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Abstract—During the past decades, much research has been
done towards the efficient calculation of impedance integrals in
the Method of Moments. However, these results were almost
always uniquely concerned with penetrable media. In this contri-
bution, it will be shown how the integrals can be treated in highly
conductive media as well. The rapid exponential decline of the
Green’s function, due to the losses, is the root of all additional
complexities. The method as presented here takes care of these
problems in a scalable way, i.e. the computation time becomes
independent of the conductivity of the material. It is not meant
as a replacement for techniques in penetrable media, due to some
additional costs, but is - to our knowledge - the only approach
that currently exists to efficiently handle conductive media. This
paper presents the ideas and techniques in a fairly condensed
manner. More information can be found in [1].

I. INTRODUCTION

The impedance integrals in the Method of Moments de-

scribe the interaction between basis and test functions by

means of the Green’s function e−jkr

4πr or its gradient, with k the

wave number in the interaction domain and the wavelength

given by λ = 2π
k

. In penetrable media the losses are small

or negligible and the numerator of the Green’s function,

e−jkr = cos(kr) − j sin(kr), is well-behaved. As such, most

of the past and current research has focused on the singular
1
r

behaviour and how to efficiently evaluate the impedance

integrals when basis and test functions are close to each other

(or even coinciding). The two most important techniques to

deal with the singularity are Singularity Cancellation (SC)

and Singularity Extraction (SE), which will be briefly revisited

later. However, in highly conductive media, the wave number

is approximately given by k ≈ i−j
δ

, with the skin depth

δ =
√

2
ωµσ

and σ denoting the conductivity. Consequently,

as the skin depth decreases, the previously well-behaved

numerator now becomes wildly oscillatory and very strongly

damped. This leads to new issues with regard to efficient

quadrature schemes, that have not previously been treated

in literature except for [2]. The novelty of our approach is

scalability for both the inner (basis) and outer (test) integrals,

making it of large practical use. The outline of this paper is

as follows. Section II gives a brief overview of those integrals

that need to be calculated and how the singular cases are dealt

with in the case of penetrable media. Section III introduces our

new approach and, finally, Section IV demonstrates how our

approach could be useful by means of a numerical example.

II. IMPEDANCE INTEGRALS IN MOM

Assuming RWG expansion functions, the integrals that need

to be calculated in order to fill the impedance matrix can be

written as [1],

It1 =

∫

Si

r ·

∫

Sj

g(R)r′dS′dS (1)

It2 =

∫

Si

∫

Sj

g(R)dS′dS (2)

It3 = PV

∫

Si

∫

Sj

∇g(R)× r
′dS′dS (3)

with others merely being variations in the presence or absence

of r and r
′ (with R = |r− r

′|). Here, Si and Sj indicate the

triangles for the observer (test) and source (basis) triangles. In

penetrable media, these can easily be evaluated through, e.g.,

Gaussian quadrature when the supports are well-separated.

When Si = Sj or they touch in a point or line, the integrands

are singular. However, the integral can still be evaluated. The

technique of Singularity Extraction [3],[4],[5],[6] subtracts the

static singular part from the integral, until a regular integrand

remains, although it is still discontinuous in its derivative. In

order to obtain an integrand that is continuous in more deriva-

tives, additional terms need to be extracted. These singular

parts can be evaluated analytically. Alternatively, Singular-

ity Cancellation [7],[8],[9], employs a coordinate transform

through which the resulting Jacobian exactly cancels the

singularity. Because it does not rely on analytical formulas,

SC is more flexible, which could have advantages in the case

of, e.g., higher order expansion functions or anisotropic media.

