N ] in-
creases, the trains are shorter on average. In this example N
is geometrically distributed, and G’s distribution is that of a
shifted geometric distribution. Furthermore p = 0.9, mean-
ing the arrival process in the DAR/G/∞-queue is highly
correlated. Figure 1 shows E[U∗0 ] as well as the standard
deviation σU∗

0
.

As E[N ] approaches zero, or equivalently E[G] approaches
∞, as do the average queue content and standard variation.
This is due to the higher correlation of arrivals during con-
secutive slots. The train lengths are i.i.d. but as not many
enter the queue, this independence has little effect to reduce
standard variation as well as average buffer content. The
reverse is true for high values of E[N ]. Note however that
E[N ] can’t increase indefinitely since E[G] ≥ 1 by definition.

In a second figure the effect of the autocorrelation parame-
ter p on the first two queue content moments is plotted. Fig-
ure 2 is obtained with the same parameters as the previous
figure, only here E[N ] = 0.25 is fixed and hence E[G] = 2.
When p = 0 train arrivals are i.i.d., and consequently buffer
content and variation is lowest. It reaches ∞ for p → 1.
When p = 1 one chooses N > 0 with a finite probability
resulting in an overflowing queue (see also [8]).

Lastly, we plot the autocorrelation function E[A0An] for
different values of n. The situation is again the same as
before, with p = 0.9. We observe that the graph in figure
3 decreases from E[(A0)2] for n = 0 to E[A0]2 for n → ∞.
This figure effectively shows the asymptotic independence of
the the zero-regenerative arrival process.

5. CONCLUSIONS
This paper identified a versatile class of arrival processes

Figure 2: E[N ] = 0.25, E[G] = 2, buffer content and
standard variation as a function of p.

Figure 3: A glimpse of the autocorrelation function
E[A0An]. Parameters are E[N ] = 0.25, E[G] = 2, and
p = 0.9.



for which a closed-form expression for the first two moments
can be obtained in closed form. Apart from stationarity and
ergodicity, only a regeneration property when there are no
arrivals is imposed. Numerous arrival processes adhere to
this zero-regenerative property. To illustrate our results,
some numerical examples are introduced which generalise
various models in literature.
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