III. CALCULATION IN CONDUCTIVE MEDIA

When trying to employ the typical techniques for penetrable

media, i.e. SE and SC, but with Green’s functions that result

from conductive media, it appears that they both fail rather

rapidly. The issues originate both in the inner and outer

integrals. Due to the sharply peaked behaviour (exponentially

damped) of the Green’s function in conductive media, the inner

integrand only contributes in a very small region that is closest

to the observer point. Both SE and SC ignore this localised

behaviour and fail to capture it accurately, often missing this

contributing zone altogether. In addition to problems with the

numerical quadratures, SE additionally suffers from severe

cancellation issues between the analytical terms. In conclusion,
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SC generally leads to a vanishing result and SE to an exploding

result for conductive media. The outer integral is less sensitive

to error, although a certain effort is required to guarantee a

scalable and accurate result. Without any specific techniques,

relative accuracy would typically stall at 10−2 in the best

case scenario but usually fail altogether. However, we will

demonstrate how the outer integral as well can be controlled.

In a first subsection, we will deal with the inner integral. The

outer integral will be treated afterwards.

A. Inner Integral

Our explanation will be based on the integral

Ij(r) =

∫

Sj

g(|r − r
′|)dS′ (4)

although the techniques are equally applicable to similar inte-

grals that feature powers of r′. The first step is the reduction

of the integration domain to the region where the integrand is

non-negligible. The numerator of the Green’s function g drops

to a value ǫcut after a distance given by,

rcut = −δ ln ǫcut (5)

This distance will be used to define the new integration

domain. As the conductivity grows, this domain will become

smaller. That way the computational effort remains indepen-

dent of σ whilst still achieving the same accuracy. First of

all, the integral is transformed to polar coordinates around a

carefully chosen point rO, leading to the following form:

Ij(r) =

∫ φ2

φ1

dφ

∫ ρ2(φ)

ρ1(φ)

g(|r − (r0 + ρuρ)|)ρdρ (6)

Note how this is essentially a Duffy transform from Singularity

Cancellation. The projection point rO is that point in the plane

of Sj that lies in the triangle (including the edges and corners)

but is closest to the orthogonal projection of r. Afterwards,

the triangle Sj is split such that rO lies in a corner. This is

demonstrated in Figure 1

Fig. 1. The division into subtriangles for three different cases. The small
circle indicates the location of ro and is chosen as that point in the triangle
that is closest to the orthogonal projection of the observation point into its
plane.

Around the point rO, the integration domain can now be

truncated in the radial direction, in such a way that the distance

to the observation point is never greater than rcut. By limiting

the radial integration in such a way, the spectral bandwidth of

the remaining integrand is also limited, so the required number

of quadrature points is controlled. In [1], both the Double

Exponential [10], [11] and Gauss quadrature are discussed for

TABLE I
THE RELATIVE ERRORS AS A FUNCTION OF k = q − iq FOR EVALUATION

OF THE INNER INTEGRAL USING SINGULARITY EXTRACTION (WITH 15
TERMS), SINGULARITY CANCELLATION (WITH 17 QUADRATURE POINTS

BOTH FOR THE RADIAL PART AND THE ANGULAR PART) AND OUR NOVEL

APPROACH (USING THE SAME AMOUNT OF QUADRATURE POINTS AS SC
AND rcut FOR A TOLERANCE OF 10

−2).

q ǫrel,SE ǫrel,SC ǫrel,novel

100 3 · 10−7 2 · 10−7 2 · 10−7

101 1 · 10−6 3 · 10−7 5 · 10−4

10
2

3 · 1029 5 · 10−5
1 · 10−2

10
3

4 · 1069 8 · 10−1
1 · 10−2

10
4

4 · 10109 1 · 100 1 · 10−2

the integration, but the difference is small. The angular integral

can be handled with Gauss quadrature rules, using a small

amount of sampling points (provided the conductivity is indeed

very large).

Table I shows the comparison between relative errors for the

different methods. Clearly, our approach is the only one that

maintains the desired accuracy as the conductivity increases.

B. Outer Integral

The outer integral is defined as

Iij =

∫

Si

Ij(r)dS (7)

In order to demonstrate the potential issues, imagine two

orthogonal triangles that have one edge in common (the

so-called neighbour patch) and a skin depth that is much

smaller than the characteristic size of these triangles. Clearly,

the outer integrand will be zero almost everywhere on the

triangle, except in a small region close to the shared egde.

Another interesting case is that of the self patch (test and

basis triangle are identical). It is easily seen that the outer

integrand is constant (and different from zero) on almost the

entire triangle except near the edges. From these two special

cases it becomes clear that large variations in the integrand

only occur near regions where the surfaces end, e.g. near

edges. The characteristic size of these regions is typically

equal to rcut, with reference to a certain chosen tolerance.

By defining the regions of strong variation in the integrand,

the quadrature points can be suitably focused and as such an

accurate evaluation can be obtained with minimal effort. In

order to do this, a number of cuts and projections is used, that

eventually results in a break-up of the outer integration domain

into a number of smaller domains, each covering a region

where rapid variation might occur. For more information with

regard to these projections, the reader is referred to [1], which

also includes further numerical tests. These tests indicate that

the accuracy of the outer integral can indeed be maintained

in a scalable manner, i.e. independent of the conductivity.

Combining the techniques for inner and outer integral, we

have a method at our disposal that can handle the impedance

integrals for highly conductive media in an efficient, accurate

and controllable way.



IV. NUMERICAL EXAMPLE

More often than not, simulations that involve highly con-

ductive materials can be done in an approximative way by

assuming either a perfectly conducting material or by using a

surface impedance. Naturally, these simulations do not require

the previously described methods. However, there is a growing

class of examples that could strongly benefit from an accurate

modelling of the inside of the conductor. To mention just

a few, one could study the presence of impurities inside

the conductor or the interaction between both sides if it is

very thin. Near corners a much finer geometrical meshing is

required, which, to a certain extent, reduces the calculation of

impedance integrals to the traditional methods of SE or SC.

However, as the geometry becomes smoother, our technique

allows the meshing to be considerably coarser (roughly λ
10 for

the outside medium) and consequently save a huge amount of

computational resources. The numerical example shown here

features a very thin conductor shaped as a spherical shell,

shown in Figure 2. The advantage of this particular geometry

is that it allows comparison with an analytical solution for

embedded spheres. The radius of the inner sphere is 1m and

Rd

ε0

σ

k

0εE
in

Fig. 2. The geometry for the numerical example.

the thickness of the material is 10µm. The material is copper,

such that σ = 59.6 ·106S ·m−1. An incoming plane wave with

frequency 4.77·107 Hz impinges on this object. The skin depth

of copper at this frequency is δ = 9.46µm and the surface of

each sphere is discretised in 584 triangles. This results in a

linear system with 3504 degrees of freedom. The tolerance

for the impedance integrals was set to 10−5. This particular

example features a number of interesting cases, i.e. all the

singular ones (self patch, neighbour patch and point patch), but

also the common case of parallel (but non-touching) triangles.

A comparison between the calculated total fields is shown in

Figure 3, along a line through the center of the spheres and

parallel to the direction of the plane wave.

Clearly excellent agreement is achieved, both inside and

outside the shell. The only discrepancies occur very close to

the interfaces and are due to geometrical error (the sphere is

discretised with flat triangles). When using a perfectly electri-

cally conducting shell or when using surface impedances, the

field inside could not have been calculated. This demonstrates

the applicability of our technique to tunnelling simulations.

V. CONCLUSION

This paper briefly explains the concepts used to calculate

MoM impedance integrals in conductive media, without get-
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Fig. 3. A comparison (between simulation and analytical result) of the
electric field after scattering at a very thin conductive shell. The difference
(in dB) between the error and solution graphs indicates the relative accuracy.

ting too deeply involved in details. The core of the method is

the use of a truncation distance rcut, defined by the material

parameters, frequency and desired tolerance. This allows suit-

able reductions of the integration domain, both for the inner

and outer integral, allowing a scalable solution through the

focusing of quadrature points. A number of suggestions for

applications were given and one example, featuring tunnelling

through a conductor, was shown to excellently agree with the

analytical solution.
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